Editors: Amal Bawri, Kenjum Bagra, Imlikumba, Robindra Teron

RECENT ADVANCES IN FOLK MEDICINE RESEARCH IN NORTH EAST INDIA

Editors:

Amal Bawri Kenjum Bagra Imlikumba Robindra Teron

Recent Advances in Folk Medicine Research in North East India

Recent Advances in Folk Medicine Research in North East India

Editors

Amal Bawri Kenjum Bagra Imlikumba Robindra Teron

NORTH EASTERN INSTITUTE OF FOLK MEDICINE, PASIGHAT, ARUNACHAL PRADESH

Amal Bawri, Kenjum Bagra, Imlikumba & Robindra Teron

Recent Advances in Folk Medicine Research in North East India

All rights reserved. No part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner and the publisher.

The views expressed in this book are those of the authors, and not necessarily that of the editors & publishers. The editors & publisher is not responsible for the views of the Author and authenticity of the data, in any way whatsoever.

© Editors, 2021

ISBN 978-81-955047-0-1

First published in 2021 North Eastern Institute of Folk Medicine Pasighat-791102, Arunachal Pradesh (India) Phone:0368-2225243/2225650 Fax: 0368-2222181 Email: neifmresearch@gmail.com

Preface

Folk medicine is the mixture of traditional healing practices and beliefs that involve herbal medicine, spirituality and manual therapies or exercises in order to diagnose treat or prevent an ailment or illness (WHO, 2008). According to World Health Organization (WHO, 2008), it is mostly practiced by indigenous or native populations and as much as 80% of the population in certain countries within Asia and Africa rely on it for primary care. Folk medicine takes different forms in different regions, and the documentation and preservation of traditional medical practices and knowledge is utmost essential for safeguarding intangible heritage and recognizing and promoting cultural diversity. Traditional medicine or folk medicine is a system of medicine developed over generations, thousands of years ago within various civilizations, societies, communities, tribes, clans' spreading to all the nooks and corners of India before the era of Modern medicine came in its present shape. The practice of ritualistic healing and folk remedies has been an integral part of different ethnic communities in the India. North East India comprises of the states of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura located between 21°34 'N to 29°50 'N latitude and 87°32 'E to 97°52 'E longitudes occupies an area of about 2,62,060 sq. km. About 8% of the country's total geographical area is represented by the N.E. region.

North East India represents the transitional zone between the Indian, Indo-Myanmar and Indo-Chinese biogeographic regions. The area is highly rich in vegetation with different type of forest vegetation. This very rich floral and faunal diversity has led it to be designated as one of the biodiversity hotspots of the world. The region is very rich in different ethnic groups and culture. Out of 450 tribal communities in India, the region alone provides the dwelling place of about 200 ethnic communities. Most of the ethnic peoples have their own traditional medicine and healing practices. Due to rich biodiversity and cultural diversity, the region attracts the attention of ethnobotanists, ethnozoologist, etc. and the region becomes a centre of frontier areas of research in folk medicine. Consistent R & D activities on plant and Animal wealth and their traditional utilization pattern of this region have added abundant return to the basic knowledge in several aspects of ethnobotany and folk medicine. Research in this field has diversified during the last few decades and many potential areas have emerged. This has opened up new horizons in understanding the nature and uses of plant and animal resources. It does hold great significance and explore innovative strategies for resources conservation and preservation of traditional knowledge.

During the last two decades number of active researchers in different field of ethno- biology pertaining to North-eastern India have been working and quite a good number of their publications have appeared in different reputed journals. The present volume is the outcome of an endeavour to highlight the works of such upcoming workers engaged in botanical, ethnobotanical, ethnozoological research in this region. The volume has 19 research articles focussing on different field's *viz. ethnobotany*, *ethnozoology, Ayurveda*, and *Photochemistry*. It is hope that this volume has comprehensively highlight the ethno-biological Research and Development of this region.

We gratefully acknowledge to all contributors for sharing their views for our endeavours. We also express our sincere thanks to the Ministry of AYUSH, Government of India for their constant support.

Editors

List of Figures

2.1.	Map of Northeast India showing the study area.	14
2.2	EDADPNEI Web Search Interface.	17
2.3	EDADPNI web interface (Details)	18
3.1	Map showing the eight states of North East India.	24
3.2	Distribution of medicinal plants reported from North East India.	30
3.3	Medicinal plant parts used in treatment of eye ailments.	31
3.4	Major types of eye ailments.	32
4.1	Ten Dominant families of medicinal plants used in the treatment of respiratory disorder in North East India.	49
4.2	Plant parts used as medicine.	50
4.3	Number of medicinal plants and different respiratory diseases treated traditionally.	51
6.1	Distribution of different families of plants used in the traditional medicine of hemorrhoids in NE India.	280
6.2	Different plants habits used in the traditional medicine of hemorrhoids in NE India.	280
6.3	Different plant parts used in the treatment of hemorrhoids by traditional healer.	281
6.4	Use of herbal medicines for hemorrhoids in different states of North East India.	282
6.5	Different types of mode of preparation of the herbal medicine for the treatment of hemorrhoids.	283
6.6	Different modes of administration of the herbal dose in the treatment of piles.	283
6.7	Common pharamacological properties present in the plants used as traditional medicine for hemorrhoids.	285

7.1	Different part of plants used for the treatment of skin diseases.	305
7.2	Different types of skin diseases traditionally used to treat by the local people in North East India.	306
8.1	Plant parts used as medicine.	352
9.1	Representing the percentage of habit of plant species.	530
9.2	Representing the number most and least parts used.	530
9.3	Use frequency (number of species) of different plant parts.	531
9.4	Use frequency of remedy preparation techniques.	531
9.5	Phytochemical Constituent of medicinal plants use in gastrointestinal disorders.	532
11.1	(a): <i>Rhynchostylis retusa</i> (complete plant); (b): Inflorescence of <i>R. retusa</i>	599
11.2	Calibration curve of catechin.	602
11.3	Calibration curve of gallic acid.	602
13.1	Map showing Study site.	619
13.2	Proportional contributions of plant parts and crude drug preparations.	620
14.1	The plant <i>Wallichia oblongifolia</i> (Locally known as Tashe) is used for various purposes by the tribal community of Arunachal Pradesh.	687
14.2	The wild edible plants are used in herbal formulation, nutraceutical and phytochemical screening.	687
15.1	Number of plants parts used in skin disease.	704
19.1	Diet module.	736

List of Tables

2.1	Estimates of diabetes across the globe.	10
2.2	Number of adults (20–79 years) with diabetes as per World Bank income classification in 2019.	11
2.3	Number of men and women (20–79 years) with diabetes in 2019.	11
2.4	Top 10 countries or territories for number of adults (20–79 years) with diabetes in 2019.	12
2.5	Prevalence of diabetes (%) in urban and rural areas from ICMR–INDIAB study in Northeastern phase.	13
2.6	Ethnic population and richness of plant resources in the Northeast Indian States.	15
3.1	Traditional eye phytomedicines reported from 8 states of North East India.	32
4.1	Diversity of medicinal plants traditionally used for respiratory disorders.	52
5.1	List of insects used for medicinal purpose by different tribes of Arunachal Pradesh.	218
5.2	List of insects used for medicinal purpose by the tribes of Assam.	223
5.3	List of insects used for medicinal purpose by tribes of Manipur [Singh, 2015].	228
5.4	List of insects used for medicinal purpose by Mizo tribe of Mizoram.	229
5.5	List of insects used as medicine by different communities of Nagaland.	230
6.1	Ethnopharmacological details of the studied plants.	246
7.1	Diversity of medicinal plants traditionally used in ethnodermatological practices among the ethnic groups in North East India with pharmacological effect/Phytochemical constituent with reference.	306

8.1	Combinations of Medicinal plants traditionally used for Jaundice.	353
8.2	Medicinal plant traditionally used to treat Jaundice by the traditional healers in North Eastern Region.	371
9.1	Plant species used for treating Gastrointestinal ailments along with part uses, mode of preparations and Pharmacological effects.	422
10.1	Animal species used for different ailments in Northeast India.	592
11.1	Phytochemical screening of four extracts of Rhynchostylis retusa.	601
11.2	Quantitative estimation of phytochemicals.	602
13.1	List of ethnomedicinal plants.	621
13.2	Disease category and their ICF values.	642
13.3	Fidelity Level of most common used plants.	643
14.1	List of traditional green leafy vegetables and their ethnomedicinal uses.	651
14.2	List of plants of which stems and barks are used as food and their ethnomedicinal properties.	661
14.3	List of edible flowers/buds/inflorescences and their ethnomedicinal properties.	664
14.4	List of underground edible parts (tuber/rhizome) and their ethnomedicinal properties.	669
14.5	List of edible fruit plants and their ethnomedicinal properties.	674
15.1	Enumeration of the Medicinal plants used by Mishing community for curing skin diseases.	698
18.1	Different Ayurvedic literature described the properties of Kshara.	725
18.2	Doses of Kshara.	726
18.3	Showing the Organoleptic characters of Makkaya Paneeya Kshara.	727
18.4	Showing the Phytochemical parameters of Makkaya Paneeya Kshara.	727

List of Contributors

- 1. **A. Malang**, Department of Panchakarma, Parul University, Parul Institute of Ayurved, Limda Vadodara- 391760, Gujarat, India.
- 2. Ajit Kumar Tamuli, Department of Life science and Bioinformatics, Assam University, Diphu Campus, Diphu-782462, Karbi Anglong, Assam, India.
- 3. Akoijam Basanta Singh, Department of Life Science and Bioinformatics, Assam University, Diphu Campus, Diphu-782 462, Karbi Anglong, Assam, India.
- 4. **Amal Bawri**, North Eastern Institute of Folk Medicine, Pasighat-791102, Arunachal Pradesh, India.
- 5. **Anaru Boro**, Department of Botany, Tangla College, Tangla- 784521, Udalguri, Assam, India.
- 6. Anjana Singha Naorem, Dept of Zoology, Cotton University, Guwahati-781001, Assam, India.
- 7. Anusmrita Kashyap, Centre for Infectious Diseases, CSIR –North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- 8. **Binoy Singh**, Department of Forestry, North Eastern Regional Institute of Sciences and Technology, Nirjuli-791109, Arunachal Pradesh, India.
- 9. **Bhaben Tanti**, Department of Botany, Gauhati University, Guwahati-781014, Assam, India.
- 10. **Bipankar Hajong**, Centre for Infectious Diseases, CSIR –North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- 11. **Daimalu Baro**, Department of Botany, Tinsukia College, Tinsukia-786125, Assam, India.
- 12. **Debashree Kakati**, Department of Botany, Mangaldai College, Darrang-784125, Assam, India
- 13. **Dibyajyoti Saikia**, Department of Zoology, Sipajhar College, Sipajhar-784145, Darang, Assam, India.
- 14. **Dipika Rajput**, Department of Life Sciences, Dibrugarh University, Dibrugarh-786004, Assam, India.
- 15. **Dipti Thakuria**, Department of Zoology, Gauhati University, Guwahati-14, Assam, India.

- 16. **Imlikumba**, North Eastern Institute of Folk Medicine, Pasighat-791102, Arunachal Pradesh, India.
- 17. Joynath Pegu, North Eastern Institute of Folk Medicine, Pasighat 791102, Arunachal Pradesh, India.
- 18. **Junali Chetia**, Department of Botany, Silapathar college, Silapathar, Dhemaji, Assam-787059, India.
- 19. Jyotisikha Lahon, Centre for Infectious Diseases, CSIR –North East Institute of Science and Technology, Jorhat- 785006, Assam, India.
- 20. **Kenjum Bagra**, North Eastern Institute of Folk Medicine, Pasighat-791102, Arunachal Pradesh, India.
- 21. **Kishor Deka**, Department of Botany, Darrang College, Tezpur- 784001, Assam, India.
- 22. **Kuladip Sarma**, Department of Zoology, Cotton University, Panbazar, Guwahati-781001, Assam, India
- 23. Lal Ravi Sahu, Department of Panchakarma, Parul University, Parul Institute of Ayurved, Limda Vadodara- 391760, Gujarat, India.
- 24. **M. M. Parappagoudra**, Department of Panchakarma, Parul University, Parul Institute of Ayurved, Limda Vadodara- 391760, Gujarat, India.
- 25. **Naba Jyoti Borah**, Department of Botany, Sibsagar College, Joysagar-785665, Assam, India.
- 26. P. R. Gajurel, Department of Forestry, North Eastern Regional Institute of Sciences and Technology, Nirjuli-791109, Arunachal Pradesh, India.
- 27. **Pankaj Bharali**, Centre for Infectious Diseases, CSIR –North East Institute of Science and Technology, Jorhat- 785006, Assam, India.
- 28. **Pubali Bhuyan**, Department of Life Sciences, Dibrugarh University, Dibrugarh-786004, Assam, India.
- 29. **Robert Panmei**, Department of Forestry, North Eastern Regional Institute of Sciences and Technology, Nirjuli-791109, Arunachal Pradesh, India.
- 30. **Robindra Teron**, North Eastern Institute of Folk Medicine, Pasighat- 791102, Arunachal Pradesh, India.

- 31. **S. K. Borthakur**, Department of Botany, Gauhati University, Guwahati-781014, Assam, India
- 32. **Sagarika Das,** Department of Botany, Darrang College, Tezpur- 784001, Assam, India.
- 33. **Santana Saikia**, Dept of Zoology, Cotton University, Guwahati-781001, Assam, India.
- 34. **Sikha Lekharu**, Department of Samhita and Siddhant, North Eastern Institute of Ayurveda and Homoeopathy, Shillong- 793018, Meghalaya, India
- 35. **Susanta Roy**, Department of Life science and Bioinformatics, Assam University, Diphu Campus, Diphu-782462, Karbi Anglong, Assam, India.
- 36. **Tajen Dabi**, Department of History, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Papum Pare, Arunachal Pradesh, India

Contents

Preface	i
List of Figures	iii
List of Tables	V
List of Contributors	vii

- 1. FOLK MEDICINE: A POTENTIAL ALTERNATIVE 1–7 HEALTHCARE SYSTEM– Kenjum Bagra, Amal Bawri, Imlikumba and Robindra Teron
- 2. ETHNOMEDICINAL DATABASE OF ANTIDIABETIC 8–22 PLANTS OF NORTHEASTERN INDIA (EDADPNI): A LIST OF 284 ANTI-HYPERGLYCEMIC ANTIDIABETIC PLANTS IN PRACTICE– Susanta Roy and Robindra Teron
- 3. TRADITIONAL EYE CARE PRACTICES IN NORTHEASTERN 23–44 INDIA- AN OVERVIEW– Akoijam Basanta Singh and Robindra Teron
- 4. DIVERSITY OF MEDICINAL PLANTS TRADITIONALLY 45–215 USED FOR RESPIRATORY DISORDERS IN NORTH EAST INDIA: A REVIEW– Amal Bawri, Daimalu Baro, Kenjum Bagra, Imlikumba and Robindra Teron
- 5. A REVIEW ON ENTOMOTHERAPEUTIC PRACTICES BY 216–240 ETHNIC TRIBES OF NORTH EAST INDIA– Santana Saikia, Anjana Singha Naorem and Naba Jyoti Borah
- 6. DIVERSITY OF MEDICINAL PLANTS TRADITIONALLY 241–302 USED TO TREAT HEMORRHOIDS AMONG THE ETHNIC GROUPS IN NORTH EAST INDIA: A REVIEW– **Debashree** Kakati and S. K. Borthakur
- 7. ETHNODERMATOLOGICAL PRACTICES AMONG THE 303–347 ETHNIC GROUPS IN NORTH EAST INDIA: A REVIEW– Daimalu Baro
- 8. DIVERSITY OF HEPATOPROTECTIVE MEDICINAL PLANTS 348–415 TRADITIONALLY USED IN FOLK HEALING PRACTICES AMONG THE ETHNIC GROUPS IN NORTH EAST INDIA: A REVIEW– Junali Chetia and Amal Bawri

- 9. DIVERSITY OF MEDICINAL PLANTS TRADITIONALLY 416–585 USED TO TREAT GASTROINTESTINAL AILMENTS AMONG THE ETHNIC GROUPS IN NORTH EAST INDIA: A REVIEW– Kishor Deka, Sagarika Das and Bhaben Tanti
- 10. ETHNOZOOLOGICAL STUDIES IN NORTHEAST INDIA: A 586–597 REVIEW– Dibyajyoti Saikia, Dipti Thakuria, Kenjum Bagra and Kuladip Sarma
- 11 PHYTOCHEMICAL SCREENING OF ORNAMENTAL ORCHID 598–604 RHYNCHOSTYLIS RETUSA (KOPOU PHUL)– **Dipika Rajput**
- 12. ETHNOBOTANICAL SURVEY OF RITUAL PLANTS USED 605–616 BY BORO TRIBE OF UDALGURI DISTRICT, ASSAM– Anaru Boro
- UTILIZATION PATTERN OF MEDICINAL PLANTS BY ZEME 617–645 TRIBE OF MANIPUR, NORTHEAST INDIA– Robert Panmei, P. R. Gajurel and B. Singh
- 14. RESURGENCE OF WILD EDIBLE PLANTS OF NORTH EAST 646–694 INDIA AS A SOURCE OF NUTRIENTS– Pankaj Bharali, Bipankar Hajong, Jyotisikha Lahon and Anusmrita Kashyap
- 15. ETHNOMEDICINAL KNOWLEDGE OF MISHING 695–705 COMMUNITY FOR MANAGEMENT OF SKIN DISEASES IN DHEMAJI DISTRICT, ASSAM, NE INDIA– Joynath Pegu, Robindra Teron and Ajit Kumar Tamuli
- 16. AT THE CULTURAL CROSSROADS: A PORTRAIT OF A 706–711 GALO SHAMAN– **Tajen Dabi**
- 17. ANTIVIRAL ACTIVITY OF TRADITIONAL HERBAL 712–722 MEDICINE OF NORTH EAST INDIA– **Pubali Bhuyan**
- REVIEW ARTICLE ON THE DRUG MAKKAYA KSHARA- M. 723–731
 M. Parappagoudra, Imlikumba, Lal Ravi Sahu and A. Malang
- 19. UNDERSTANDING OF DIABETES MELLITUS DIET– AN 732–739 INTEGRATIVE APPROACH–**Sikha Lekharu**

Chapter 1

Folk Medicine: A Potential Alternative Healthcare System

Kenjum Bagra*, Amal Bawri, Imlikumba and Robindra Teron North Eastern Institute of Folk Medicine (An Autonomous Institute under Ministry of AYUSH, Govt. of India), Pasighat-791102, East Siang, Arunachal Pradesh, India *Corresponding author: kenjum.bagra@gov.in

Abstract

Folk Medicine has originated from primitive man's reactions to natural events. The magical and witchcraft practices played an important role in Folk Medicine. The society, where witchcraft and religious beliefs are of great importance, disease and health are explained by external factors. The efforts of the people to find solutions of the illness or diseases resulted in setting up the basis of folk medicine. In a traditional societies opinion on disease and health were born as a part of folk culture. Hence, practices related to such issue are the domination of anthropological, ethnological and sociological factors. Therefore, the original of all forms of healthcare system is rooted to folk medicine. The folk medicine still dominated major parts of healthcare system all over the world.

Keywords: Traditional Medicine, Indian System of Medicine, Status.

Introduction

The Folk Medicine or folk healing practice is an established vital and important part of healthcare systems all over the world. It has been the lifeline in healthcare delivery system before the introduction of the modern medicines. In the present context also this healthcare delivery system is popularly running parallel with the modern system.

Folk medicine refers to health practices, methods, knowledge and beliefs incorporating natural resource based medicines, spiritual therapies, manual techniques and exercises, applied singularly as well as in combination to treat, diagnose and prevent illnesses or maintain well-being (WHO, 2002a). This system of health practices originated long before the civilization of human society. In due course of time, it closely associated with the human culture and social system. The human use of plants as medicines may be traced back at least 60,000 years as per fossil records, (Fabricant & Farnsworth, 2001; Shi et. al., 2010). The use of natural products as medicines have presented a great challenge to society of earlier days. There had been higher probability of consuming poisonous plants, on seeking food, that might result to vomiting, diarrhea, coma, or other toxic reactions or even death. However, this way reasoned for development of knowledge about edible items and natural medicines (Gao et.al., 2007).

Folk healing system is being practiced through a person termed as "Traditional Healer". A Traditional Healer is someone who is recognized by the community wherein he lives and is competent to provide health care by using plant, animal and mineral substances and certain other methods based on the social, cultural and religious backgrounds. In addition, the healer has the prevailing knowledge, attitudes and beliefs regarding physical, mental and social well-being and the interconnection of disease and disability in the community. Traditional healers used diverse medicinal combination from natural resources. They have vast knowledge and experience on the use of bio resources for healing and nutritional purposes.

The northeastern part of India is dominated by tribes with unique culture and identity. This part of the country is a place with lesser connectivity with the mainland India until 90s. Therefore, in many places of this region there is still lack of modern healthcare facilities. Hence, the people in the region are largely depending on the Traditional Healthcare System.

Folk Medicine in Global context

Folk medicine is the oldest form of health care in the world and it is used in the prevention, and treatment of physical as well as mental illnesses. It is also variously known as complementary and alternative, or ethnic medicine, and it still plays a key role in many countries today (Abdullahi, 2011). Traditional medicines have been used in many countries throughout the world over many centuries. According to the World Health Organization (WHO), 65 % to 80% of the world's healthcare practice involves the use of traditional medicine (WHO, 2019). Traditional medicine is widely used in the prevention, diagnosis, and treatment of an extensive range of ailments. There are many advocates that have playing a significance role in the wide acceptability and increasing appeal of traditional and folk medicine throughout the world, particularly in recent two decades. In some regions, traditional medicine is more accessible. World Bank and WHO reported that, one-third of the world's population and over half of the populations of the neediest parts of Asia and Africa do not have consistent access to essential drugs. However, the most reported reasons for using traditional and medicine are that it is more reasonable, within the range to the patient's ideology than allopathic medicine.

Traditional medicine has also been reported to be used in the treatment of life-threatening illnesses like Malaria and AIDS. In Ghana, Mali, Nigeria and Zambia, herbal medicines are the first line treatment for more than 60% of children with high fever. Studies in Africa and North America have revealed that up to 75% of individuals living with HIV/AIDS use Folk medicine alone or in combination with other medicines for various symptoms (WHO, 2019).

Today, traditional medicine has become an indispensable part of our health management. It has been well known that traditional medicine covers a wide array of therapies and practices which vary from culture to culture and country to country. According to WHO, in China, folk medicine accounts for around 40% of all health care delivered (WHO, 2019). In Chile 71% and Colombia 40% populace, have used folk medicine. In India, 65% of the population in rural areas uses Ayurveda and medicinal plants meet their primary health care requirement. In developed it becomes more popular. The percentage of the population that has used folk medicines at least once is Australia 48%, Belgium 31%, Canada 70%, France 49% and 42% in the United States of America (WHO, 2002b; WHO, 2013).

Supported by several World Health Associations and Executive Board resolutions, WHO has developed and issued a series of technical guidelines for the assessment of herbal medicines, evaluating the safety and efficacy of herbal medicines, and for clinical acupuncture research. In 1997, WHO developed draft guidelines for "methodology on research and evaluation of traditional medicine" that

was finally approved in April, 2000 with target to promote the proper development, registration, and use of traditional medicines and to blend the use of certain terms in traditional medicine. In 2006, WHO established a global network called the International Regulatory Cooperation for Herbal Medicines (IRCH) to allow communication and exchange between worldwide regulatory authorities responsible for the regulation of herbal medicines. WHO follows a comprehensive approach on traditional systems and considers various traditional system like traditional Chinese medicine, Indian Ayurveda and Unani medicine as well as the various other forms of traditional healing systems globally identical in the group of complementary and alternative medicine. However, the development of health care into an integrated, inclusive, or tolerant system in any country depends on the extent to which the traditional healing can be officially recognized as a component of health care rather than an alternative one.

Folk Medicine in India

India is a big country and is a land of different group of people having their own religion, faith and beliefs, culture, language, and dialects. This uniqueness has resulted in developing diverse medicinal systems in this region. Several medicinal systems were also introduced in India from outside world due to territorial invasions. This helped in enriching Indian traditional healthcare system. From ancient time, Indian society remain depended on traditional medicinal systems practiced here (Pandey et al., 2013). The introduction of allopathic drug during British rule and disregarding Indian traditional medicine by Britishers can be accounted responsible for significant destruction of Indian traditional medicine. Significant scientific development in allopathic medicine and modern healthcare facilities had also resisted the growth of traditional medicine. About 70% rural populations of India are dependable in traditional medicine for primary healthcare (Mafuva & Marima-Matarira, 2014). The knowledge of therapeutic, toxicological effect of plants, and other substances are dated back to the prehistoric periods when people have migrated into the Indian subcontinent. Several evidences indicated that, in Indian subcontinent medical intervention like dentistry and trepanation were exercised as early as 7000 BC (Sen & Chakraborty, 2017). Current records of archaeo-botanical excavations pointed towards the evidence of medicinal plants uses in the Middle Gangetic region since the 2nd millennium BC. These practices are still found in Ayurvedic folk medicine (NCBS, 2015).

Even before the codification of medical knowledge into the canonical texts of Ayurveda, there were abundant sources on its knowhow in the subcontinent. Healings are practiced by people from all levels of society that live and work intimately with their environment. They vary from home remedies connected with nutrition and treatment of minor illnesses, to sophisticated procedures like midwifery, bone setting and treatment of snake bites and mental disorders. There were also specialists in bloodletting, physical medical practices and others with good knowledge of medicinal plants. All these field of folk practices have their specific folklore that preserved and helps in transmitting the knowledge. There were many healing practices that were considered to be consecrated and were linked with many forms of rituals that helped safeguard them. It is interesting to note that in folk traditions there is considerable overlap between healing plants and sacred plants, and certain healing plants were venerated (Singh & Lahiri, 2010). In many regions of India, the practices of folk medicine still dominate the healthcare practices.

Discussion

Folk medicine is different in comparison to advanced medicine. It had lived with the people as a part of their culture and traditions, and still persists it its original forms. In traditional societies, any information about a disease is shared to others orally. This information is passed through generation after generation. People acquire knowledge on popular medicine in the same way, and they learn other cultural components too. Folk medicine that exists today is the results of trials and errors of ethnic groups which inherited from generation to generation orally. The reason for folk or traditional medicine's acceptability can be explained by the fact that beliefs change very slowly. In many countries, especially in conservative communities, existence of large forms of folk medicine practices can still be seen.

The use of traditional medicines has extended globally and has gained attention in the last few years. These practices have not only continued to be used for primary healthcare in developing countries, but have also been used in nations where conventional medicines are predominant in the healthcare system. With this incredible expansion in the use of traditional medicines worldwide, its safety and efficacy as well as quality control medicines and procedure-based therapies have become important concerns. For the reason, the World Health Organization has increasingly involved in developing international standards and technical guidelines for these types of medicines. They are also working for increasing communication and cooperation between various nations. The challenge now is to ensure that folk medicines are used properly. It is also to determine the way for research and the evaluation of folk medicines that is to be carried out.

Today, these medicines still exist an essential part of healthcare in many countries. More than 100 nations have guidelines for herbal medicines. But their practices vary greatly from region to region, as they are influenced by various factors such as culture, history, philosophy, etc. However, while it is often necessary to adapt regulation for good propagation of this august practices and preservation of traditional medicine system at individual country wise, several themes and issues are common, such as the importance of practitioner training, the issues linked with safety, the demand of research into both products and practices for development, and the status of labeling.

Despite a few efforts from the non-governmental organization and regional interest groups in various parts of the world, the traditional healers are sidelined in the policy framework and left to the regional discretion of integration. These knowledge systems are considered to be the fragments form of knowledge prior to the present scientific era and overlooked by the researchers, medical professions and policymakers. Only in recent time there has been a resurgence of scientific interest in traditional healing. Given their importance, national and international organizations like, WHO and WIPO have advocated their preservation and development. In 1998, health ministers of commonwealth countries established a working group on 'Traditional and Complementary Health Systems' to guide legislators towards integrating traditional and complementary medicines into mainstream of national health care for reform health sector. In 2020 WHO announced for setting up of a Global Centre for Traditional Medicine in India. This is being witness as India moving towards achieving the Centre for global wellness.

References

- Abdullahi, A.A. 2011. Trends and challenges of traditional medicine in Africa. *African Journal of Traditional, Complementary and Alternative Medicines*,8(S): 115-123.
- Fabricant, D.S. & Farnsworth, N.R. 2001. The value of plants used in traditional medicine for drug discovery. *Environmental health perspectives*, 109.suppl 1 (2001): 69-75.
- Gao, X.M., Zhang, T.M., Zhang, J.R., Guo, J.S. & Zhong G.S. 2007. *Chinese Materia Medica*. China Press of traditional Chinese Medicine; Beijing, China.
- Haidan, Y., Qianqian M., Ye, L. & Guangchun, P. 2016. The Traditional Medicine and Modern Medicine from Natural Products. *Molecules*, 21(5): 559.
- Mafuva, C. & Marima-Matarira, H.T. 2014. Towards professionalization of traditional medicine in Zimbabwe: a comparative analysis to the South African policy on traditional medicine and the Indian Ayurvedic system. *International Journal of Herbal Medicine*, 2(2): 154-161.
- National Centre for Biological Sciences.2015. Overview of Indian Healing Traditions. https://www.ncbs.res.in/HistoryScienceSociety/content/overview-indianhealingtraditions (Accessed on 9 September 2021).

- Pandey, M.M., Rastogi, S., Rawat, A.K.S. 2013. Indian traditional Ayurvedic system of medicine and nutritional supplementation. *Evidence-Based Complementary and Alternative Medicine*, 2013:1-12. Article ID 376327, 12 pages, http://dx.doi.org/10.1155/2013/376327
- Sen, S. & Chakraborty, R. 2017. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. *Journal of Traditional and Complementary Medicine*,7(2): 234-244. doi: 10.1016/j.jtcme.2016.05.006.
- Shi, Q.W., Li, L.G., Huo C.H., Zhang, M.L. & Wang, Y.F. 2010. Study on natural medicinal chemistry and new drug development. *Chinese Traditional and Herbal Drugs*; 41:1583-1589.
- Singh, U. & Lahiri, N. 2010. Ancient India: New Research. Oxford University Press, India.
- World Health Organization. 2019. WHO global report on traditional and complementary medicine. World Health Organization, Geneva.
- World Health Organization. 2002a. *Traditional medicine: growing needs and potential* (No. WHO/EDM/2002.4). World Health Organization, Geneva.
- World Health Organization. 2002b. *The World health report: 2002: reducing risks,* promoting healthy life: overview. World Health Organization, https://apps.who.int/iris/handle/10665/67454

 World Health Organization. 2013. Traditional medicine: Report by the Secretariat. World Health Organization, Geneva.
 <u>https://apps.who.int/gb/archive/pdf_files/WHA56/ea5618.pdf</u> (Accessed on 9 September 2021).

Chapter 2

Ethnomedicinal Database of Antidiabetic Plants of Northeastern India (EDADPNI): A List of 284 Anti-Hyperglycemic Antidiabetic Plants in Practice

Susanta Roy¹ and Robindra Teron²

¹Department of Life Science and Bioinformatics,

Assam University – Diphu Campus, Diphu-782462, Karbi Anglong, Assam, India ²North Eastern Institute of Folk Medicine (An Autonomous Institute under Ministry of AYUSH, Govt. of India), Pasighat-791102, East Siang, Arunachal Pradesh, India *Corresponding author: susantoroy@gmail.com

Abstract

Antidiabetic plants have been reported in the literature from different ethnic groups in North Eastern Region of India. Preserving and upgrading aboriginal traditional knowledge is a priority. The data is scattered all over literature and more data is needed to be updated every time a new data is discovered. The Ethnomedicinal Database of Antidiabetic Plants of Northeast India (EDADPNI) is an online database of 284 anti-diabetic plants from North Eastern Region. The database will help to identify the variety of antidiabetic plants available in the North Eastern Region in one place by state, ethnic group, usage etc. It will help to compare and choose plants for the discovery of new therapeutic formulas and can be used as a reference. Our database mentions the highest number of antidiabetic plants from North Eastern Region. The database is available at https://omicsbase.com/DADPNEI/.

Keywords: Diabetes, Medicinal Plant, Northeast India, Folk medicine, Bioinformatics Database

Introduction

World Health Organization (WHO) in 2016 GLOBAL REPORT ON DIABETES mentioned that "globally, an estimated 422 million adults were living with diabetes in 2014, compared to 108 million in 1980. This reflects an increase in associated risk factors such as being overweight or obese. Diabetes caused 1.5 million deaths in 2012. Higher-than-optimal blood glucose caused an additional 2.2 million deaths, by increasing the risks of cardiovascular and other diseases. Forty-three percent of these 3.7 million deaths occur before the age of 70 years. The percentage of deaths attributable to high blood glucose or diabetes that occurs prior to age 70 is higher in low- and middle-income countries than in high-income countries. Because sophisticated laboratory tests are usually required to distinguish between type 1 diabetes (which requires insulin injections for survival) and type 2 diabetes (where the body cannot properly use the insulin it produces), separate global estimates of diabetes are affected by type 2 diabetes. This used to occur nearly entirely among adults but now occurs in children too" (WHO, 2020).

The American Diabetes Association recommends that diabetes testing starts at age 45 years for all adults who are overweight (body mass index $[BMI] \ge 25$ kg/m2) and have any of the following additional risks factors: physical inactivity, hypertension, or history of cardiovascular disease, low levels of high-density lipoprotein cholesterol, and high triglycerides, first-degree relative with diabetes, history of previous elevated blood glucose level or HbA1c measurement, women with polycystic ovarian syndrome, history of gestational diabetes, or giving birth to a baby weighing more than 4.082 kg (9 lb), member of an ethnic or minority racial group (Tuso, 2014). Currently, the majority of strategies approved by the FDA for autoimmune diseases have focused on non-antigen-specific immune suppression. Although this was found to be partially effective in inhibiting autoreactivity, these compounds have numerous side effects and long-term treatment remains challenging. Diabetes drugs include:

Sulfonylureas - glimepiride, glipizide, glyburide.

Biguanides - metformin.

Thiazolidinediones (Tzd) - pioglitazone, Actos generic.

Alpha-glucosidase inhibitors - Acarbose.

Meglitinides - nateglinide.

Combination of sulfonylureas plus metformin - known by generic names of the two drugs.

The limitation of currently available oral antidiabetic agents either in terms of efficacy/safety coupled with the emergence of the disease into global epidemic have encouraged alternative therapy that can manage diabetes more efficiently and safely (Tripathi et. al., 2011). Long term use of any drugs is also leads to severe complications. Prediabetes is now recognized as a reversible condition that increases an individual's risk for development of diabetes (Arkin et. al., 2014).

Diabetes in the world

The number of people living with diabetes and pre-diabetes has increased worldwide. About 5% of the global population is affected by diabetes (Chakraborty & Rajagopalan, 2002) and management of diabetes with no side-effect is still a challenge (Kameswararao et al., 2003). The number of people with diabetes rose from 108 million in 1980 to 422 million in 2014 (WHO, 2020). Between 2000 and 2016, there was a 5% increase in premature mortality from diabetes. Almost half of all deaths attributable to high blood glucose occur before the age of 70 years (WHO, 2020). WHO estimates that diabetes was the seventh leading cause of death in 2016 (WHO, 2020).

According to the IDF Diabetes Atlas Ninth edition 2019 Diabetes caused 4.2 million deaths and 374 million people are at increased risk of developing type 2 diabetes. In 2019, Approximately 463 million adults (20-79 years) were living with diabetes; by 2045 this will rise to 700 million. The proportion of people with type 2 diabetes is increasing in most countries. 79% of adults with diabetes were living in middle- and low- income countries. 1 in 5 of the people who are above 65 years old has diabetes. 1 in 2 (232 million) people with diabetes were undiagnosed. Diabetes caused at least USD 760 billion dollars in health expenditure in 2019 – 10% of total spending on adults. More than 1.1 million children and adolescents are living with type 1 diabetes. More than 20 million live births (1 in 6 live births) are affected by diabetes during pregnancy.

Table 2.1. Estimates of diabetes across the globe.			
At a glance	2019		
Total world population	7.7 billion		
Adult population (20–79 years)	5.0 billion		
Diabetes (20–79 years)			
Global Prevalence	9.30%		
Number of people with diabetes	463.0 million		
Number of deaths due to diabetes	4.2 million		

Recent Advances in Folk Medicine Research in North East India

Total health expenditures for diabetes ⁱ	USD 760.3 billion			
Hyperglycaemia in pregnancy (20–49 years)				
Proportion of live births affected	15.80%			
Number of live births affected	20.4 million			
Impaired glucose toler	Impaired glucose tolerance (20–79 years)			
Global prevalence	7.50%			
Number of people with impaired glucose tolerance	373.9 million			
Type 1 diabetes (0–19 years)				
Number of children and adolescents with type 1 diabetes	1,110,100			
Number of newly diagnosed cases each year	128,900			

ⁱHealth expenditures for people with diabetes are assumed to be on average two-fold higher than people without diabetes.

*Data is from IDF Diabetes Atlas, 9th edition, 2019.

Table 2.2. Number of adults (20–79 years) with diabetes as per World Bank income classification in 2019.

World Bank income classification	Prevalence of diabetes (%)	Number of people with diabetes (millions)
High-income countries	10.4 (8.6–13.3) ⁱ	95.2 (78.7–120.9)
Middle-income countries	9.5 (7.6–12.3)	353.3(280.1–455.3)
Low-income countries	4.0 (2.8–6.7)	14.5 (10.0–24.3)

ⁱ95% confidence intervals are reported in brackets.

*Data isfrom IDF Diabetes Atlas, 9th edition, 2019.

Table 2.3. Number of men and women (20–79 years) with diabetes in 2019.				
	Number of people with diabetes (millions)Prevalence (%)			
Men	240.1	9.6		
Wome	222.9	9		

*Data isfrom IDF Diabetes Atlas, 9th edition, 2019.

Country or territory	Number of people with diabetes (millions)
China	116.4 (108.6–145.7) ⁱ
India	77.0 (62.4–96.4)
United States of America	31.0 (26.7–35.8)
Pakistan	19.4 (7.9–30.4)
Brazil	16.8 (15.0–18.7)
Mexico	12.8 (7.2–15.4)
Indonesia	10.7 (9.2–11.5)
Germany	9.5 (7.8–10.6)
Egypt	8.9 (4.8–10.1)
Bangladesh	8.4 (7.0–10.7)

Table 2.4. Top 10 countries or territories for number of adults (20–79 years) with diabetes in 2019.

ⁱ95% confidence intervals are reported in brackets.

^{*}Data isfrom IDF Diabetes Atlas, 9th edition, 2019.

Diabetes in India

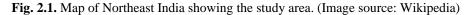
"Nearly one million people in India die annually due to diabetes. It is projected that India will become the home to 109 million diabetic patients by 2035 (Indiatimes, 2017)". 1 in 6 adults with diabetes in the world come from India (IDF) DIABETES ATLAS 9th edition 2019). India is one of the epicentres of the global diabetes mellitus pandemic. Increased susceptibility for Indian individuals, along with rapid socioeconomic development and demographic changes has led to the explosive increase in the prevalence of diabetes mellitus in India over the past four decades (Unnikrishnan et al., 2016). Type 2 diabetes mellitus in Asian Indian people is characterized by a young age of onset and occurrence at low levels of BMI (Unnikrishnan et al., 2016). Available data also suggest that the susceptibility of Asian Indian people to the complications of diabetes mellitus differs from that of white populations (Unnikrishnan et al., 2016). Management of this disease in India faces multiple challenges, such as paramedical staff, low levels of awareness and paucity of trained medical, and unaffordability of medications and services (Unnikrishnan et al., 2016). In a developing nation like India, the majority of diabetes patients also experience a substantial cost burden from out-of-pocket (OOP). Also, the dearth of insurance policies and schemes escalate the cost of diabetes care (Kumpatla et al., 2013). Many traditional medicines in use are derived from medicinal plants, minerals and organic matter (Grover et al., 2002). A number of medicinal plants, traditionally used for over 1000 years named rasayana are present in herbal preparations of Indian traditional health care systems (Scartezzini&Speroni, 2000). In Indian systems of medicine most practitioners formulate and dispense their own recipes (Scartezzini&Speroni, 2000). The WHO (World Health Organization) has listed 21,000 plants, around the world which are used for medicinal purposes (Scartezzini&Speroni, 2000). Among these 2500 species are in India, out of which 150 species are used commercially on a fairly large scale (Scartezzini&Speroni, 2000). India is the largest producer of medicinal herbs and is called as botanical garden of the world (Seth & Sharma, 2004). Many important aspects of diabetes in India remain uninvestigated (Unnikrishnan and Mohan, 2020).

Diabetes in Northeastern India and healthcare practices of the people

The Indian Council of Medical Research–INdiaDIABetes study (ICMR-INDIAB) study is the largest nationally representative study of diabetes in India (Anjana et al., 2017). The aim of the ICMR–INDIAB study is to establish the national and state-specific prevalence of diabetes and prediabetes in India (Anjana et al., 2011). The Northeastern phase (Phase III) sampling for which was done between Jan 5, 2012, and July 3, 2015 included six states and found prevalence of diabetes in the following order- Tripura (9.4 %), Mizoram (5.8 %), Assam (5.5 %), Arunachal Pradesh (5.1 %), Manipur (5.1 %) and Meghalaya (4.5 %) (Anjana et al., 2017). Such data will offer not only a more comprehensive understanding of disease burden, but also provide opportunities to explore state-level and individual level variation in diabetes and prediabetes (Anjana et al., 2017).

	Urban areas				Rural	Rural areas	
Prevalence of diabetes (%)	Low socio- economic status	High socio- economic status	Low socio- economic status	High socio- economic status			
Tripura*	15.0	7.7	5.1	8.4			
Manipur*	13.7	12.4	3.0	4.6			
Arunachal Pradesh*	8.7	16.2	2.7	5.6			
Assam*	8.1	7.4	1.9	5.3			
Mizoram*	5.6	8.3	1.3	4.5			
Meghalaya*	4.4	9.2	1.1	4.3			

Table 2.5. Prevalence of diabetes (%) in urban and rural areas from ICMR–INDIAB


 study in Northeastern phase.

India has a renowned custom of using traditional medicines and is well known for some highly established ethnomedicinal systems, namely, Avuryeda, yoga and naturopathy, Unani, Siddha, and homeopathy (AYUSH) which have been an indispensable part of Indian healing cultures (Bordoloi et. al., 2020). The North-east region of India comprises eight sister states, namely, Assam, Meghalaya, Mizoram, Nagaland, Sikkim, Arunachal Pradesh, Manipur, and Tripura, which are considered as the treasure house of many medicinal plants with tremendous potential in the industrial sector (Bordoloi et. al., 2020). Around 40% of the total geographical area of the North-east region is inhabited by evergreen forest which harbors diverse and very rich natural resources including various endemic species of flora and fauna (Bordoloi et. al., 2020). Moreover, the Indo-Burma hotspot region falls in the North-east region, which is ranked 2nd among the total 25 biodiversity hotspots identified worldwide (Bordoloi et. al., 2020). North-east states of India are inhabited by more than 180 major ethnic tribal communities such as Garo, Dafla, Abor, Khasi, Mishi, Naga, Kuki, Rabha, Apatani, etc., and each tribal group is known by their own languages, rituals, cultures, ensembles, and housing patterns (Mondal et al. 2013). The North-east people of different ethnic groups utilize a variety of folk medicines as a remedy for several ailments (Bordoloi et. al., 2020). These ethnic communities have been practicing the traditional healing system since time immemorial (Bordoloi et. al., 2020). Here we attempt to present the existing information regarding the medicinal plants of Northeast Indian states which have been in use as the source of herbal medicines for the management of diabetes and its associated complications since ages (Bordoloi et. al., 2020).

Materials and Method

Study Area:

Northeast India (officially North Eastern Region, NER) is the of India representing both political easternmost region а geographic and administrative division of the country. It comprises eight states - Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura (Fig. 2.1). The Table 2.6 presented below shows the ethnic population and richness of plant resources of the region.

Table 2.6. Ethnic population	and richness of plant	resources in the Nort	heast Indian
States.			

State	Total Area (Sq.	**Tribal	*Forest Cover
	Km.)	population (%)	(%)
Assam	78,438	12.45	35.83
Arunachal	83,743	68.79	79.96
Pradesh			
Manipur	22,327	40.88	77.69
Meghalaya	22,429	86.15	76.76
Mizoram	21,081	94.43	86.27
Nagaland	16,579	86.48	75.33
Sikkim	7,096	33.8	47.13
Tripura	10,486	31.76	73.68
	262,179	455	553

**Tribal population (%) as per Census India 2011.

*The forest cover (% in square kilometers) in 2017 in India by state and union territory as published by the Forest Survey of India.

We searched Pubmed and Google to collect the relevant literature manually and identified the ethnomedicinal antidiabetic plants in practice by various ethnic groups in Northeast India. Used search terms in a combination are i) Anti-diabetic plants + Northeast India, ii) Antidiabetic plants + Northeast India, iii) Antidiabetic plants + Northeast India + "&&" and iv) Anti-diabetic plants + Northeast India + "&&". Here "&&" means either Assam or Arunachal Pradesh or Manipur or Meghalaya or Mizoram or Nagaland or Sikkim or Tripura. A detailed literature search was carried out to validate the scientific names of the antidiabetic plants (Kumar et al., 2019). All updated botanical name of plants were cross-checked from the Plant List, a working list of all plant species. Based upon the literature survey, selected antidiabetic activity-based data and plant names have been included in **EDADPNI** for the scientific validation of traditional knowledge.

To develop EDADPNEI web search engine - PHP Version 7.2.34 and MySQL database has been used. EDADPNI web interface allows users to search,

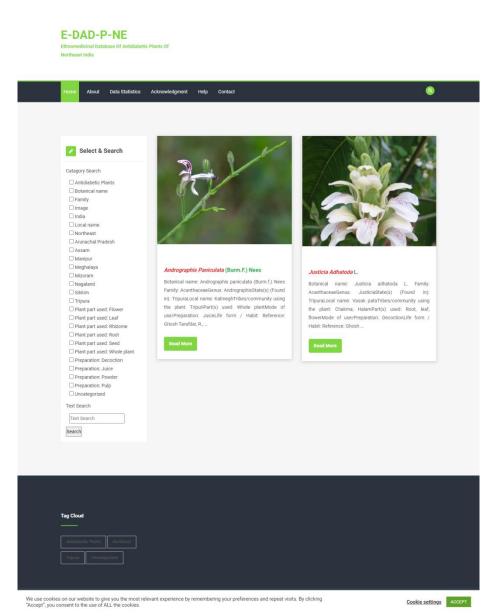
cross-check or compare antidiabetic plants from the NER region by "Botanical name". "Family". "Genus". "Found in NER State(s)". "Local name". "Tribes/community using the plant", "Plant Part(s) used", "Mode of use/Preparation", "Life form / Habit", "Reference(s)", "Plant Image(s)", "The Plant List - Page Link", plants "Wikipedia" Page Link. The simple EDADPNEI web search options appear on the left-hand side and users can put text and or select more than one of these features through the checkbox, and get results on the right-hand side after clicking the search button.

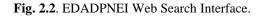
Results

EDADPNEI INTERFACE

EDADPNEI Web Search Interface (Fig. 2.2 & 2.3) has following pages

(1) Home: The EDADPNEI Web Search Interface appears in the Home page. The select and search feature is described below.


(2) About: About Page introduces you about EDADPNEI.


(3) Data Statistics: Various types of graphs are there about EDADPNEI plants, location and usage.

(4) Acknowledgment: This page acknowledges the resources used in EDADPNEI.

(5) Help: This page guides you about how to use EDADPNEI.

(6) Contact page is given for easy communication, information exchange about new discoveries.

Discussion and Conclusion

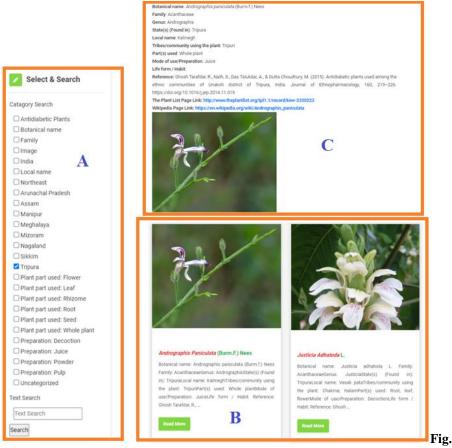


Fig. 2.3. EDADPNI web interface (Details).

EDADPNI web interface (Fig.2.3.) allows users to check or compare antidiabetic plants from NER by "Botanical name", "Family", "Genus", "Found in NER State(s)", "Local name", "Tribes/community using the plant", "Plant Part(s) used", "Mode of use/Preparation", "Life form / Habit", "Reference(s)", "Plant Image(s)", "The Plant List - Page Link", plants "Wikipedia" Page Link. A. Users can use checkbox or text search tool in left hand side (LHS) to search. B. For example we want to check all the plants in Tripura, so we selected Tripura in check box and clicked search button in A. Here B is the output of our search (only two plants are shown here). (C) On Clicking read more we will find more details about the plant as shown in C. A total of 284 plants belonging to 113 genera and 87 families used in traditional medicine for diabetes management in NER were identified. Different plant parts such as the leaf, root, bark and fruit and in some cases whole plant were used for making the herbal preparations (Bora et. al., 2005). All crude preparations were made using water as the medium (Bora et. al., 2005). The preparations were orally administered either as a plant crude extract, juice and decoction or leaf infusion (Bora et. al., 2005).

We found that ethnic groups are not well aware of all ethnomedicinal plants found in Northeast India related to diabetes. So, another important and relevant issue in ethnobotany is to study the transmission of cultural information (Santoro et al., 2018), and for this Database of Antidiabetic Plants of Northeast India (**EDADPNI**) is helpful to encourage the transmission of cultural information for effective disease management. Local practitioners and scientists can use the data as a starting point. The knowledge of important ethnomedicinal plants in one platform like **EDADPNI** can help in the selection of plants for culture as a source of income.

Limitation of EDADPNI: Antidiabetic activities of these plants are well established from all the aspect of therapeutic intervention; however, the molecular modulation remains unknown (Afolayan&Kibiti, 2015). It is envisaged that the use of herbal therapy will encourage good health and improve the status of diabetic patients (Afolayan&Kibiti, 2015). We are working to elaborate the database by incorporating all available data on antidiabetic disease targets of phytochemicals and phytopeptides of the geographic location from the selected medicinal plants to enhance the usability of the web interface for both everyday ethnomedicinal practitioners and scientists for targeted research on these plants. Regardless of having good awareness regarding diabetes mellitus in general, the information level on risk factors was not satisfactory and needs further improvement (Debbarma et al., 2019). Therefore, a special drive has to be given for imparting knowledge to the community people regarding risk factors as this could prevent further occurrence or progression of diabetes (Debbarma et al., 2019). So, EDADPNI fits into the future expectations. And additional Search and retrieval features will enhance the utility of the web interface.

References

- Afolayan, A. J. & Kibiti, C. M. 2015. Herbal therapy: A review of emerging pharmacological tools in the management of diabetes mellitus in Africa. *Pharmacognosy Magazine*, 11(2): S258-S274.
- Anjana, R.M., Deepa, M., Pradeepa, R., Mahanta, J., Narain, K., Das, H.K., Adhikari, P., Rao, P.V., Saboo, B., Kumar, A., Bhansali, A. John, M., Luaia, R., Reang, T., Ningombam, S., Jampa, L., Budnah, R.O., Elangovan, N., Subashini, R., Venkatesan, U., Unnikrishnan, R., Das, A.K., Madhu, S.V., Ali, M.K., Pandey, A., Pandey, A., Dhaliwal, R.S., Kaur, T., Swaminathan, S. & Mohan, V. 2017. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR–INDIAB population-based cross-sectional study. *The Lancet Diabetes & Endocrinology*, 5(8): 585-96.
- Anjana, R.M., Pradeepa, R., Deepa, M., Datta, M., Sudha, V., Unnikrishnan, R., Nath, L.M., Das, A.K., Madhu, V., Rao, P.V. & Shukla, D.K. 2011. The Indian Council of Medical Research-India Diabetes(ICMR-INDIAB) Study: Methodological Details. *Journal of Diabetes Science and Technology*, 5(4): 906-914.
- Arkin, M. R., Tang, Y. & Wells, J. A. 2014. Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality. *Chemistry & Biology*, 21(9): 1102–1114.
- Bordoloi, J., Dihingia, A., Kalita, J. & Manna, P. 2020. Ethnomedicinal Plants of North-East India as a Potential Target for Drug Discovery Against Type 2 Diabetes Mellitus. In: Patra J., Shukla A. & Das G. (eds.) Advances in Pharmaceutical Biotechnology, pp. 39–54. Singapore: Springer. <u>https://doi.org/10.1007/978-981-15-2195-9_4</u>
- Bora, U., Sahu, A., Saikia, A. P., Ryakala, V. K.& Goswami, P. 2007. Medicinal plants used by the people of Northeast India for curing malaria. *Phytotherapy Research*, 21(8): 800–804.
- Chakrabarti, R. & Rajagopalan, R. 2002. Diabetes and insulin resistance associated disorders: disease and the therapy. *Current science*, 83(12): 1533-1538.
- Daliri, E. B. M., Oh, D. H., & Lee, B. H.2017. Bioactive peptides. *Foods*, 6(5): 32.doi:10.3390/foods6050032
- Debbarma, S.K., Roy, S. &Reang, T. 2019. Knowledge of type 2 diabetes mellitus and its risk factors among adult population in rural areas of west district of tripura- a cross sectional study. *Journal of Evolution of Medical and Dental Sciences*, 8(2): 99-104.
- WHO. 2021. *Diabetes*. <u>https://www.who.int/news-room/fact-sheets/detail/diabetes</u> (Accessed on 24 June 2021).

- Grover, J.K., Yadav, S.& Vats, V. 2002. Medicinal plants of India with anti-diabetic potential. *Journal of ethnopharmacology*, 81(1): 81-100.
- International Diabetes Federation. 2019. *IDF Diabetes Atlas, 9th edn.* Brussels, Belgium: 2019. Available at: <u>https://www.diabetesatlas.org</u>(Accessed on 24 June 2021).
- Kameswararao, B., Kesavulu, M. M. & Apparao, C. 2003. Evaluation of antidiabetic effect of *Momordica cymbalaria* fruit in alloxan-diabetic rats. *Fitoterapia*, 74(1-2): 7-13.
- Kumar, A., Aswal, S., Chauhan, A., Semwal, R. B., Kumar, A. & Semwal, D. K. 2019. Ethnomedicinal Investigation of Medicinal Plants of Chakrata Region (Uttarakhand) Used in the Traditional Medicine for Diabetes by Jaunsari Tribe. *Natural products and bioprospecting*, 9(3): 175-200.
- Kumpatla, S., Kothandan, H., Tharkar, S. & Viswanathan, V. 2013. The costs of treating long- term diabetic complications in a developing country: a study from India. *The Journal of the Association of Physicians of India*, 61(2): 102-109.
- Lira, S. M., Canabrava, N. V., Benjamin, S. R., Silva, J. Y. G., Viana, D. A., Lima, C. L. S., Paredes, P.F.M., Marques, M.M.M., Pereira, E.O., Queiroz, E.A.M. & Guedes, M. I. F. 2017. Evaluation of the toxicity and hypoglycemic effect of the aqueous extracts of *Cnidoscolus quercifolius* Pohl. *Brazilian Journal of Medical and Biological Research*, 50(10): e6361, http://dx.doi.org/10.1590/1414-431X20176361.
- Mondal, P., Bhuyan, N., Das, S., Kumar, M., Borah, S. & Mahato, K. 2013. Herbal medicine useful for the treatment of diabetes in the north east India: A review. *International Journal of Pharmacy and Biological Science*, 3: 575– 589.
- Scartezzini, P. & Speroni, E. 2000. Review on some plants of Indian traditional medicine with antioxidant activity. *Journal of ethnopharmacology*, 71(1-2): 23-43.
- Seth, S.D. & Sharma, B. 2004. Medicinal plants in India. The Indian journal of medical research, 120(1): 9-11.
- Shil, S., Dutta Choudhury, M. & Das, S. 2014. Indigenous knowledge of medicinal plants used by the Reang tribe of Tripura state of India. *Journal of Ethnopharmacology*, 152(1):135-141. doi: 10.1016/j.jep.2013.12.037.
- Suba, V., Murugesan, T., Arunachalam, G., Mandal, S. C. & Saha, B. P. 2004. Antidiabetic potential of Barlerialupulina extract in rats. *Phytomedicine*, 11(2-3): 202-205.

- Tripathi, P., Srivatava, R., Pandey, A., Pandey, R. & Goswami, S. 2011. Alternative therapies useful in the management of diabetes: A systematic review. *Journal of Pharmacy and Bioallied Sciences*, 3(4): 504-512
- Tuso, P. 2014. Prediabetes and Lifestyle Modification: Time to Prevent a Preventable Disease. *The Permanente Journal*, 18(3): 88–93.
- Unnikrishnan, R., Anjana, R.M. & Mohan, V. 2016. Diabetes mellitus and its complications in India. *Nature reviews. Endocrinology*, 12(6): 357-370.
- Unnikrishnan, R. & Mohan, V. 2020. Whither diabetes research in India today. *Diabetes & metabolic syndrome*, 14(3): 195-198.
- Venkatesh, S., Reddy, G. D., Reddy, B. M., Ramesh, M. & Rao, A. A. 2003. Antihyperglycemic activity of Carallumaattenuata. *Fitoterapia*, 74(3): 274-279.

Chapter 3

Traditional eye care practices in Northeastern India-An overview

Akoijam Basanta Singh¹* and Robindra Teron² ¹Department of Life Science and Bioinformatics, Assam University, Diphu Campus, Diphu-782 462, Karbi Anglong, Assam, India ²North Eastern Institute of Folk Medicine (An Autonomous Institute under Ministry of AYUSH, Govt. of India), Pasighat-791102, East Siang, Arunachal Pradesh, India ^{*}Corresponding author: basanta57@gmail.com

Abstract

The present paper presented the first comprehensive report of the medicinal plants used in eye treatments in the entire North East India. Traditional eye medicines still remain the most affordable and easily accessible source of eye treatment among the underprivileged rural population. This paper recorded 75 phytomedicines which have the potential to cure many eye problems from eight states of North East India. Traditional eye medicines are therapies derived from both plant and animal products. Conjunctivitis, cataract, glaucoma, eye allergies and eye inflammation are common eye problems. Concoction, decoction and juice extracted from leaves, stems, roots and flowers are the various forms of traditional eye medicines. Animal products known for curing eye problems include honey, breast milk and urine. Information generated from this paper will help to fill the gap in the knowledge of traditional eve care practices, and will give maximum benefits to those underprivileged rural population who still reply on traditional healing practices for their primary health care. However, there is limited information on plants parts used, method of preparation, methods of application and quantity/doses of application. There is a need for further research to ascertain the efficacy and safety of several traditional eye care practices and herbal formulations used in various eye treatments.

Keywords: Folk medicines, Traditional healers, eye inflammation, conjunctivitis.

Introduction

North East India comprises of eight states- Assam, Arunachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura (Fig. 3.1). The region (23°51' N-25°41' N and 93°3' E-94°4' E) lies in the lower Himalayan hill ranges, and has diverse vegetation ranging from humid evergreen forest to temperate and alpine vegetation. The region is one of the mega biodiversity hot spots of the world, and is the repository of diverse flora and fauna and large number of endemic species. North East India is the homeland of diverse ethnic groups which belong to different racial stocks, speak different dialects and have varied socio-cultural traditions (Bhuyan, 2015). More than 130 major tribes have been living in the region for thousands of years, for example- Abor, Khasi, Mishing, Rabha, Naga, Apatani, Meitei etc. (Kala, 2005). In addition to cultural diversity, there is diverse healing practices among the different tribes of North East India. Traditional healthcare practices use folk medicines and other methods based on the socio-cultural and religious backgrounds as well as the knowledge, attitudes and beliefs regarding physical, mental and social well-being and the causation of disease and disability in the community (Ramashankar, 2015). Tribal people live in harmony with nature and develop a close link with environment. Animism, symbolism and superstitious beliefs form an important part of tribal culture. They have deep faith in their traditional method of healing which often involves superstitions (Rout et al., 2009).

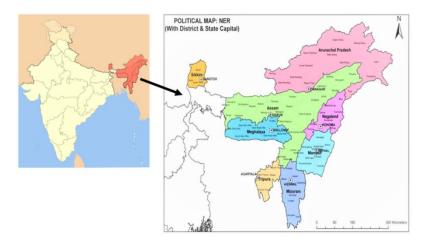


Fig. 3.1. Map showing the eight states of North East India.

The term ethno-medicine refers to traditional health care practices based on ethnic beliefs and practices and behaviour towards health and disease as conceived in the tribal, peasant and pre-industrial societies (Gogoi, 2014). Ethno-medicines incorporate plants, animals and mineral based medicines, spiritual therapies and method therapies, manual techniques and exercises to diagnose, treat and prevent illnesses for the maintenance of health (AYUSH, 2003). The ethno-medicinal systems are vital for the healthcare of local communities around the globe who rely mainly on folk medicines including various medicinal plants mostly collected from the wild (Amritesh et al., 2018). Most of these medicinal plants constitute a part of sociocultural heritage of the local tribes who are well aware of their medicinal properties (Zhasa et al., 2015). The traditional knowledge of folk medicine has evolved over many centuries with trials and errors and observations by traditional healers, and passed on to generations. Facilities of modern medicines are not available in many remote rural areas in North East India due to geographical isolation, poor infrastructural support and poor transportation systems. Therefore, traditional medicine remains the most affordable and easily accessible source for the treatment of various ailments and diseases such as cold and cough, malaria, diarrhoea, fever, asthma, diabetes, high blood pressure, urinary diseases, cancer, eye problems etc. among the rural population in the region.

Many studies reported the use of various traditional medicines for the treatment of common eye diseases such as conjunctivitis, cataract, glaucoma, eye allergies and eye inflammation (LeBeau, 1998; Kickbusch, 2003; Fokunang et al., 2011; Gupta et al., 2017; Dorcas et al., 2019). Traditional healers provide eye cares and treatments by using a variety of plant and animal products in different forms, for example- decoctions, concoctions or juice extracted from leaves, stems, roots or flowers as eye washes or eye drops, fume baths and for direct application to the eye (Houghton, 1995; Dorcas et al., 2019). Traditional eye medicines are biologically derived therapies which include various phytomedicines and products of animal or human origin such as breast milk, saliva and urine (Prajna et al., 1999; Bharathi et al., 2007). However, the products used for eye treatment vary from place to place and healer to healer (MINSANT, 2007). Although, in the present times, popularity of traditional eve medicines has been increasing due to the adverse side effects of modern drugs (Dorcas et al., 2019), some studies have shown the complication of eye problems like corneal infections due to indiscriminate use of traditional eye medicines (Prajna et al., 1999; Bharathi et al., 2007; Gupta et al., 2017).

Common eye problems and their management

Eye has natural processes of defence against potential infections or trauma with the help of lysozymes and interferons present in tears, eyelids and eyelashes, which are capable of eye protection against infections (Agyare et al., 2009). Eye inflammation is usually caused by disruption of the eye defence mechanism (Dorcas et al., 2019). Eye infection can be caused by various causal organisms like bacteria, fungi and viruses.

Bacterial ocular infection is caused by *Streptococcus pneumonia*, *Haemophilus influenza*, *Staphylococcus aureus* and *Escherichia coli* (Achoundong et al., 2003). Symptoms of bacterial eye infections include burning, irritation, tearing and muco purulent discharge (Bodeker, 1994). Fungal species that cause eye infections are *Fusarium solani*, *Fusarium oxysporiun*, *Aspergillus niger*, *Aspergillus flavus*, *Candida albicans* and *Penicillium notatum* (Dorcas et al., 2019). Symptoms of fungal infection usually include severe redness, blurring vision and photophobia (CIFOR, 2005). Viral infection is caused by herpes simplex virus1, adenovirus and coxsackie virus (Bodeker, 1994). Viral eye infections can be very contagious and can be transmitted easily through contact with objects that are in contact with the infected patients' eye secretions (Burkill, 2000). Eye cataract is also another serious eye issue which is usually treated by couching (the dislocation of eye lens).

Dorcas et al. (2019) reported that the potentials of bilberry (Vaccinium *myritilus*) for eye treatments. Bilberry helps to protect retina and improves poor night vision. Further, bilberry helps to manage cataracts, glaucoma and diabetic retinopathy (Kokwaro, 1993). In Cameroon and other West African regions, traditional healers successfully use eyebright (Euphrasia officinalis) for the treatment of conjunctivitis (Dorcas et al., 2019). It is reported that eyebright is used to prepare homeopathic eye drops. Studied have shown that Gingko biloba contains flavonoids which help to reduce some retinal problems due to the complications of diabetes and macular degeneration (WHO, 2001; Ukponmwan & Momoh, 2010; Tsabang et al., 2016). Traditional healers of Cameroon consider *Gingko biloba* to be very effective for the treatment of eye infections (Dorcas et al., 2019). Lycium barbarum has been reported to be useful in the treatment of eye infections. Passionflower has been reported from Northwest region of Cameroon for the treatment of blurred vision and stressed watery eyes. Coleus forskohlii is used to prepare eye drops which help to reduce the production of fluid within the eye there by reducing pressure and to treat the problem of glaucoma (Dorcas et al., 2019). Cannabis sativa contains cannabinoids which can reduce pressure within the eyes of glaucoma patients. This can be attributed to the presence of receptors for cannabinoids in the eyes. Cannabis sativa has the potential for the development of phytomedicine eye drops (Dorcas et al., 2019). Studies have shown that *Camellia sinensis* contains great amount of antioxidants which reduce free radicals responsible for the so-called oxidative damage (Kickbusch, 2003). This indicates the potential of *Camellia sinensis* for the treatment of many chronic diseases including glaucoma, macular degeneration and cataract. Polyphenol present in Camellia sinensis can protect retinal cells from damage caused by UV light that can increase the risk of macular degeneration (Kickbusch, 2003). Hydrastis canadensis consists of an active biomolecule (berberine), which has anti-bacterial and anti-fungi properties, and is used as eye wash for the treatment of roughening of conjunctiva,

cornea and eyelids caused by *Clamidia trachomatis* (Dorcas et al., 2019). Flavonoids, linoleic acid, Vit E, and oligomeric proanthro cyanidins present in grape seeds help in the treatment of cataract, diabetic retinopathy, macular degeneration and eye strain (Dorcas et al., 2019). Some studies have shown that garlic can help to prevent cataracts. Turmeric contains the potent anti-oxidant known as curcumin which has been shown to protect against cataracts (Dorcas et al., 2019).

Gupta et al. (2017) reported the wide use of traditional eye practices among the Indian population irrespective of age, gender, level of education, religion or marital status. Similar findings were reported mainly from Asian and African countries and also from other developing countries of the world (Carvalho et al., 2009). In these countries, most people visit and consult with traditional healers and seek treatment at a modern health facility only when the traditional medicines could not help them (Bodeker, 1994). Common traditional eye medicines included *kajal*, honey, ghee, rose water, alum water, milk, saline water, breast milk, turmeric, jaggery, curd, garlic, goat's milk, *neem*, powdered horn of deer, excreta of donkey, lemon juice, turpentine oil, coconut oil, warm tea leaves, ginger juice, onion juice, ash of hukkah, mustard oil, fenugreek and carom seeds (ajwain) (Gupta et al., 2017). Carvalho et al. (2009) reported the use of homemade, traditional products like boric acid, normal saline and herbal infusions for ophthalmic emergencies. However, traditional eye medicine has some health issues since traditional medication is often contaminated and can promote the spread of pathogenic organisms that can lead to vision impairment in the patient (Nkongmeneck et al., 2007; Focho et al., 2009). In most cases, traditional medication does not pay particular attention to the mode of action (antibiotic or steroid), concentration, and sterility as some of concoctions (mixture of various substances which may be plant or animal extracts) are made by using contaminated water, local gin, saliva and even urine (Kickbusch, 2003). Self-medication by using traditional eye medicines without any advice from experts could be harmful and lead to blindness. Therefore, there is a need for creating awareness and imparting proper health education amongst the people and traditional healers about safe traditional eye cares and early referral of any complication.

Traditional healthcare practices in North-East India

Each ethnic group of North East India has its own unique indigenous healing practices. In general, traditional healers treat all age group and all ailments and diseases by using traditional methods and prescribe locally available and affordable ethno-medicines. Traditional healing practices involve ritual sacrifice to pacify the ancestors, ritual and magical strengthening of people, spiritual sanctification, steaming, inhaling of substances, cuts, wearing charms and piercing (Shankar et al., 2012). Herbalist, diviner and traditional birth attendant are the three main types of

traditional healers prevalent in North East India (Ramashankar et al., 2015) Herbalists are traditional medicine practitioners who acquire good knowledge of ethno-medicines but they are not necessarily possessing mystical power, and they are common in every state of North East India. They can diagnose and prescribe indigenous herbal medicines for common ailments and illnesses. Some herbalists inherit the gift of mystical incantation, and they are expected to prevent or alleviate misfortune or evil, to provide protection against witchcraft and misfortune, and to bring prosperity and happiness. Ingredients of some ethno-medicines are believed to be endowed with magical powers, and thus mystical techniques are considered to play a role in healing process. Diviners are prevalent in remote villages of Assam, Arunachal Pradesh and Manipur. They serve as mediators between humans and the supernatural, and diagnose the unexplainable illness through the analysis of causes of specific events and the interpretation of messages of the ancestors. They explain the illness through their power of divination. After diagnosis they provide the medication for the illness. They also do prayer for the treatment of ailments. Traditional birth attendants mainly serve in isolated and remote areas where no modern health care services are available. In urban/semi-urban communities, which despite their exposure to modern health care services, people still prefer traditional birth attendants (Ramashankar et al., 2015).

Some important traditional healing methods prevalent in North East India include herbal therapy, zootherapy, reflexology system/body massage system and magico-religious/psychotherapist system of folk medicine (Ningombam et al., 2014; Verma et al., 2014). In herbal therapy traditional healers treat different ailments and diseases by providing folk medicines made form herbs, vegetables, spices etc., and other preparations of different mono-herbal and poly-herbal formulations. Formulations are taken internally in form of decoction, concoction and simply boiled with or without spell (Ningombam et al., 2014). Zootherapy is very common among the Karbi tribes of Assam, Chakhesang and Ao tribes of Nagaland, and Nyishi and Galo tribes of Arunachal Pradesh (Verma et al., 2014). Ethno-medicines prepared fromvertebrate resources are used for treating various ailments including body pain, rheumatism, asthma, eczema, tuberculosis, paralysis, skin disease, stomach disorder, jaundice, night blindness, bone fracture, malaria, dysentery, kidney trouble, breathing problem, stammering, piles and general weakness. Warm fat of buffalo, pig, domestic fowl is externally applied for relieving pain. Cooked flesh, milk, urine and fresh blood of some animals are taken to get rid of general weakness and other diseases (Verma et al., 2014). In reflexology system, the practitioners massage the body along with fruits, seed oil and crushed part of plants. This may give certain nourishing effect to the skin and other body systems. Believing that navel is the centre where human soul lies, the practitioner's massage firstly on the navel part with or without spell after which the massaging proportions are changed from navel to belly, belly to abdomen and abdomen to other problematic part of the body (Ningombam et al., 2014). It has been reported that reflexology system is helpful in digestion, stomach problems, irregularity in menstruation, delivery problems, joints, muscle pains and for effective vibrating and re-healing activity of the human nervous system. Magicoreligious/psychotherapist system of folk medicine is the use of unseen powers to cure diseases, and this practice involves incantation, oracles, performing rituals, prayer, offering devils' gift, food vegetables, flowers, etc. (Ningombam et al., 2014).

Rural people still rely on the traditional eye care practices for the treatment of various eye diseases such as cataract and correction of eye vision, since they could not afford expensive modern eye treatments. Although, many ethnobotanical and ethnopharmacological investigations reported large number of medical plants used in traditional healing practices for the treatment of various diseases, there is no detailed review available on the traditional eye medicines from North East India. This paper attempts to review the traditional eye care practices in North East India. This will provide information on the potential importance of ethno-medicines in eye cares for underprivileged section of rural population in the region.

Methods

The present study attempted to gather and document widely scattered information from various ethnobotanical investigations and ethnopharmacological reports. Several web databases such as Google Scholar, ResearchGate, ScienceDirect, Pubmed, Academia, Biomedcentral and India Biodiversity Portal were used for searching relevant secondary data on traditional healing practices particularly eye care practices in North East India. Important key words used for searching secondary data included traditional eye medicines, traditional healing practices, traditional methods of healing, herbal medicines for eye care, traditional healing practices in North East India and medicinal plants of Assam, Manipur, Nagaland, Mizoram, Tripura, Arunachal Pradesh, Meghalaya and Sikkim. Thirty-two relevant published research articles could be obtained from Google Scholar, 12 from Researchgate, 5 from Academia, 2 from Biomedcentral and 1 each from Science Direct, Pubmed and India Biodiversity Portal.

Traditional eye care practices

The present study revealed diverge traditional eye medicines used by different ethnic groups of North East India. Traditional eye medicines are derived from both plant and animal sources. Majority of ethno-medicines used for eye treatment are derived from different parts of the plants, and they are prepared in different forms for administering to the eyes, for example- decoction, concoction, latex and juice extracted from leaves,

stems, roots or flowers which are used as eye wash, eye drops or eye tonic. Honey, breast milk and human urine are also used as important traditional eye medicines. Studies have shown that application of honey to eyes can improve eyes sight; and application of urine to the injured eyes can heal the injury faster. Large number of phytomedicines that have curative properties of eyes and their methods of usage have been reported from eight states of North East India. Treatment of eye injury, conjunctivitis, sore eyes, eye ache and eye infection by using decoction or leaf juice of *Centella asiatica* is reported from Assam, Meghalaya, Mizoram and Tripura, whereas in Manipur, Mizoram and Nagaland bark or root of *Phyllanthus emblica* is boiled and the liquid is splashed on the eyes repeatedly in the early morning, afternoon and bed time or few drops of extracted gooseberry juice are applied directly on the eyes 2-3 times a day to cure sore eyes and cataract. Use of paste formed by crushing the rhizomes along with the leaves of Cyperus rotundus for the treatment of swellings in the eyelidsis reported from Manipur, whereas use of root juice of Commelina benghalensis in eyelid soresis reported from Assam. Juice of Vanda coerulea flowers parts is used to control glaucoma and cataractin Assam, Arunachal Pradesh and Nagaland. Cyanthillium cinereum and Piper betle are reported from Mizoram to be useful in the treatment of night blindness. Amonum aromaticum, Emilia sonchifolia and Peperomia pellucida are reported from Manipur, Assam and Nagaland respectively for their uses in the treatment of eye inflammation. Some tribes of North East India perform superstitious ritual practices to cure various eye problems. Hmar tribes of North Cachar Hills in Assam use seven clean leaves of Ficus glomerata to make a cone shaped container, and fill the container with water and heated after which the water is applied on the eyes to cure any eye problems. Dimasa and Jaintia tribes of Assam cut onion bulb into two halves and hold near the eyes to cause tears to flow which is believed to cleanse the eye of all its impurities and evil eye (Rout et al., 2009).

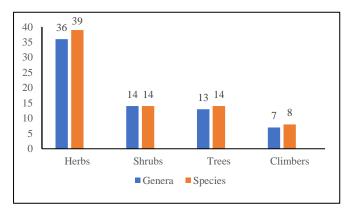


Fig.3.2. Distribution of medicinal plants reported from North East India.

Phytomedicines used in traditional eye treatment

The present study collected secondary data of medicinal plants used in eye treatments from different sources and recorded 75 species belonging to 69 genera under 46 families (**Table 3.1**). Asteraceae represented with highest number of species (8) followed by Orchidaceae (4), Rutaceae, Poaceae, Lamiaceae and Piperaceae (3) each), Malvaceae, Araliaceae, Liliaceae, Zingiberaceae, Apocynaceae, Berberidaceae, Phyyllanthaceae, Commelinaceae, Convolvulaceae and Combretaceae (2 each) and rest of the plant families are represented by one each. The highest number of species was reported from Assam (29) followed by Mizoram (19), Nagaland (17), Manipur (9), Arunachal Pradesh (6), Sikkim and Tripura (4 each). Distribution of habit of medicinal plants included herbs, shrubs, climbers and tree (Fig. 3.2). Notable eye phytomedicines are Azadirachta indica (cataract), Acanthopanax aculeatus (eye infection), Berberis aristata (eye lotion), Emilia sonchifolia (eye inflammation), Floscopa scandens (sore eyes). Among the plant parts used the most widely used parts were leaves which were followed by stems, roots, fruits and flowers (Fig. 3.3). In the present study, we observed that a single medicinal plant did not have the potential for curing many of the eye problems rather it was found be useful for the treatment of only few specific eye problems. Interestingly, the medicinal plants reported from eight states of North East India, include all those potential plants which can be used for the treatment of various specific eye diseases. Reporting of less number of medicinal plants known for their use in eye care from each state indicates lesser availability of potential phytomedicines which can be used for the treatment of common eye problems in each state. The present study highlighted good number of important medicinal plants from North East India which were reported to be useful for the treatment of various eye problems. Figure 3. 4 shows the numbers of species used in the treatment of major eye ailments.

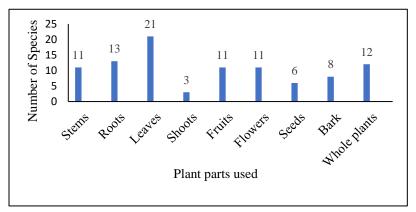


Fig. 3.3. Medicinal plant parts used in treatment of eye ailments.

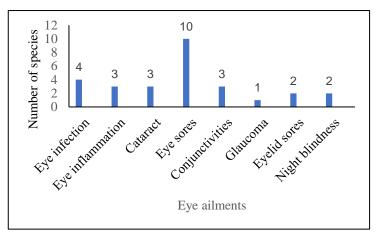


Fig. 3.4. Major types of eye ailments.

Name of plants [Family]	Parts used	Ethnomedicinal preparation and use	State	References
Abelmoschus esculentus (L.) Moench [Malvaceae]	Shoot	Tender shoot extract in water is boiled reduce the volume to half and the luke-warm liquid is used as eye drops to treat eye- ache.	Manipur	Singh et al., 2003
Acampepapillosa(Lin dl.) Lindl. [Orchidaceae]	Roots	Eye diseases.	Nagaland	Nongda, 2014
Acanthopanax aculeatus (Aiton) Witte. [Araliaceae]	Stem	Few drops of stem extract is applied on the infected eyes.	Arunachal Pradesh	Ghosh et al., 2014
Aegle marmelos(L.) Correa [Rutaceae]	Fruit, leave s and root	Eye diseases.	Assam, Manipur	Hazarika et al., 2012
Ageratum conyzoides(L.) L. [Asteraceae]	Leav es	Leaf juice is applied in eye trouble.	Assam	Das et al., 2008

<i>Allium cepa</i> L. [Liliaceae]	Bulb	The bulb is cut into half and hold near the eyes. This causes tears to flow which is believed to cleanse the eye of all its impurities and evil eye.	Assam	Rout et al., 2009
Allium sativum L. [Liliaceae]	Bulb	The extract obtained by frying the bulbs in sesame oil is used as ear drops in otitis.	Manipur	Singh & Sharma, 2018
<i>Aloe</i> <i>barbadensis</i> Mill. [Xanthorrhoeaceae]	Leav es	Fresh leaf juice is helpful ophthalmia.	Sikkim	De, 2016
Amomum aromaticumRoxb. [Zingiberaceae]	Rhizo me	Crushed juice is used as droplets to treat eye inflammation.	Manipur	Ningombam et al., 2014
<i>Aquilaria</i> malaccensisLam. [Thymelaeaceae]	Woo d	Eye diseases.	Mizoram	Rai & Lalramnghin glova, 2011
Asclepiascurassavica L. [Apocynaceae]	Flow er	Flower is boiled in water, cooled and used as eye drops.	Manipur	Singh et al., 2003
Averrhoa carambola L. [Oxalidaceae]	Fruits	Eye cleaner.	Assam, Manipur	Hazarika et al., 2012
Asparagus racemosusWilld. [Asparagaceae]	Roots	Roots decoction for ophthalmic.	Mizoram	Amritesh et al., 2018
AzadirachtaindicaA. Juss. [Meliaceae]		Gum demulcent tonic is useful in cataract.	Tripura	Das & Choudhury, 2012
Berberis aristataDC. [Berberidaceae]	Bark	Crushed bark mixed with water is used as eye lotion.	Arunachal Pradesh	Khongsai et al., 2011
<i>Bidensbiternata</i> (Lour .) Merr. &Sherff [Asteraceae]		Fresh plant juice is used as eye drops.	Arunachal Pradesh, Assam, Mizoram	Ghosh et al., 2014; Das & Hazarika 2015; Lalramnghin glova, 2016
Bidens Pilosa L. [Asteraceae]	Leav es	Leaves juice mixed with water is used for eye problems.	Arunachal Pradesh, Mizoram	Khongsai et al. 2011; Rai &Lalramngh inglova,

				2011
Breynia patens (Roxb.) Benth. & Hook. f. [Phyllanthaceae]	Stem s	Stem juice for eye diseases.	Nagaland	Shankar &Devalla, 2012
Bryophyllumcalycinu mSalisb. [Crassulaceae]	Leav es	Leaves are crushed and apply to eye sores, eye pain or eye itching twice daily.	Assam	Sajem&Gos ai, 2006
Celosia argentea L. [Amaranthaceae]	Flow er	Good for eyes.	Nagaland	Lanuinla, 2021
<i>Centellaasiatica</i> (L.) Urb. [Apiaceae]	Whol e plants	Decoction of leaves and juice of leaves to cure eye injury, conjunctivitis, sore eyes, eye ache, eye infection.	Meghalay a, Assam, Mizoram, Tripura	Bhuyan, 2015; Sajem&Gos ai, 2006; Mipun et al., 2019; Lalramnghin glova, 2016; Choudhury et al., 2015
Commelinabenghalen sis L. [Commelinaceae]	Roots	Root juice is applied in eye-lid sores.	Assam	De, 2016
<i>Cucurbita maxima</i> var. <i>boliviana</i> Zhit. [Cucurbitaceae]	Fruits and leave s	Fruits/leaves decoction for eye problem.	Mizoram	Amritesh et al., 2018; Rai &Lalramngh inglova, 2011
Curculigoorchioide sGaertn. [Hypoxidaceae]	Roots	Eye problems.	Nagaland	Zhasa et al., 2015
Curcuma longa L. [Zingiberaceae]	Rhizo me	Fresh extract of the rhizome in mixed with sesame oil to treat eye diseases.	Manipur	Singh & Sharma, 2018
<i>Cuscutareflexa</i> Roxb. [Convolvulaceae]	Whol e plant	Eye diseases.	Assam	Das & Hazarika, 2015
Cyanthillium cinereum (L.) H. Rob. [Asteraceae]		Night-blindness.	Mizoram	Chea et al., 2006

Combidium	Whol	Γ		
<i>Cymbidium</i> <i>aloifolium</i> (L.) Sw. [Orchidaceae]	Whol e plants	Weakness of eyes.	Nagaland	Chowdhery, 2001
Cymbidium ensifolium (L.) Sw. [Orchidaceae]	Flow ers	Decoction of flowers to control eye sores.	Nagaland	Nongdam, 2014
Cynodondactylon(L.) Pers. [Poaceae]	Roots and leave s	Eye diseases.	Assam	Das & Hazarika, 2015
CyperusrotundusL. [Cyperaceae]	Whol e plant	The paste formed by crushing the rhizomes along with the leaves is used in swellings in the eyelid.	Manipur	Singh & Sharma, 2018
Datura metal L. [Solanaceae]	Roots , bark, fruit and seed	Eye diseases.	Assam	Das & Hazarika, 2015
Diplaziumesculentum (Retz.) Sw. [Athyriaceae]	Leav es	Useful for good vision.	Assam	Gogoi et al., 2019
<i>Emilia</i> sonchifolia(L.) DC. ex DC. [Asteraceae]		Eye inflammation.	Assam	Sarkar & Devi, 2017
Fagopyrum esculentum Moench [Polygonaceae]	Flow er	Combined with lime flower has specific treatment for haemorrhage into retina.	Nagaland	Sumi &Shohe, 2018
<i>Ficusglomerata</i> Roxb. [Moraceae]	Leav es	Seven clean leaves are made into a cone. It is then filled with water and heated. This water is then applied in the eye for any eye problems.	Assam	Rout et al., 2009
Floscopa scandens Lour. [Commelinaceae]	Stem	Crushed stem is used to treat sore eyes.	Assam, Tripura	Sarkar & Devi 2017; Choudhury et al., 2015
Hydrocotylejavanica Thunb.	Whol e	Crushed juice is used as eye drops.	Mizoram	Lalramnghin glova, 2016

[Araliaceae]	plant			
<i>Ipomoea</i> <i>aquatica</i> Forssk. [Convolvulaceae]	Arial plant	Cooked herb, taken as vegetable for eye sight.	Assam	Shankar et al., 2012
<i>Linderniaruelloides</i> (Colsm.) Pennell [Linderniaceae]	Whol e plant	Whole plant is used internally for eye problems.	Mizoram	Rai &Lalramngh inglova, 2011
LinumusitatissimumL [Linaceae]	Whol e plant and seed	Eye diseased.	Assam	Das & Hazarika, 2015
Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson [Verbenaceae]	Leav es	Juice of leaves is used for conjunctivitis.	Assam	Mipun et al., 2019
Maesachisia Buch Ham. ex D. Don [Primulaceae]	Stem bark	Eye disease.	Nagaland	Shankar &Devalla, 2012
Leucosceptrumcanum Sm. [Lamiaceae]	Stem	Watery extract of stem is used to cure eye problems.	Arunachal Pradesh	Ghosh et al., 2014
Mahonia sikkimensis Takeda [Berberidaceae]	Bark	Bark is placed in distilled or boiled water to make eye drops for eye diseases.	Sikkim	Singh et al., 2002
MarsileaminutaL. [Marsileaceae]	Whol e plant	Juice is used as eye drops to cure eye sores.	Mizoram	Lalramnghin glova, 2016
<i>Meriandra</i> <i>bengalensis</i> (J. Koenig ex Roxb.) Benth. [Lamiaceae]	Leav es	Leaf juice is used in eye troubles.	Tripura	Guha et al., 2018
Micheliachampaca (L.) Baill. ex Pierre [Magnoliaceae]	Flow er	The flower oil is used in Ophthalmia.	Nagaland	Sumi &Shohe, 2018
Mikania micranthaKunth [Asteraceae]	Leav es	Leaf juice is useful in eye trouble.	Assam	Das et al., 2008
<i>Moringa oliefera</i> Lam. [Moringaceae]	Roots , bark, leave	Water extract of root, bark, leaves, flowers and fruits for ophthalmia.	Nagaland	Zhasa et al., 2015

Mussaendafrondosa L. [Rubiaceae] Oxalis corniculataL. [Oxalidaceae]	s, flowe rs and fruits Roots Whol e shoot	Root juice is used in eye troubles. Whole plant except root is used against eye trouble, juice of leaves is used for	Nagaland Assam	Sumi &Shohe, 2018 Das et al., 2008; Mipun et al., 2019
Pandanus fascicularisLamk. [Pandanaceae]	Roots	sore eyes. Root juice for eye diseases.	Nagaland	Shankar &Devalla, 2012
Peperomia pellucida (L.) Kunth [Piperaceae]	Whol e plant	Eye inflammation.	Nagaland	Zhasa et al., 2015
Phyllanthus emblicaL. [Phyllanthaceae]	Bark, Root, Fruit, seed	Sore Eyes: boil the gooseberry bark or root and splash the liquid on the eyes repeatedly while washing the face in the early morning, afternoon and bed time till cured; apply few drops of extracted gooseberry juice directly on the sore eyes 2-3 times a day till cured. Believed to cure even cataract, seed decoction is used as eye wash.	Manipur, Nagaland, Mizoram	Yuhlung& Bhattachary ya, 2016; Shankar &Devalla, 2012; Rai &Lalramngh inglova, 2011
Piper betleL. [Piperaceae]	Leav es, roots	Eye pain, night blindness.	Mizoram	Rai &Lalramngh inglova, 2011
Piper longum L. [Piperaceae]		Eye diseases.	Assam	Hazarika et al., 2012
Punica granatum L. [Lythraceae]	Leav es, flowe r, fruits	Eye diseases.	Assam	Das & Hazarika, 2015
Sphaeranthus indicus	Whol	Eye diseases.	Assam	Das &

L. [Asteraceae]	e plant and seed			Hazarika, 2015
Saccharum officinarum L. [Poaceae]	Leav es	The leaf ash is used to treat sore eyes.	Nagaland	Sumi &Shohe, 2018
<i>Sesbania grandiflora</i> (L.) Pers. [Fabaceae]	Root, leave s, flowe r	Eye diseases.	Assam	Das & Hazarika, 2015
SidacordifoliaL. [Malvaceae]	Whol e plant	Eye diseases.	Assam	Das & Hazarika, 2015
SwertiachirataBuch Ham. ex Wall. [Gentianaceae]	Whol e plant	Improve eye sight.	Sikkim	De, 2016
Symplocoslaurina (Retz.) Wall. ex G. Don [Symplocaceae]	Bark	Ophthalmic.	Meghalay a	Singh et al., 2017
Tabernaemontanadiv aricata(L.) R.Br. ex Roem. &Schult. [Apocynaceae]	Flow er,bar k, leave s and roots	Juice of flower is used for sore eyes, sap mixed with oil is rubbed on the forehead to treat pain in the eyes, milky juice is used to treat eye diseases.	Assam, Mizoram	Mipun et al., 2019; Rai &Lalramngh inglova, 2011
Tagetespatula L. [Asteraceae]	Leav es, flowe r and seed	Eye diseases.	Assam	Das & Hazarika, 2015
<i>Terminalia bellirica</i> (Gaertn.) Roxb. [Combretaceae]	Seed, fruit	Seed powder is soaked in overnight in water and filtered, and the filtrate is used as eye lotion, fruit is taken for treatment of eye diseases.	Sikkim, Mizoram	Singh et al., 2002; Rai &Lalramngh inglova, 2011
<i>Terminalia</i> <i>chebula</i> Retz. [Combretaceae]	Fruit	Conjunctivitis, fruit extract is applied to watering eyes.	Assam, Mizoram	Singh, 2002; Sarkar & Devi, 2017; Rai

				&Lalramngh inglova, 2011
<i>Thunbergia</i> grandiflora (Roxb. ex Rottl.) Roxb. [Acanthaceae]	Stem, leave s	Sap of stem cut apply on eyes to treat eye-ache wounds, leave juice is used to treat eye diseases.	Mizoram	Lalramnghin glova 2016; Rai & Lalramnghin glova 2011
Thysanolaena maxima (Roxb.) Kuntze [Poaceae]	Stem s	Young stem juice is applied on the eyes when eyes become red and dirty.	Meghalay a	Hynniewta& Kumar, 2008
Vanda coeruleaGriff. ex. Lindl. [Orchidaceae]	Flow ers	Juice of flowers parts used as eye drops to control glaucoma, cataract and blindness.	Nagaland, Assam, Arunachal Pradesh	Nongdam 2014; Sharma & Das, 2018
Vitex negundo L. [Lamiaceae]	Leav es	Eye diseases.	Mizoram	Lalramnghin glova, 2016
Vitis vinifera L. [Vitaceae]	Stem	Exudates of stem when apply to the eyes cures the eyes sores.	Nagaland	Zhasa et al., 2015
Zanthoxylum acanthopodium DC. [Rutaceae]	Fruits	Eye diseases.	Nagaland	Shankar & Devalla, 2012
Zanthoxylumarmatu m DC. [Rutaceae]	Fruits	Fruit is used to treat eye diseases.	Mizoram	Rai &Lalramngh inglova, 2011

The present paper documented pretty good numbers of phytomedicines which have the potential to cure many eye problems. However, there is limited information on the plant parts used, method of preparation and application, and quantity/doses of application. Confirmation and systematic preclinical tests of these medicinal plants are yet to be scientifically validated till date. Health seminars or workshops can be organised to educate the traditional healers, and this will help to improve their healing practices and also to avoid any form of indiscriminate use of traditional medicines which can cause serious health issues. North East India witnesses rich cultural diversity, and also serves as a huge repository of traditional knowledge of ethnomedicines. Tribal people of North East India living in remote places hardly receive proper modern healthcare facilities. Therefore, they still reply on their tradition healing practices. Since tribal people are dwelling in the forests, they are acquainted with the uses of large number of bioresources for both food and ethnomedicines. There is a need for further investigation on the potent active compounds present in all medicinal plants reported, and these medicinal plants can be potential candidates to look for the future development of drugs for various eye diseases. This will help in effective utilization of these valuable resources of traditional phytomedicines in the treatment of various ailments and diseases.

Conclusion

The present paper is first comprehensive report of medicinal plants used in eye treatments in the entire North Eastern region India. Medicinal plants contribute major proportion to traditional eye medicines as compared to animal sources. Seventy-five species of medicinal plants used in various eye treatments have been recorded from eight states of North East India. However, the number of potential medicinal plants used in eye treatments reporting from each state is less as compared to the number of medicinal plants used in other diseases. Baseline data generated from this review will help to fill the knowledge gap in traditional eye care practices and will give maximum benefits to those underprivileged rural population who still reply on traditional healing practices for their primary health care. In addition, this will enlighten general people in the preparation of simple home remedies for the treatment of minor eye problems. However, there is a need for further research to ascertain the efficacy and safety of several traditional eye care practices and herbal formulations used in various eye treatments

References

- Achoundong, G., Guedje, N., Nkuinkeu, R. & Onana, J.M. 2003. Aspects Botaniques et Ecologiques. In: Matig OE, Ndoye O, Kengue J &Awono A (eds.) Les Fruitiers Comestibles du Cameroun, pp 204. IPGRI Regional Office for West and Central Africa, Benin.
- Agyare, C., Asase, A., Lechtenberg, M., Niehues, M., Deters, A. & Hensel, A. 2009. An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants use for wounds healing in Bosomtwi Atwima-Kwanwoma area, Ghana. *Journal of Ethnopharmacology*, 25(3): 393-403.
- Amritesh, S.C., Bernadette, M., Nurpen, T. M. & Sendrew, L.B. 2018. Decoction: A valuable ethnobotanical treatment for the tribal communities of the Seven Sister States of North East India. *Academic Journal of Medicinal Plants*, 6(12): 404-411. Doi:10.15413/ajmp.2018.0178.

- AYUSH. 2003. Mainstreaming of AYUSH Systems in the National Health Care Delivery System. New Delhi: Department of Yoga and Naturopathy, Unani, Siddha and Homoeopathy (AYUSH), Ministry of Health and Family Welfare, Government of India.
- Bharathi, J.M., Srinivasan, M., Ramakrishnan, R., Meenakshi, R., Padmavathy, S. & Lalitha P.N. 2007. A study of the spectrum of Acanthamoeba keratitis: A three-year study at a tertiary eye care referral center in South India. *Indian Journal of Ophthalmology*, 55:37-42. PMID: 17189885.
- Bhuyan, M. 2015. Comparative Study of Ethnomedicine among the Tribes of North East India. *International Research Journal of Social Sciences*, 4(2):27-32.
- Bodeker, G. 1994. Traditional health knowledge and Public policy. *Nature and Resource*, 30(2):5-16.
- Burkill, H. M. 2000. The Useful Plants of West Tropical Africa, Edition 2-5, Families S-Z, Royal Botanic Gardens, Kew.
- Carvalho, R.S., Kara-Jose, Â. N., Temporini, E.R., Kara-Junior, N. & Noma-Campos,
 R. 2009. Self-medication: initial treatments used by patients seen in an ophthalmologic emergency room. *Clinics (Sao Paulo)*, 64 (8): 735-741.
- Chea, A., Hout, S., Long, C., Marcourt, L., Faure, R., Azas, N. & Elias, R. 2006. Antimalarial activity of sesquiterpene lactones from *Vernonia cinerea*. *Chemical and Pharmaceutical Bulletin*, 54(10): 1437-1439.
- Choudhury, P.R., Choudhury, M.D., Ningthoujam, S.S., Das, D., Nath, D. & Talukdar A.D. 2015. Ethnomedicinal plants used by traditional healers of North Tripura district, Tripura, North East India. *Journal of Ethnopharmacology*, 166: 135– 148.
- Chowdhery, H.J. 2001. Orchid diversity in North-east India. *Journal of the Orchid Society of India*, 15: 1-17.
- CIFOR. 2005. Forests and development of Africa. CIFOR in sub-Saharan Africa Internal report, Yaoundé, Cameroon.
- Das, A.K., Dutta B.K. & Sharma G.D. 2008. Medicinal plants used by different tribes of Cachar district, Assam. *Indian Journal of Traditional Knowledge*, 7(3): 446-454.
- Das, A.K. & Hazarika, M. 2015. Study of diversity of ethnobotanical plants used by the Mishing tribes of Golaghat district, Assam and their conservation. *International Journal of Recent Scientific Research*,6(7): 4992-4998.
- Das, S. & Choudhury, M.D. 2012. Ethnomedicinal uses of some traditional medicinal plants found in Tripura, India. *Journal of Medicinal Plants Research*, 6(35): 4908-4914.
- De, L.C. 2016. Medicinal and aromatic plants of North east India. *International Journal of Development Research*, 6(11):10104-10114.

- Dorcas, W., Emilliene, E., Estella, T.F., Joseph, E.A.N., Kovin, N., Jaggernath, J., Timothy, W., Ngo, N.V., Therese, A.O.M. & Ntungwen, F.C. 2019. An Overview of Herbal Traditional Eye Care Practices and the Development of Eye Health Promotion Strategies in Cameroon. *Journal of Advances in Medical and Pharmaceutical Sciences*,20(4): 1-16.
- Focho, D.A., Anjah, M.G., Nwana, F.A.& Ambo, F.B. 2009. Ethnobotanical survey of trees in Fundong, Northwest Region, Cameroon. *Journal of Ethnobiology and Ethnomedicine*, 25(5): 17.
- Fokunang, C.N., Ndikum, V., Tabi, O.Y., Jiofack, R.B., Ngameni, B., Guedje, N.M., Tembe Fokunang, E.A., Tomkins, P., Barkwan, S. & Kechia, F. 2011. Traditional medicine: Past, present and future research and development prospects and integration in the national health system of Cameroon. *African Journal of Traditional Complementary and Alternative Medecine*, 8(3): 284-295.
- Ghosh, G., Ghosh, C., Melkania, U. & Majumdar, U. 2014. Traditional medicinal plants used by the Adi, Idu and Khamba tribes of Dehang-Debang Biosphere Reserve in Arunachal Pradesh. *International Journal of Agriculture, Environment & Biotechnology*, 7(1): 165-171.
- Gogoi, M., Barooah, M.S. & Dutta, M. 2019. Use of medicinal plants in traditional health care practices by tribes of Dhemaji district, Assam, India. *International Journal of Herbal Medicine*, 7(5): 01-06.
- Gogoi, N. 2014. Traditional Medicinal Systems: An Appraisal, Future Prospects of Ethno-Medicine, Publication Cell, Lakhimpur Girl's College, Lakhimpur, Assam.
- Guha, A., Chowdhury, S., Noatia, K. & Sen D. 2018. Underutilised Plants of Tripura used as Spices and Ethnomedicinal Purpose by Manipuri Community. *International Journal of Agriculture, Environment and Biotechnology*, 11(3): 459-467.
- Gupta, N., Vashist, P., Tandon, R., Gupta, S.K. & Kalaivani, M. 2017. Use of traditional eye medicine and self-medication in rural India: A populationbased study. *PLoS One*, 12(8): e0183461. https://doi.org/10.1371/journal.pone.0183461.
- Hazarika, R., Abujam, S.S. & Neog, B. 2012. Ethno-Medicinal Studies of Common Plants of Assam and Manipur. *International Journal of Pharmaceutical & Biological Archives*, 3(4): 809-815.
- Houghton, P.J. 1995. The role of plants in traditional medicine and current therapy. Journal of Alternative and Complementary Medicine, 1: 131-143.
- Hynniewta, S.R. & Kumar, Y. 2008. Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. *Indian Journal Traditional Knowledge*, 7(4): 581-586.

- Kala, C.P. 2005. Ethnomedicinal Botany of the Apatani in the Eastern Himalayan Region of India. *Journal of Ethnobiology and Ethnomedicine*, 1(1): 1-8.
- Khongsai, M., Saikia, S.P. & Kayang, H. 2011 Ethnomedicinal plants used by different tribes of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 10(3): 541-546.
- Kickbusch, I. 2003. The Contribution of the World Health Organization to a New Public Health and Health Promotion. *American Journal of Public Health*, 93(3): 383–388.
- Kokwaro, J.O. 1993. *Medicinal plants of East Africa*. 2nd Ed., Kenya Literature, Bureau Box 30022 Nairobi.
- Lalramnghinglova, H. 2016. Documentation of medicinal plants based on traditional practices in Indo-Burma Hotspots Regions of Mizoram, North East India. *Emergent Life Sciences Ressearch*, 2(1): 10-45.
- Lanuinla, 2021. Ethnomedicinal study of plants in Longjang village of Mokokchung district, Nagaland. *International Journal of Innovative Life Sciences*, 1(1).
- LeBeau, D. 1998. Urban patients' utilisation of traditional medicine: Upholding culture and Tradition, University of Namibia, Sociology Department Windhoek, Namibia, Commission Report.
- MINSANT. 2007. Conference for the midterm review of the decade on African traditional medicine, 2001-2010: In Plan Strategique pour l'integration de Medicine traditionelle dans le system national de la santé au Cameroun, pp. 155.
- Mipun, P., Bhat, N.A., Borah, D. & Kumar, Y. 2019. Non-timber forest products and their contribution to healthcare and livelihood security among the Karbi tribe in Northeast India. *Ecological Processes*, 8 (1): 1-21.
- Ningombam, D.S., Devi, S.P., Singh, P.K., Pinokiyo, A. & Thongam, B. 2014. Documentation and Assessment on Knowledge of Ethno-Medicinal Practitioners: A Case Study on Local Meetei Healers of Manipur. *Journal of Pharmacy and Biological Sciences*, 9(1): 53-70.
- Nkongmeneck, B.A., Mapongmetsem, P.M., Pinta, Y.V., Nkuinkeu, R., Tsabang, N., Fongnzossie, E., Kemeuze, V., Jiofack, T., Johnson, M., Asaha, S., Sakwe, C., & Mboufack, C. 2007. *Etat des lieux des plantesmédicinalesimportantes à conserver et des jardins de plantesmédicinales à promouvoir*. Geneva: Rapport CEN/OMS/MEM, pp. 24.
- Nongdam, P. 2014. Ethno-medicinal uses of some Orchids of Nagaland, North-east India. *Research Journal of Medicinal Plants*, 8(3): 126-139.
- Prajna, V.N., Pillai, M.R., Manimegalai, T.K. & Srinivasan, M. 1999. Use of traditional eye medicines by corneal ulcer patients presenting to a hospital in South India. *Indian Journal of Ophthalmology*, 47: 15-18. PMID: 16130279.

- Rai, P.K. & Lalramnghinglova, H. 2011. Ethnomedicinal Plants of India with Special Reference to an Indo-Burma Hotspot Region: An overview. *Ethnobotany Research & Applications*, 9: 379-420.
- Ramashankar., Deb, S. & Sharma, B.K. 2015. Traditional Healing Practices in North East India. *Indian Journal of History of Science*, 50(2): 324-332.
- Rout, J.,Sajem, A.L. & Nath, M. 2009. Some Superstitious Botanical Folklore of Different Tribes of North Cachar Hills, Assam (Northeast India). *Ethnobotanical Leaflets*, 13: 1096-1107.
- Sajem, A.L. & Gosai, K. 2006. Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India. *Journal of Ethnobiology and Ethnomedicine*, 2(1): 1-7.
- Sarkar, M. & Devi, A. 2017. Analysis of medicinal and economic important plant species of Hollongapar Gibbon wildlife sanctuary, Assam, Northeast India. *Tropical Plant Research*, 4(3): 486-495.
- Shankar, R. & Devella, R.B. 2012. Conservation of folk healing practices and commercial medicinal plants with special reference to Nagaland. *International Journal of Biodiversity and Conservation*, 4(3): 155-163.
- Shankar, R., Lavekar, G.S., Deb, S. & Sharma, B.K. 2012. Traditional healing practice and folk medicines used by Mishing community of North East India. *Journal* of Ayurveda & Integrative Medicine, 3(3):124-129.
- Sharma, M. & Das, B. 2018. Medicinal plants of North-east region of India: A small review. *International Journal of Current Pharmaceutical Research*, 10(4): 11-12.
- Singh, H.B., Prasad P. & Rai, L.K. 2002. Folk medicinal plants in the Sikkim Himalayas of India. *Asian Folklore Studies*, 6: 295-310.
- Singh, H.B., Singh, R.S. & Sandhu, J.S. 2003. *Herbal medicines of Manipur- A colour encyclopaedia*, Daya Publishing House, New Delhi.
- Singh, S.B., Tripathi, S.K. & Mishra, B.P. 2017. Ethno-medicinal plants used by the South West Khasi Hills District community of Meghalaya, India. In: Kretrimayum B (ed.) *Medicinal plants and its therapeutic uses*, OMICS Group ebooks, USA.
- Singh, T.T. & Sharma, H.M. 2018. An ethnobotanical study of monocotyledonous medicinal plants used by the scheduled caste community of Andro in Imphal East district, Manipur (India). *Research Journal of Life Sciences*, *Bioinformatics, Pharmaceutical and Chemical Sciences*, 4(4): 55-72.
- Sumi, A. & Shohe K. 2018. Ethnomedicinal Plants of Sumi Nagas in Zunheboto District, Nagaland, Northeast India. Acta Scientific Pharmaceutical Sciences, 2(8): 15-21.

- Tsabang, N.,Ngah, N., Estella, F.T. &Agbor, G.A. 2016. Herbal medicine and treatment of diabetes in Africa: Case study in Cameroon. *Diabetes Case Reports*, 1: 112.
- Ukponmwan, C.U. & Momoh, N. 2010. Incidence and complications of traditional eye medications in Nigeria in a teaching hospital. *Middle East African Journal of Ophthalmology*, 17(4): 315–319. DOI: 10.4103/0974-9233.71596.
- Verma, A.K., Prasad, S.B., Rongpi, T. & Arjun J. 2014. Traditional healing with animals (zootherapy) by the major ethnic group of Karbi Anglong district of Assam, India.*International Journal of Pharmacy and Pharmaceutical Sciences*, 6(8): 593-600.
- WHO. 2001. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine, Geneva.
- Yuhlung, C.C. & Bhattacharyya, M. 2016. Indigenous Medicinal Plants Used by the Maring Tribe of Manipur, Northeast India. *Journal of Ayurvedic and Herbal Medicine*, 2(4): 146-153.
- Zhasa, N.N., Hazarika, P. & Tripathi, Y.C. 2015. Indigenous knowledge on underutilization of plant biodiversity for treatment and cure of diseases of human beings in Nagaland, India: A case study. *International Research Journal of Biological Sciences*, 4(4): 89-106.

Chapter 4

Diversity of medicinal plants traditionally used for respiratory disorders in North East India: a review

Amal Bawri^{1*}, Daimalu Baro², Kenjum Bagra¹, Imlikumba¹ and Robindra Teron¹

¹ North Eastern Institute of Folk Medicine (An Autonomous Institute under Ministry of AYUSH, Govt. of India), Pasighat-791 102, East Siang, Arunachal Pradesh, India ²Department of Botany, Tinsukia College, Tinsukia, Assam – 786 125, India *Corresponding author: amalbawri@gmail.com

Abstract

Respiratory disease is a major public health problem and affects millions of patients every year worldwide. As per the Global Burden of Disease (GBD) survey data, in India, the problem of respiratory diseases is huge. In the present study target was made to listed the diversity of medicinal plants used to treat respiratory disorders by the ethnic peoples in North East India. The results of medicinal plant species diversity analysis showed the occurrence of 382 plant species. Most of the plants belong to the Lamiaceae and Zingiberaceae are the most dominant family contributing 22 species each followed by Asteraceae (18), Solanaceae (15), Leguminosae (12), Poaceae (12), Rosaceae (11), Rutaceae (10), Malvaceae (9) and Lauraceae (9). Among the all parts, leaves are the most used part with a percentage of 29%, followed by the roots (18%), fruits (16%), whole plant (11%), bark (9%),

rhizome (8%), seed (6%), stem (4%), flower (3%) and shoot (3%). Total 12 different respiratory disorders are treated traditionally. Cough was the disorder treated by the highest number of species (270) followed by asthma (93), cold (58), bronchitis (53), Pneumonia (18), Sore throat (13), whopping cough (7), Tuberculosis (4), Chest Pain (4), Throat infection (3), Pharyngitis (1) and Lung inflammation (1) and breathing problems (16). Total 296 plants out of 382 plant species have been found on which pharmacological studies were conducted to evaluate their antioxidant, antiviral, antifungal, anti-inflammatory, antibacterial, antimicrobial, anti-allergic, antihistaminic. However, details study in terms of clinical study is yet to be carried out. Medicinal plants and traditional medicine can be a promising alternative option for treatment of respiratory disorder. Overall, this review can serve as a baseline database for further studies.

Keywords: Respiratory disorders, Medicinal plants, traditional knowledge, ethnobotany, Pharmacological evaluation.

Introduction

Respiratory disease

Respiratory disease is a major public health problem and affect millions of patients every year worldwide (Annesi-Maesano et al., 2014). According to the Forum of International Respiratory Societies, respiratory diseases are one of the leading causes of death and disability in the world. Respiratory diseases enforce an enormous worldwide health burden. Among all the respiratory disease, five diseases (Chronic obstructive pulmonary disease (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB), lung cancer) are most common causes of severe illness and death worldwide (Forum of International Respiratory Societies, 2017). About 65 million people suffer from COPD, 334 million from asthma, 10.4 million from TB in the world (Forum of International Respiratory Societies, 2017).

The problem of respiratory diseases in India is huge. As per the Global Burden of Disease (GBD) survey data, both acute and chronic respiratory diseases are prevalent in considerable number in India (Dandona et al., 2017). Chronic respiratory diseases, especially asthma and chronic obstructive pulmonary disease (COPD), are one of the leading causes of variations in morbidity and mortality in many states of India (Salvi et al., 2018).

Traditional herbal medicines in respiratory disease management

Traditional herbal medicine and indigenous knowledge of traditional healers have been considered as a key healthcare supportive skill for rural population in most developing countries in world (Tilburt & Kaptchuk, 2008). A number of reviews on medicinal plants and traditional knowledge used in the management of respiratory disorders in different parts of the world available (Bussmann & Glenn, 2010; Alamgeer et al., 2018; Lawal et al., 2020).

These studies have highlighted the dependence of a good percentage of the world population on herbal medicine for management of respiratory disease, which is also same with the WHO report, where they estimate that about 80% of the population in African countries use some form of traditional herbal medicine for their primary healthcare (WHO, 2008).

In India, ethnobotanical survey of plant traditionally used to treat various disease have been carried out (Chhetri, 2005; Singh & Devi, 2015; Abatet al., 2017; Dahal, 2019). There is lack of specific research on use of ethno-medicine on particular diseases like respiratory disorder. The objective of this paper is to collate as much as possible, available information about medicinal plants traditionally used for the management of respiratory disorder in North East India.

Methods

Ethnopharmacological data sources and collection

Systematic literature searches relevant to the field of ethnobotany were carried out and the available information on various plants traditionally used for respiratory disorders was collected from different bibliographical databases via electronic search (using Pubmed, SciFinder, Scopus, Scirus, ScienceDirect, Google Scholar and Web of Science) and a library search for articles published in peerreviewed journals and also locally available books. The phytochemicals and pharmacological activities, which are considered as helpful for the treatment of respiratory disorder are reported in this review include: Antioxidant, Anti-bacterial, Anti-inflammatory and antimicrobial activity.

Systematization of plant names and chemical structures

For the systematization of plant names and to check the status of plants gathered in this review, the database: The Plant list (<u>http://www.theplantlist.org/2020</u>) was used. Only the accepted names and family of plants species highlighted in this database were retained to be listed in this review.

Results and Discussion

Ethnobotanical data of medicinal plants used for respiratory disease treatment in North East India

The results of medicinal plant species diversity analysis showed the occurrence of 382 plant species in this review used to treat Respiratory disorder in North Eastern, India (Table 4.1) Among the 382 recorded plants, 367 species are under angiosperms, 7 are pteridophytes, 5 are gymnosperms, 2 are fungi and 1 is lichen. The species are organized with the alphabetical order of scientific name with family, part use, disease, mode of uses and pharmacological effect/ phytochemical Constituent with reference. Lamiaceae and Zingiberaceae are the most dominant family contributing 22 species each followed by Asteraceae (18), Solanaceae (15), Leguminosae (12), Poaceae (12), Rosaceae (11), Rutaceae (10), Malvaceae (9) andLauraceae (9). Other dominant families are Acanthaceae (8), Euphorbiaceae (8), Moraceae (8), Piperaceae (7), etc. The remaining families represented by two to six plant species (e.g., Amaryllidaceae) or just a single one (e.g., Magnoliaceae, Acoraceae, Adoxaceae, etc.) (Fig. 4.1).

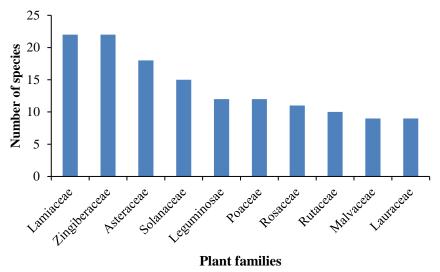


Fig. 4.1. Ten Dominant families of medicinal plants used in the treatment of respiratory disorder in North East India.

The predominance of these families could be justified by the fact that they embrace the group of species that are widely used in traditional folk healing practices among the ethnic groups in this region (Chhetri, 2005, Singh & Devi, 2015, Abat et al., 2017, Dahal, 2019).

Plant's parts, Use and mode of preparation and Pharmacological evaluation

The leaves are the most used by population of North east India with a percentage of 29%, followed by the roots (18%), fruits (16%), whole plant (11%), bark (9%), rhizome (8%), seed (6%), stem (4%), flower (3%) and shoot (3%) (**Fig. 4.2**).

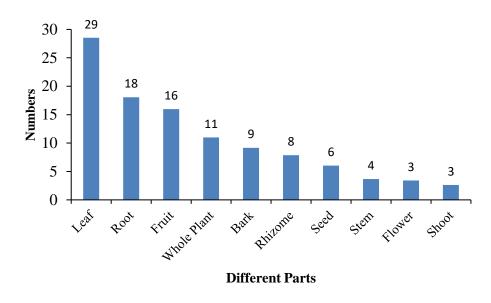
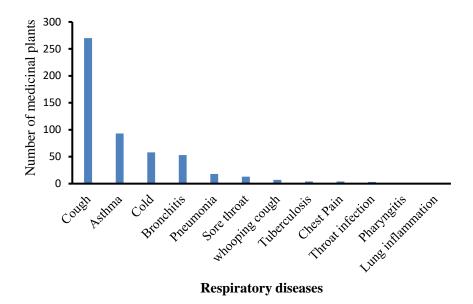



Fig. 4.2. Plant parts used as medicine.

The results of the present study are supported with the finding of another systematic review of medicinal plants traditionally used to treat respiratory disorder in Pakistan (Alamgeer et al., 2018).

The reported plants were used in 12 different respiratory disorders. The highest number of medicinal plants documented are being employed in the treatment of cough (270) followed by asthma (93), cold (58), bronchitis (53), Pneumonia (18), Sore throat (13), whopping cough (7), Tuberculosis (4), Chest Pain (4), Throat infection (3), Pharyngitis (1) and Lung inflammation (1) and breathing problems (16). The results of the present study are supported with the finding of another systematic review of medicinal plants traditionally used to treat respiratory disorder in Pakistan

(Alamgeer et al., 2018), where they also reported highest number of medicinal plants employed in the treatment of cough. Numbers of plantsused in ethno-medicine for the treatment of different respiratoryconditions is shown in Fig. 4.3.

Fig. 4.3. Number of medicinal plants and different respiratory diseases treated traditionally.

Pharmacological evaluation

An attempt has been made to review the pharmacological activity of the medicinal plants recorded based literature review to confirm their traditional use against respiratory conditions. Total 296 plants out of 382 plant species have been foundon which pharmacological studies were conducted toevaluate their antioxidant, antiviral, antifungal, anti-inflammatory, antibacterial, antimicrobial, anti-allergic, anti-histaminic, bronchodilator and antioxidantproperties as these properties are useful for the treatment frespiratory disorders Remaining 86 specieshighlighed in the table yet to be evaluated pharmacologically order to confirm their folkloric claim (Table 4.1).

Table 4.1. Diversity of medicina	plants traditionally used	l for respiratory disorders.
----------------------------------	---------------------------	------------------------------

Sl. No	Species with family	Part use	Disease	Mode of uses with reference	Pharmacological effect/ Phytochemical Constituent with reference
1.	Abies densa Griff. (Pinaceae)	Leaf	Cold, Cough & Bronchitis	Leaf juice taken orally to cure cough, cold, nasal congestion, asthma, bronchitis (Dahal, 2019)	Not reported.
2.	Abies spectabilis (D.Don) Mirb. (Pinaceae)	Needle	Cough and Bronchitis	Decoction of the needle is taken orally for the treatment of cough and bronchitis (Chhetri, 2005)	Antioxidant effect and Phenol content (Dall'Acqua et al., 2012).
3.	Abrus precatorius L. (Leguminosae)	Roots & Seeds	Cold, Cough & Pneumoni a	Root used against cold, cough (Dahal, 2019). Seeds are used to cure Pneumonia (Dahal, 2019).	Alkaloids, Flavonoids, Steroids, Tannins, Terpenoids (Nassir et al., 2017). Anti-viral effect (Premanand& Ganesh, 2010) Antioxidant activity (Nassir et al., 2017).
4.	Abutilon indicum (L.) Sweet (Malvaceae)	Roots & Seeds	Fever & Cough	Decoction of roots and seeds areused in the form of	Alkaloids, glycosides, carbohydrates, tannins, phenolic compounds, proteins, amino acids,

				decoction to cure fever and cough. (Abatet al., 2017).	saponins, flavonoids, terpenoids, gums and mucilages (Chakraborthy et al., 2009). Anti-bacterial activity (Pratap et al., 2014).
5.	<i>Acalypha indica</i> L. (Euphorbiaceae)	Whole plant	Cough	Herb extract given in severe cough (Singh, 1990).	Anthraquinones, Alkaloids, Catachols, Flavonoids, Phenolic compounds, Saponins, Steroids, Tannins, Triterpenoids (Chekuri et al., 2016). Antioxidant and Anti-bacterial activity (Chekuri et al., 2016).
6.	Acanthospermum hispidum DC. (Asteraceae)	Leaf	Cough and fever	Leaf extract with honey is given in cough and fever (Singh & Devi, 2015).	Alkaloids, Sterols, Carbohydrate and glycosides, Fixed oils and fats, Phenolic compounds, Tannins, Tritepenoids and saponins, Flavones and flavonoids and antioxidant activity (Gomathi et al., 2013).
7.	Achyranthes aspera L. (Amaranthaceae)	Whole plant	Pneumoni a	The decoction of the herb is used (Zhasa et al., 2015).	Tannin, phlobatannin, terpenoid, flavonoid, cardiac glycoside, phenol, alkaloid and antimicrobial activity (Baraiket al., 2014).
8.	Aconitum dissectum D.Don (Ranunculaceae)	Tuber	Cough and asthma	Tuberous root usedexternallyforrheumatismand	Not reported

				internally to relieve cough, asthma and fever (Dahal, 2019).	
9.	Aconitum heterophyllum Wall. ex Royle (Ranunculaceae)	Rhizome	Cough & cold	Rhizome is dried up and taken to relieve body-ache, fever, cold, cough, nose discharge etc. (Pradhan and Badola, 2008).	Alkaloids, Carbohydrate, Protrine& Amino acid, Saponins, Glycosides, Quinones, Flavonoids, Terpenoids (API, I (I)). Anti-inflammatory activity (Verma et al, 2010).
10.	<i>Acorus calamus</i> L. (Acoraceae)	Rhizome	Cough	Rhizome is used in respiratory disease (Ramashankar et al., 2015).	Glycosides, carbohydrate, phenolic compound, saponins, alkaloids, flavonoid, tannins, saponins,steroids, triterpenoids (Saxena & Saxena, 2012) Antioxidant activity and antimicrobial activity (Funde, 2015).
11.	Acmella paniculate (Wall. ex DC.) R.K. Jansen (Asteraceae)	Stem	Cough	Freshly collected young stem juice is taken 2 teaspoonfuls thrice daily after of before food along with honey tothe	Alkaloids, flavonoids, tannins, saponins and Antibacterial activity (Mamidala & Gujjeti, 2013).

				patient suffering from Cough. (Deka&Nath, 2014).	
12.	Justicia adhatodaL. (Acanthaceae)	Leaves	Cold cough	Leaves extract is taken for cold and cough (Khongsai et al., 2011).	Alkaloids, anthraquinones, flavonoids, saponins, phytosterols, triterpenoids and poly-phenols (Jayapriya & Shob, 2015)
13.	Adiantum capillus- veneris L. (Pteridaceae)	Whole plant	Bronchitis	Boiled and decoction is prescribed to treat bronchitis (Ningombam et al., 2014).	Flavonoids, terpenoids, saponins, tannins and reducing sugar (Rajurkaret al., 2012). Antioxidant activity (Rajurkaret al., 2012). Antibacterial activity (Shirazi et al., 2011).
14.	Adiantum lunulatum Burm. f. (Pteridaceae)	Leaves & Aerial part	Cough, throat infection & bronchitis,	Leaves are used (Zhasa et al., 2015). Decoction of aerial part used against cough, bronchitis, dysentery, sore throat (Dahal, 2019).	Tannin, Flavonoid, Steroid, Saponin, Anthocyanin, Phlobatannins, Alkaloids, Phenols, Terpenoid, Anthraquinones, Glycosides (Mengane, 2016)
15.	Adiantum raddianum C. Presl	Whole Plant	Pulmonar y, cough	Whole plant is used to treat cough	Flavonoids, Phenols, Sterols, steroid

	(Pteridaceae)		and	& respiratory	(Thomas, 2014).
			respiratory problems.	problems (Zhasa et al., 2015).	
16.	<i>Aerva lanata</i> (L.) Juss. (Amaranthaceae).	Twig	Cough & Sore throat	Decoction is orally taken to treat cough & sore throat (Ningombam et al., 2014).	Phenolic compounds, saponins, flavonoids, tannins and phytosterols (Kumar et al., 2013). Antioxidant activity (Kumar et al., 2013).
17.	<i>Ajuga macrosperma</i> Wall. ex Benth. (Lamiaceae)	Aerial Plant	Cough	The extracts of the plant is given in fever and cough (Singh, 1990).	Not reported.
18.	<i>Alangiumchinense</i> (Lour.) Harms (Cornaceae)	Leaves	Cough and cold	Fresh leaves of about 200gm are boiled in two litres of water for 25 mins and the decoction of about 200ml is taken twice daily for a week in cough and cold. (Salam, 2013).	Not reported.
19.	Albizia lebbek (L.) Willd.	Stem bark	Cough,	Decoction of stem bark used (Rama	Alkaloids, Glycoside, Tannin, Saponin, Flavanoids,

	(Leguminosae)			Shankar & Devalla, 2012) Crushed stem bark and roots are used orally to treat cough (Jamir et al., 2010)	Carbohydrates, Amino acids, Proteins (Chulet et al., 2010). Antibacterial activity (Chulet et al., 2010). Anti-inflammatory activity (Karuppannan et al., 2013). Antioxidant activity (Karuppannan et al., 2013).
20.	Albizia odoratissima (L.f.) Benth. (Leguminosae)	Bark	Cough	Leaf juice with butter used to treat cough (Dahal, 2019). Decoction of bark used to treat cough (Dahal, 2019).	Alkaloids, Carbohydrate, Phytosterol, Saponins, Phenolic compound, Tannins, Flavonoid, Proteins, Terpenoid, Cardial glycosides, Steroids (Powar et al., 2020). Antioxidant activity (Banothuet al., 2017). Antimicrobial activity (Banothuet al., 2017).
21.	<i>Allium cepa</i> L. (Amaryllidaceae)	Bulb	Cold	Bulb eaten raw to treat common cold, cough, bronchitis and flu. (Tsering, 2017).	Flavonoids, phytosterols and saponins Antioxidant and antimicrobial activity (Marrelliet al., 2019).
22.	Allium hookeri Thwaites (Amaryllidaceae)	Bulb	Cough & Cold	Crushed juice of the leaves is taken for fever and	Alkaloids, Steroids, Flavonoids, Terpenoids, Tannins, Polyphenols (Swarnalataet al., 2016).

23.	<i>Allium prattii</i> C.H.Wright (Amaryllidaceae)	Bulbs, leaves & flowers	Cough and cold	cough (Singh & Devi, 2015). Bulbs, leaves and flowers boiled in water and used as bath in cough and cold (Dahal, 2019).	Not reported.
24.	<i>Allium sativum</i> L. (Amaryllidaceae)	Bulb	whooping cough	100 gm garlic cloves pounded with 250 gm of sugar and heated. After cooling down it isprescribed in whooping cough (one teaspoonful for adults and half a teaspoonful for children twice daily for a fortnight). (Nath et al., 2008). In Meghalaya, Bulb is fried in mustard oil; oil is used for	Sulfur-containing compounds (El-SaberBatiha et al., 2020), Carbohydrates, Proteins, Amino acids, Volatile oil, Saponins, Terpenoids, Steroids, Enzymes (Kadam et al., 2019). Antibacterial, Antioxidant and Anti-inflammatory Activity ((El-SaberBatiha et al., 2020).

				massaging newborns and is taken orally for cough. Bulb is also taken with hot milk to relieve cough. Rawbulb is chewed for mouth sores. (Hynmewta& Kumar, 2008).	
25.	<i>Allium tuberosum</i> Rottl. ex Sprengel (Amaryllidaceae)	Bulb	whooping cough	Bulb pounded with equal parts of rhizome of <i>Costus</i> <i>speciosus</i> (Koen. ex Retz.) J.E. Smithand given in whooping cough (twice daily till cure (Nath et al., 2008).	Sulfides, saponins, linalool, flavonoid glycosides, essential oils, (Jannat et al., 2019). Antibacterial activity (Nauman et al., 2014).
26.	Alpinia galanga (L.) Willd. (Zingiberaceae).	Rhizome	Cough	Fresh rhizome is eaten to cure cough (Devi, 2013).	Antimicrobial, anti-inflammatory, Anti-oxidant activity (Chouni& Paul, 2018). Alkaloids, carbohydrates, saponins, tannins, protein, glycosides,

27.	Alpinia officinarum Hance (Zingiberaceae)	Rhizome	Cough	Dried rhizome paste is chewed against fever, cough (Singh & Devi, 2015).	flavonoids, steroids and terpinoids (Subash et al., 2012). Alkaloids, Terpenoids, Saponins, Tannins, Protein and amino acids, Flavonoids, Steroids, antioxidant and antimicrobial activity (Srividya et al., 2010).
28.	Alstonia scholaris (L.) R. Br. (Apocynaceae)	Bark & latex	asthma	Fresh barks are cut into small pieces and decoction is prepared which is later filtered through a cloth, concentrated and dried inshade; out of this small pill (each of ca 1–1.5 g) are made, threepills a day (for adults) is the recommended dosage for curing asthma (Sajem&Gosai, 2006) Latex mixed with cow's milk	Alkaloids, Dragendroff reagent, Flavonoids, Tannin, Protein, Saponin, Glycosides, Phenols, Steroids, Carbohydrate, Antioxidant activity (Antony et al., 2011). Antituberculosis activity (Macabeoet al., 2008). Antibacterial activity (Gami&Parabia, 2011).

				and given in asthma (two teaspoonfuls of latex in 100 ml ofmilk, once daily for three weeks). (Nath et al., 2008).	
29.	Amaranthus viridis L. (Amaranthaceae)	Leaf	Cough	Leaf, take as a curry, and juice of the leavesused to cure cough (Swargiary et al., 2019).	Tannins, resins, reducing sugars and aminoacids (Sowjanya et al., 2014). Antioxidant & Antimicrobial Activity (Iqbal et al., 2012)
30.	Amomum subulatum Roxb. (Zingiberaceae).	Seed	Cough & asthma	Powdered seeds taken with warm water to cure cough, asthma (Dahal, 2019)	Carbohydrates, flavonoids, amino acids, steroids, triterpenoids, glycosides, tannins, anthovyanins, aurone, flavanone, alkaloids, fixed oil and fats (Bisht et al., 2011). Anti-inflammatory (Alam et al.,2011). Antimicrobial activity (Kumar et al., 2010). Antioxidant activity (Verma et al., 2010)

31.	Anacardium occidentale L. (Anacardiaceae)	Leaves	Sore throat	Decoction of leaves is used for gargle to treat sore throat (Lalramnghinglova , 1998)	Alkaloids, carbohydrates, tannins, terpenoids, flavonoids, phenols, steroids, glycosides, volatile oils and xanthoprotein (Doss &Thangavel, 2011). Antioxidant & Antimicrobial activity (Doss et al, 2011).
32.	Ananas comosus (L.) Merr. (Bromeliaceae)	Fruits	Bronchial asthma	Decoction (15-20 ml.) of the fruits and of the stalk of <i>Colocasia</i> <i>esculenta</i> (L.) Schott is mixed with sugar and taken orally in bronchial asthma. (Sharma et al., 2001).	Alkaloids, Carbohydrate, Coumarins, Flavonoid, Glycosides, Phenols, Quinine, Saponins, Steroids, Tannins, Terpenoids (Jenitha&Anusuya, 2016)
33.	Anaphalis contorta (D. Don) Hook.f. (Asteraceae)	Whole plant	Cough	Plant pastetaken with honey to cure cough (Dahal, 2019)	Antioxidant activity (Rawat et al., 2017)
34.	Anemone rivularis BuchHam. ex DC. (Ranunculaceae)	Whole plant	Cough	Plant paste taken against headache, cough and fever (Dahal, 2019).	Essential oil, antimicrobial activity and antioxidant activity (Shi et al., 2012)

35.	Anethum graveolens L. (Apiaceae)	Leaves	Leaf	Leaves is useful in asthma, cold and cough (Nonibala, 2010)	Essential oils, fatty oil, moisture (8.39%), proteins (15.68%), carbohydrates (36%), fiber (14.80%), ash (9.8%) and mineral elements Antimicrobial activity (Stavri & Gibbons, 2005). Anti-inflammatory (Valady et al., 2010).
36.	Anisochilus carnosus (L.f.) Wall.	Whole plant	Cough	The plant extracts are given in cough especially for children (Singh, 1990).	Alkaloids, carbo- hydrates, flavonoids, glycosides, saponins, steroids, tannins, phenols, triterpenoids (Kiruthiga & Sekhar, 2014)
37.	<i>Aquilaria malaccensis</i> Lam. (Thymelaceae)	Stem	Asthma, Pneumoni a,	Oil extract is used to treat asthma and Pneumonia (Zhasa et al., 2015). Whole plant is crushed, and the decoction is taken orally (Jamir et al., 2010).	Alkaloids, terpenoids, flavonoids, steroids, saponins and tannins (Nik Wil et al., 2014). Antioxidant activity (Nik Wil et al., 2014).

38.	<i>Areca catechu</i> L. (Arecaceae)	Root		Decoction of root with bark of <i>Albizia lebbek</i> (L.) Willd., root of each of <i>Citrus</i> <i>medica</i> L. and <i>Piper longum</i> L., rhizome of <i>Zingiber officinale</i> Rosc. and leaf of <i>Justicia adhatoda</i> L.in equal parts is administered in asthma (four teaspoonfuls, thrice daily for a month or evenmore if required) (Nath et al., 2008).	Alkaloids, saponins, phenol, reducing sugar, triterpinoids and glycosides (Rajamani et al., 2016). Antibacterial activity (Lalitha kumari et al., 1965).
39.	Arenga pinnata (Wurmb) Merr. (Arecaceae).	Root	Bronchitis	Root decoction is taken orally to treat bronchitis (Lalramnghinglova , 2001)	Anti-inflammatory activity (UmiKalsum et al., 2018)
40.	Argemone mexicanaL.	Seed	Asthma,	Pounded seed used	Alkaloids, flavanoids, tannins and

	(Papaveraceae).		eczema & cough	against asthma, cough (Dahal, 2019).	Phenolic compounds, Phytosterols, saponins, Anthraquinone, glycosides and antibacterial activity (Saranya et al., 2012). Antioxidant activity (Perumal et al., 2010)
41.	<i>Aristolochiaindica</i> L. (Aristolochiaceae)	Root	Asthma & whooping cough	Root decoction mixed with juice of ginger in equal parts with a pinch of each of black and longpepper is given in asthma and also in whooping cough of children (one teaspoonful, twiceor thrice daily for three weeks). (Nath et al., 2008).	Alkaloids, Anthocyanins, Anthocyanidins, Anthracene glycosides, Anthraquinones, Cardiac glycosides, Caretenoide, Coumarins, Flavonoides, Steroids, Tannin, Triterpenoids, Volatile oil (Bawankule& Chaturvedi, 2014).
42.	Artemisia indicaWilld. (Asteraceae)	Leaf	Asthma	Leaf is used (Kala, 2005)	Carbohydrate, Reducing sugars, Amino Acids, Saponins, Flavonoids, Alkaloids, Tannins, Sterols, Triterpenoids, Phenolics, Glycosides (Ruwali et al., 2015). Antioxidative activity (Ruwali et al., 2017).

43.	<i>Artemisia nilagirica</i> (C.B.Clarke) Pamp.	Leaf	Cough, Asthma	Leaf decoction is used in cough (Kala, 2005; Jeeva et al, 2006). In Manipur, Youg shoot is boiled and taken as vegetable to cure asthma (Devi, 2013).	Tannins, alkaloids, flavanoids, terpenoids, glycosides and antibacterial activity (Arokiyaraj et al., 2012).
44.	Artemisia vulgaris L. (Asteraceae)	Leaf		Leaf juice is used in the treatment of asthma (Sailo et al., 2017). Decoction of plant used in cough (Dahal, 2019)	Flavonoids, flavonols, phenolic acids, Sesquiterpene lactone, alkaloids, coumarins, saponins, sterols, tannins, terpenoids (Ekiertet al., 2020). Antioxidant (Temraz and El- Tantawy, 2008) Antibacterial (Raj Singh et al., 2011) Antispasmodic and bronchodilator activities (Khan and Gilani, 2009)
45.	Artocarpus heterophyllus Lam. (Moraceae)	Root	Asthma	Roots decoction are used (Zhasa et al., 2015)	Anthraquinone, Phytosterols, Terpenoids, Phenols, Glycosides, Flavonoids, Diterpenes and antibacterial activity (Sivagnanasundaram&

					Karunanayake, 2015).
46.	Artocarpus lacucha BuchHam. (Moraceae)	Seeds and bark	Asthma	Seeds and barks are used for treatment of asthma (Zhasa et al., 2015).	Tannins, alkaloids and antibacterial activity (Kumar et al., 2010).
47.	Artocarpus integer (Thunb.) Merr.	Fruit	Asthma	Fruits is taken in asthma (Hazarika & Dutta, 2016).	Steroids, Triterpenoids, Saponins, Alkaloids, Tannins and Phenolic compounds, Flavonoids,Proteins, Carbohydrates (Sundarraj & Thottiam, 2017).
48.	Arundo donaxL. (Poaceae)	Young Shoot	Cough	Boiled extract of shoot and <i>Piper</i> <i>betle</i> leaf is used in cough (Nonibala, 2010).	Antibacterial activity (Shirkani et al., 2014).
49.	<i>Azadirachta indica</i> A. Juss. (Meliaceae)	Leaves	Cough	Decoction of leaves is orally administered thrice daily for about 7 days as cure for cough (Salam, 2013).	Saponins, Tannins, Flavonoids, and Antimicrobial activity (Galeane et al., 2017).
50.	Bacopa monnieri (L.) Wettst. (Plantaginaceae)	Leaves and shoot	Asthma, bronchitis	Leaf juice is used to to cure asthma (Swargiary et al.,	Tannin, Phlobetannin, Saponin, Flavonoid, Cardiac glycoside, Phenol, Steroid, Alkaloid,

				2019). Juice of shoot and leaf is given in bronchitis to infants and children (three teaspoonfuls, twice or thrice daily for a fortnight).(Nath et al., 2008).	Carbohydrate and antioxidant activity (Jain et al., 2017).
51.	Balanophora dioica R. Br. Ex Royle (Balanophoraceae)	Flowers/Inflores cences	Cough	Flowers/ Inflorescences are used for remedy (Zhasa et al., 2015).	Not reported.
52.	<i>Bambusa tulda</i> Roxb. (Poaceae)	Leaf	Cold	Leaf decoction is used to treat (Kichu et al., 2015)	Saponins, Steroids, Alkaloids, Tannins, Carbohydrates, Flavonoid, Anthraquinone, Glycosides, Reducing sugars (Dey et al., 2015) Antioxidant activity (Dey et al., 2015).
53.	<i>Bambusa vulgaris</i> Schrad. (Poaceae)	Shoot	Asthma	Bamboo shoot decoction along with honeyis used to treat asthma (Swargiary et al., 2019).	Alkaloids, Tannins, Flavonoids, Phenols, Terpenoids (Owolabi & Lajide, 2015). Antimicrobial activity (Owolabi & Lajide, 2015).

54.	Barleria cristata L. (Acanthaceae)	Leaf	Cough	The boiled extract of the leaf is used in cough and chest pain (Nonibala, 2010). The infusion of leaves and roots is given in cough (Singh, 1990).	Alkaloids, carbohydrates, glycosides, phytosterols, flavanoids, phenolic compounds, terpenoids, anthraquinones and saponins (Kumudhaveni et al., 2020). Anti-oxidant activity (Doss & Amutha, 2009) Anti-microbial activity (Sulthana, 2017) Anti-inflammatory activity (Gambhire et al., 2009).
55.	Barleria prionitis L. (Acanthaceae)	Leaf	Cough	Leaf is used in the treatment of cough (Kala, 2005).	Flavonoid, glycoside, saponin, tannins and steroid (Maji et al., 2011). Antioxidant activity (Chetan et al., 2011). Antibacterial activity (Panchal & Singh, 2015). Antiviral activity (Chen et al., 1998).
56.	Basella alba L. var. rubra (L.) Stewart (Basellaceae)	Leaf		About 10 ml leaf juice mixed with 25 ml root juice of <i>Clitoria ternatea</i> L., a little waterand goat's milk is given in	Anti-inflammatory activity (Krishna, 2012) Antioxidant activity (Reshmi et al., 2012)

				whooping cough (thrice daily for a fortnight). (Nath et al., 2008).	
57.	<i>Bauhinia purpurea</i> L. (Leguminosae)	Root	Sore throat	Root decoction is taken as an astringent and to relieve sore throat (Chankija, 1999).	Carbohydrate, alkaloid, steroid and sterol, Glycoside, saponin, flavonoid, tannin and phenolic compound, protein and amino acid (Marimuthu & Dhanalakshmi, 2014).
58.	<i>Begonia roxburghii</i> A.DC. (Begoniaceae)	Leaves	Cough	Leaves is used in the treatment of cough (Zhasa et al., 2015).	Alkaloids, Carbohydrates, Flavonoid, Glycosides, Tannins, Saponins (Mobarak et al., 2018)
59.	<i>Benincasa hispida</i> (Thunb.) Cogn. (Cucurbitaceae)	Leaf, Fruit & Root	Cough & Fever	Leaf juice (5ml) is takenorally to treat cough (Dolui et al., 2004). Fruit juice also useful in asthma, cough (Dahal, 2019).Infusion of the root (5 ml, 3-4 times daily) is given orally in asthma (Sharma et	Volatile oils, flavonoids, glycosides, sacchrides, proteins, carotenes, vitamins, minerals, ß- sitosterin and uronic acid (Rana & Suttee, 2012). Antioxidant activity (Mandana et al., 2012). Antiasthmatic activity (Kumar &Ramu, 2002).

				al., 2001).	
60.	Berberis angulosa Wall. ex Hook.f. & Thomson (Berberidaceae)	Root	Cough & cold	Root used to cure cough, cold (Dahal, 2019).	Not reported.
61.	Betula alnoides Buch Ham. ex D. Don (Betulaceae)	Bark	Cough	Decoction of bark used against cough (Dahal, 2019).	Antioxidant, antimicrobial activity (Ghimire et al., 2012).
62.	Bidens biternata (Lour.) Merr. &Sherff (Asteraceae)	Leaves	Cough	The extract of leaves is given in cough and fever by the Rongmeis in Manipur (Singh, 1990).	Not reported.
63.	<i>Bischofia javanica</i> Blume (Phyllanthaceae)	Leaf	Sore throat & cough	The leaf juice is used in the treatment of sore throat and cough (Zhasa et al., 2015).	Carbohydrates, cholesterol, proteins, flavonoids, alkaloids, phenols, saponins, tannins, and fatty acids (Chowdhury et al., 2020).
64.	Blumea balsamifera (L.) DC. (Asteraceae)	Whole Plant	Cold& Asthma	Entire plant used as an expectorant and in the treatment of colds. (Neogi et	Terpenoids, fatty acids, phenols, alcohols, aldehydes, ethers, ketones, pyridines, furans, alkanes, Flavonoids (Pang et al., 2014).

				al., 1989). Decoction of the leaves (10 ml, 3-4 times daily) is given orally in asthma and cough (Sharma et al., 2001).	Antioxidant, anti-microbial and anti-inflammation Activity (Pang et al., 2014).
65.	Blumea fistulosa (Roxb.) Kurz (Asteraceae)	Root	Cough	The boiled extract of the fresh leaf is prescribed orally in fever and cough (Nonibala 2010).	Not reported.
66.	Blumea lanceolaria (Ro xb.)Druce (Asteraceae)	Leaves	Asthma & bronchitis	Extract of leaves is given in asthma and bronchitis (Singh, 1990).	Alkaloids, steroids, terpenoids and cardiac glycosides, tannins and phenolic compounds (Yadav et al., 2018) Antioxidant and antibacterial activity (Mishra et al., 2015).
67.	Blumeopsis flava (DC.) Gagnep. (Asteraceae)	Leaves	Dry cough	Boiled decoction of leaves is given for dry cough (Pfoze, 2012).	Alkaloids, Tannins, Saponins, Steroids, Phlobatannins, Terpenoids, Flavonoids, Cardic Glycosides (Shantabi et al., 2014).
68.	Boerhavia diffusa L. (Nyctaginaceae)	Root	Asthma	Root Pounded and given in asthma (10 gm) thrice	Phenolic glycoside, terpenoids, organic acids, boeravinones A-J (a group of rotenoids), flavone,

				daily for three weeks). However, some medicine- men prescribed the powdered dry root. (Nath et al., 2008).	isoflavone, flavonol, flavonoid, glycoside, xanthone, Lignin, purine nucleoside, sterol, sterol ester, ecdysteroid, fatty acid, hydrocarbons (Nandi & Ghosh, 2016). Antiasthamatic, Anti- inflammatory, Antimicrobial, Antioxidant activity (Govindarajan et al., 2005).
69.	Boerhavia repens Linn. (Nyctaginaceae)			Leaves juice are used in asthma, (Sailo et al., 2017)	Not reported.
70.	<i>Bombax ceiba</i> L. (Malvaceae)	Root	Asthma	Roots of young plants are used (Zhasa et al., 2015).	Steroids, saponins, flavanoids, cardiac glycosides, tannins and phenolics (Jain et al., 2011). Antibacterial Activity (Islam et al., 2011). Antiviral activity (Said et al., 2011).
71.	Brassaiopsis glomerulata (Blume) Regel (Araliaceae)	Fruit	Cough	Fruit is used in the treatment of cough (Kala, 2005).	Not reported.
72.	Breonia chinensis (Lam.) Capuron (Rubiaceae)	Bark	Cough	Decoction of bark used against fever and cough (Dahal, 2019).	Not reported.

73.	Caesalpinia crista Linn. (Leguminosae).	Seed	Cough & Whooping cough	Seed is used in the treatment of cold, cough and whooping cough. (Gogoi et al., 2019)	Alkaloids, carbohydrates, flavonoids, tannins, proteins, reducing sugars, phytosterols, saponins, coumarins and triterpenoids (Ishan et al., 2013). Antibacterial activity (Ishan et al., 2013).
74.	<i>Cajanus cajan</i> (L.) Mill. (Leguminosae).	Seed	Cough	Seed useful against cough (Dahal, 2019).	Antimicrobial Activity (Zu et al., 2010). Antioxidant activity (Sarkar et al., 2009)
75.	<i>Calamus viminalis</i> Willd. (Arecaceae)	Leaf	Asthma	About one cup of leaf decoction along with half spoonful of black salt and one spoonful of honey is given for the treatment of asthma and cough (Majumdar & Datta, 2007).	Not reported.
76.	Calotropis gigantea (L.) Dryand. (Apocynaceae)	Root bark, Dry leaf, Flower	Asthma & Cough	• Powder of root bark mixed with fresh latex of the plant and	Alkaloids, Glycosides, Tannins, Saponins, Flavonoids (Kori & Alawa, 2014). Antimicrobial activity (Kori & Alawa, 2014).

	smoked like	
	tobacco in	
	asthma (once or	í
	twice daily to	
	reduce the	
	severity of	í
	attack). (Nath et	
	al., 2008).	
	• One dry leaf is	
	pounded with	
	about 10 gm	
	each of black	
	pepper, fruit	
	bark of	
	Sapindusmukors	
	siGaertn. and	
	common salt	
	made into pills	
	of about 3 gm	
	each and are	
	given incough	ľ
	and breathing	ľ
	trouble (one or	ľ
	two pills, twice	
	daily for 7 to 10 days). (Nath et	

al., 2008). Flower with few drops of honey is taken in cough and asthma (Sen et al., 2011) Root juice is given asthma (two in teaspoonfuls, with *Canavalia* gladiate a pinch of common Antioxidant activity (Gan et al., 77. (Jacq.) DC. Root Asthma salt, twice dailyfor 2016) (Leguminosae). fortnight or a more) (Nath et al., 2008). Regular eating of Alkaloids. tannins. flavonoids. *Capsicum chinense* the fruit saponins, phenol, carbohydrate, cure 78. Jack. Fruit Asthma asthma (Singh et reducing protein, sugar and (Solanaceae) capsaicin (Sen et al., 2016). al., 2015). Fruit isrecommended for flavonoids. Alkaloids. tannins. *Capsicum frutescens* regular eating in saponins, phenol, carbohydrate, Sore 79. Linn. Fruit throat respiratory protein, reducing sugar and (Solanaceae) disorder (Sailo et capsaicin (Sen et al., 2016). al., 2017). Cardamine hirsuta L. Leaf juice taken 80. Leaf Cough Not reported. (Brassicaceae) against cough

(Dahal, 2019). Triterpenoids, steroids. tannins tannins Crushed flower terpenes, sterols, and Cough, saponins (Khaliq, 2016). and bark are mouth and *Carevaarborea*Roxb. 81. Flower & Bark soaked overnight Anti-inflammatory (Sambath throat (Lecythidaceae) in water and used kumaret al., 2006). infection (Das et al., 2009). Antibacterial & antioxidant activity (Kumar et al., 2006). Alkaloids. Carbohydrates and glycosides, Fats, Saponins, Tannins, Fruit pulp useful in Flavonoids, Phenolics compounds, Cassia fistula L. Asthma & 82. Fruit pulp asthma and cough Proteins and amino acids (Kulkarni (Leguminosae) Cough (Dahal, 2019). et al., 2015). Antimicrobial & antioxidant activity (Kulkarni et al., 2015). Young stem is cut to produce juice Castanopsisechinocarp which is taken Pneumoni 83. *a*Miq. Young stem orally for Not reported. а (Fagaceae) Pneumonia (Lalrinkima, 2013). *Castanopsis tribuloides* Stem decoction is 84. (Sm.) A.DC. Stem Cough used to treat cough Not reported. (Fagaceae) (Kala, 2005) 85. Catharanthus roseus Leaves Asthma& The decoction of Anti oxidant activity

	(L.) G. Don. (Apocynaceae)		dry cough	the fresh leaves is used to treat asthma (Jamir et al., 2012). Boiled decoction of tender leaves is prescribed for fevers and dry cough (Pfoze, 2012).	(Bhutkar&Bhise, 2011). & Anti- microbial activity (Patil & Ghosh, 2010).
86.	Cautleya gracilis (Sm.) Dandy (Zingiberaceae)	Rhizome	Cough	The rhizome is eaten raw to relieve cough (Rai &Lalramnghinglov a, 2010)	Not reported.
87.	<i>Centella asiatica</i> (L.) Urb. (Apiaceae)	Whole plant	Asthma	Decoction of the plant is taken in Asthma (Sen et al., 2011).	Alkaloids, Carbohydrate, Flavanoids, Glycosides, Phenolic compound, Saponins, Steroids, Tannins, Terpenoids (Saranya et al., 2017). Antioxidant activity (Jayashree et al., 2013) Antiviral activity (Yoosook et al., 2000). Antiinflammatory activity (Guo et al., 2004).

88.	<i>Cereus repandus</i> (L.) Mill. (Cactaceae)	Leaf	Cough	Fleshy leaf of <i>Cereus</i> <i>peruvianus,</i> roasted over flame. The withered leaves are then squeezed and a greenish juice is obtained. This juice is prescribed to take with honey at the rate ofone teaspoonful twice daily for 3-4 days. This is often seen to be practiced among children which is avery effective preparation against cough. (Deka & Nath, 2014).	Phenolic, flavonoid, tannin, alkaloid, anthocyanin, antioxidant, antimicrobial activity (El-Beltagi et al., 2019)
	Cinnamomum glanduliferum (Wall.)	Bark & Young	Cough, bronchitis	Stem bark juice and juice of fresh	Antimicrobial activity (Taha &Eldahshan, 2017).
89.	Meisn.	leaves	&	young leaves (5	Anti-inflammatory (Azab et al.,
	(Lauraceae)		pneumoni	ml, 3 times daily)	2017).

			a	is given orally in cough, bronchitis and pneumonia. The is also given orally forthe same purposes (Sharma et al., 2001).	
90.	Cinnamomum glaucescens (Nees) HandMazz. (Lauraceae)	Bark	Bronchitis , Pnemonia and cough	Juice of the bark taken orally to treat bronchitis, pneumonia and cough (Lalramnghinglova , 2001).	Antimicrobial activity & antioxidant activity (Prakash et al., 2013).
91.	Cinnamomum tamala (BuchHam.) T. Nees&Eberm. (Lauraceae)	Leaves & Bark	Asthma, Cough& Cold	In Meghalaya, Barks decoction is taken 1 tea spoonful twice daily at least three days for relief cough. (Samati, 2007). In Manipur, the boiled extract of the leaves is given	Terpenoids, Tannins, Phenol/Polyphenols, Flavonoids, Alkaloids, Saponin (Mishra et al., 2010). Antibacterial activity (Mishra et al., 2010). Antioxidant activity (Chakraborty & Das, 2010).

				in cold, cough and diuretic (Nonibala, 2010). The dried bark powder mix with honey in a dose of 3-5 g to treat cough and asthma. (Swargiary et al., 2019)	
92.	<i>Cinnamomum verum</i> J. Presl (Lauraceae)	Bark & Leaves	asthma, coughing, and tuberculos is	The bark is dried, made into powder, then smoked along with tobacco to treat asthma, coughing, and tuberculosis (Chankija, 1999). Infusion of leaves taken against cough (Lalzarzovi & Lalramnghinglova, 2016).	Alkaloid, Flavonoid, Tannins, Saponin, Glycoside, Anthrocyanin, Coumarins, Terpenoids, Essential oil, Phenol (Ahmed et al., 2020). Antimicrobial activity (Ahmed et al., 2020)
93.	Cissampelos pareiraL. (Menispermaceae)	Root	Cough	The root paste is given orally as	Anti-oxidant activity (Hussain et al., 2010).

				tonic in cough (Singh, 1990).	Antimicrobial activity (Kumar et al., 2006). Anti-dengue activity (Soodet al., 2015).
94.	CissusquadrangularisL. (Vitaceae)	Whole plant	Asthma	Whole plant is used in the treatment of asthma (Zhasa et al., 2015).	Alkaloids, Flavonoids, Tannins, Terpenoids, Saponins, Cardiac glycosides, Proteins, Carbohydrates, Phenols (Prabhavathi et al., 2016).
95.	<i>Citrullus colocynthis</i> (L.) Schrad. (Cucurbitaceae).	Seed	Cough	Sun-dried seeds were chewed regularly (Thokchom et al., 2015).	Amino acids, saponins, alkaloids, flavonoids, flavones, tannins, sterols, triterpenes (Satti&Edriss, 2014). Antioxidant activity (Kumar et al., 2008).
96.	<i>Citrus maxima</i> (Burm.) Merr. (Rutaceae)	Fruit and Root	Cough, throat infection, Bronchial problem	Fruits are used (Zhasa et al., 2015). Decoction of root mixed with salt is given in cough and bronchial problem (four teaspoonfuls, once daily on empty stomach in the morning for	Reducing sugar, flavonoid, antraquinone, tannins, terpenoid, saponin and alkaloid (Othman et al., 2008). Antioxidant activity (Othman et al., 2008). Antibacterial Activity (Barrion et al., 2014).

				three weeks). Root juice is given to get relief from cough and bronchitis (three teaspoonfuls, twice or thrice daily for a	
				week). (Nath et al., 2008).	
97.	Citrus hystrixDC. (Rutaceae)	Root	Whooping cough	Root of <i>C. hystix</i> and outer cover of <i>C. reticulata</i> fruit are grinded together in equal amount and the juice obtained is taken 2 teaspoon twice daily for whooping cough for 7 days (Salam, 2013).	Antioxidant &Antimicrobial Activities (Uddin et al., 2014).
98.	<i>Citrus indica</i> Yu. Tanaka(Rutaceae)	Root	Asthma	Root Pounded with roots of Alstonia scholaris (L.) R. Br., Justicia	Not reported.

				adhatoda L.,	
				Solanum	
				Surattense	
				Burm.f., <i>Capsicum</i>	
				annuum L., Entada	
				pursaetha DC. and	
				Heliotropium	
				<i>indicum</i> L., black	
				and long pepper in	
				equal amount,	
				made into pills of	
				about 5 gm each	
				and given in	
				asthma (two pills,	
				thrice daily for	
				three weeks).	
				(Nath et al., 2008).	
				Fruit juice with	
				rock slat is taken	Flavonoids, alkaloids, saponins &
	Clausena heptaphylla			internally for the	steroids
99.	(Roxb.) Wight & Arn.	Fruit	Cough &	treatment of cough	(Fakruddin et al., 2012).
	(Rutaceae)		asthma	andasthma	Antibacterial & antioxidant activity
				(Choudhury,	(Fakruddin et al., 2012).
				1999).	
100.	Clerodendrum	Leaf	Cough	Leaf decoction is	Polyphenols, steroids, flavonoids,
100.	glandulosum Lindl.	Leal	Cough	used to treat cough	saponins & antioxidant activity

(Kala, 2005). (Lamiaceae) (Jadeja et al., 2009). Juice from leaves with ginger juice (1:2) is taken on cough or asthmatic condition (Sen et al., 2011). The plant stem is dried smoked and Triterpenoids, steroids, steroid to cure asthma. The glycosides, flavonoids (Somwong Clerodendrum indicum Asthma. root extract is also et al., 2015). 101. (L.) Kuntze Leaves & Stem Bronchitis believed to cure (Lamiaceae) , Cough asthma Antimicrobial activity (Pal et al., and (Devi. bronchitis 2012). 2013). Root juice is given in asthma (two teaspoonfuls, twice dailv regularly for a month). (Nath et al., 2008) Leaves are taken Clerodendrum raw or are mixed Phenolic content & antioxidant 102. infortunatum L. Leaves asthma with vegetable for activity (Lamiaceae) curing (Gouthamchandra et al., 2010) asthma (82%)

				(Sajem & Gosai, 2006). Leaf past is also used to treat cough (Deka & Nath, 2014).	
103.	Clitoria ternatea L. (Leguminosae)	Root	Whooping cough	Root juice is given in whooping cough (two teaspoonfuls, thrice daily for a fortnight). (Nath et al., 2008).	Tannins,phlobatannin,carbohydrates,saponins,triterpenoids,phenols,flavonolglycosides,proteins,alkaloids,alkaloids,antharaquinone,anthocyanins,cardiacglycosides,Stigmast-4-ene-3,6-dione,volatileoilsoils and steroids (Al-Snafi, 2016).Antibacterial activity (Anand et al.,2011).Antihistaminicandantiasthmatic(Taur & Patil, 2011)
104.	<i>Coccinia grandis</i> (L.) Voigt (Cucurbitaceae)	Leaves	Cough &respirato r tract infection	Decoction of the leaves, fruits and stem (5-10 ml, 3 times daily) is given orally in cough treatment (Sharma et al., 2001). The fruit is eaten also in cough	Antimicrobialand antioxidant activity (Sakharkar & Chauhan, 2017). Carbohydrates, Proteins, Alkaloids, Cardiac Glycosides, Flavonoids, Tannins, Phlobatannins, Resins, Saponins, Terpenoids, Steroids (Sakharkar & Chauhan, 2017).

				and respiratory tract infection (Sharma et al., 2001).	
105.	Codonopsis clematidea (Schrenk) C.B.Clarke (Campanulaceae).	Whole plant	Cough & Cold	Decoction of whole plant used against cough, cold (Dahal, 2019)	Not reported.
106.	Codonopsis foetens Hook. f. et Thomson (Campanulaceae).	Whole plant	Cough & Cold	Decoction of whole plant used against cough, cold (Dahal, 2019)	Not reported.
107.	Colocasia affinis Schott (Araceae)	Leaf	Fever, respiratory disorder	Leaf is eaten raw to cure respiratory disorder (Kala, 2005)	Not reported.
108.	Colocasia esculenta (L.) Schott (Araceae)	Root	Pharyngiti s	Roots are effective in treatment of Pharyngitis (Sailo et al., 2017)	Alkaloids, Glycoside, Flavonoids, Terpenes, Saponins, Phenol (Krishnapriya & Suganthi, 2017).
109.	<i>Commelina</i> <i>benghalensis</i> L. (Commelinaceae).	Whole plant	Cough	Plant extract is effective in cough (Devi 2013). Extract with honey taken to cure cough (Dahal,	Oils and fats, Alkaloids, Lactones and coumarins, Triterpenoids and steroids, Resins, Reducing agents, Phenols and tannins, Amino acids, Quinones, Astringents, saponins (Cuellar et al., 2010).

				2019).	Antimicrobial activity (Cuellar et al., 2010). Antioxidantactivity (Sahu et al., 2013). Anti-viral activity (Batool et al., 2018).
110.	<i>Cordia dichotoma</i> G. Forst. (Boraginaceae)	Fruit	Cough	Fruit powder taken with water to cure dry cough (Dahal, 2019).	Pyrrolizidine alkaloids, coumarins, flavonoids, saponins, terpenes and sterols (Ganjare & Raut, 2019). Antibacterial (Parekh & Chanda, 2007). Antioxidant activity (Sharma et al., 2007).
111.	Cheilocostus speciosus (J. Koenig) C.D. Specht (Costaceae)	Rhizome	Bronchitis	Rhizome cut and ground into pieces and the powder is eaten against bronchitis (Kayang et al, 2005).	Alkaloids, glycosides, steroids, phenolic, flavonoids, polyphenols, tannins, and β -carotene, Diosgenin, β -sitosterol, furostanol saponins-costusosides, β -D-glucoside, prosapogenins, dioscin, gracillin, dihydrophytylplastoquinone, and α -tocopherolquinone (El-Far, 2018).
112.	Crateva unilocularis BuchHam.	Stem bark	Cough & asthma	Decoction or infusion of stem	Antibacterial activity (Bhattarai et al., 2009)

	(Capparaceae).			bark taken against cough and asthma (Dahal, 2019).	
113.	Crawfurdia speciosa C. B. Clarke (Gentianaceae)	Flower	Lung inflammat ion	Flowers used against lung disorders including lung inflammationand dry cough (Tsering, 2017).	Not reported.
114.	Crinum asiaticum L. (Amaryllidaceae)	Bulb	Fever, headache and cough, pneumoni a	Bulb (Kalita, N., Kalita, M.C., 2014).	-
115.	Curcuma angustifolia Roxb. (Zingiberaceae)	Flower	Cough	Used for treatingsevere cough (Myrchiang et al., 2018). The boiled extract of flower and rhizome is used in cough (Nonibala, 2010).	•
116.	Curcuma caesia Roxb.	Rhizome	Cough,	Rhizome is used	Alkaloids, flavonoids, saponins,

Recent Advances in Folk Medicine Re	esearch in North East India
-------------------------------------	-----------------------------

	(Zingiberaceae)		asthma	(Kala, 2005)	terpenoids, steroids, proteins; Antimicrobial, Antioxidant, Anti- asthmatic and anti-inflammatory activity (Tomar & Moin, 2021).
117.	<i>Curcuma decipiens</i> Dalzell (Zingiberaceae)	Rhizome	Cold &Cough	Rhizome decoction is used orally to treat cold & cough disease (Myrchiang et al., 2018)	Flavanoid, Carbohydrate, Protein, Alkaloid, Steroid, Tanin, Saponin (Mehra & Jain, 2019).
118.	<i>Curcuma longa</i> L. (Zingiberaceae)	Rhizome	Bronchitis & Cough,	Rhizome and Leaves juice with honey is used in cough and fever. (Sailo et al., 2017). Rhizome powder mixed with cow's milk is given in bronchitis (one teaspoonful of powder mixed with 200 ml om milk in a dose twice daily for three weeks) (Nath et al., 2008).	Anti-inflammatory activity (Bagad et al., 2013) Antimicrobial activity (Jalaluddin et al., 2019).

119.	<i>Curcuma zedoaria</i> (Christm.) Roscoe (Zingiberaceae)	Rhizome	Cold, cough	Rhizome is used (Kala, 2005)	Anti-inflammatory activity (Mau et al., 2003). Antimicrobial activity (Wilson et al., 2005)
120.	<i>Cuscuta reflexa</i> Roxb. (Convolvulaceae)	Stem	Cough	Juice of the stem is taken in jaundice and cough (Sen et al., 2011).	Lauric acid, ester compound, alkanes, phenolic compound, myristic acid, plasticizer compound, palmitolic acid, palmitic acid, diterpene, stearic acid, mono unsaturated fatty, chlorine compound, steroid, alkaloid, triterpenes and amino compound (Rai et al., 2016). Antioxidant activity (Tanruean et al., 2017).
121.	Cyanthillium cinereum (L.) H. Rob. (Asteraceae)	Whole plant	Cough	The boiled extract of the plant is used in cough. (Nonibala, 2010)	Steroid, flavonoid, glycoside, saponins and tannin (Roy et al., 2019). Antioxidant activity (Guha et al., 2011)
122.	Cymbopogon citratus (DC.) Stapf (Poaceae)	Whole plant	Cough	Hot decoction (c 10 ml) is taken orally twice a day for the treatment of cough and cold (Choudhury,	Ketones, alcohols, phenols, terpenes, flavonoids, saponins, steroids, tannins, alkaloids, geranial, terpernoids, polyphenols, esters, aldehyde and fatty acids (Oladeji et al., 2019).

				1999).	Anti-bacterial activity (Ambade & Bhadbhade, 2015). Antioxidant activity (Lu et al., 2014).
123.	<i>Cymbopogon flexuosus</i> (Nees ex Steud.) W. Watson Poaceae	Leaves	Respirator y infections as sore throats, pneumoni a	Leaves (Kalita, N., Kalita, M.C., 2014)	Not reported.
124.	<i>Cynodon dactylon</i> (L.) Pers. (Poaceae)	Whole plant	Cough	Whole plant crushed with water and the filtrate is taken 3-5 teaspoon twice daily at least 3 days for relief of cough. Plant juice with honey is given in morning to reduce cough (Sen et al., 2011).	Proteins, carbohydrates, minerals, flavonoids, carotenoids, alkaloids, glycosides and triterpenoides (Kumar et al., 2013). Antioxidant activity (Bhalerao et al., 2011).
125.	Cyperus esculentus L. (Cyperaceae)	Rhizome	Cough	Rhizome is used in case of fever, cold and coughs	Alkaloides, Cyanogenic glycosides, Resins, Tannins, Sterols, Saponins (Chukwuma et al., 2010).

problems (Devi. 2013). The extract of rhizome is Cyperus haspan L. 126. Rhizome Cough given with honey Not reported. (Cyperaceae) in cough (Singh, 1990). rhizome Fresh Protein. carbohydrate, phenole. extract is given in *Cyperus rotundus* L. 127. Rhizome Cough flavonoid, alkaloid, terpenoid, and (Cyperaceae) cough (Devi. Saponin (Prakash et al., 2019). 2013) Fruits are used to Cyphomandra betacea Cold. sore treat cold and sore Antioxidant activity (Ordóñez et al., 128. (Cav.) Sendtn. Fruit throat throat (Zhasa et al., 2010) (Solanaceae) 2015). Decoction of culm Carbohydrates, with bark of proteins, amino Terminalia arjuna acids. terpenoids, alkaloids. (Roxb.) Wt.et Arn. saponins, tannins, flavonoids. Dactyloctenium in equal quantities steroids, fixed oils and phenols (129. *aegyptium* (L.) Willd. Culm with bark Asthma Nagarjuna et al., 2015). is given in asthma (Poaceae) of children (20 ml, Antimicrobial activity (Kumar et thrice daily for two al., 2015), antioxidant activity (Alto three months). Snafi, 2017). (Nath et al., 2008). 130. Datura stramonium L. Fruit, Dried leaf, Asthma Fruit juice is used Tropane alkaloids, amino acids,

	(Solanaceae)	Seed		in treatment of asthma (Sailo et	tannin, phytic acids, carbohydrates (Singh & Singh, 2013).
				al., 2017). Dried	Antibacterial activity (Reddy,
				leaf powder is	2010).
				smoked in asthma.	Antioxidant activity (Kumar et al.,
				Seed paste is given	2008).
				in asthma with	
				goat's milk (5 gm	
				paste in 250 ml of	
				milk, once daily	
				fora week or	
				more). (Nath et al.,	
				2008).	Alleslaide each sheeder to a hear al
131.	Daucus carota L. (Apiaceae)	Seed	Cough	Seeds used in the treatment of cough (Dahal, 2019).	Alkaloids, carbohydrate, phenol, flavonoids, coumarin, chlorogenic acid and terpenoid (Sivanantham and Thangaraj, 2015)
132.	<i>Dendrobium nobile</i> Lindl. (Orchidaceae).	Flower	Bronchitis & Cough	Infusion of flowers with honey taken against bronchitis and cough (Dahal, 2019).	Reducing sugar, Flavonoid, Tannin, Glycosides, Alkaloids, Steroids, Phytosterols, Antibacterial activity, Antioxidant activity, Antiviral activity (Meitei et al., 2019).
133.	Desmodium heterocarpon (L.) DC. (Fabaceae)	Leaves	Cough & cold	Leaves and bark extracts are used to treat cough & cold (Zhasa et al.,	Antimicrobial activity (Arora et al., 2014). Antioxidant Activity (Hasan et al., 2011).

				2015).	
134.	<i>Dillenia indica</i> L. (Dilleniaceae)	Dried Fruit	Cough	The dried fruits are chewed during severe cough (Khongsai et al., 2011). Decoction of tender shoot is orally taken twice daily among the Meitei community in Manipur in the treatment of asthma (Ningombam et al., 2014).	Glycosides, Steroids, Flavonoids, Saponins, Reducing Sugar (Bose et al., 2010). Anti oxidant activity (Das et al., 2012).
135.	<i>Dioscorea pentaphylla</i> L. (Dioscoreaceae)	Root	Asthma and cough.	Root is used in the treatment of asthma and cough (Rama Shankar &Devalla, 2012).	Antibacterial activity (Prakash &Hosetti, 2012). Terpenoids, Tannin, Saponin, Glycosides, Reducing Sugar, Flavonoid, Phenolic componds (Kumar et al., 2013).
136.	<i>Docynia indica</i> (Wall.) Decne. (Rosaceae)	Fruit/ Young leaves	Cough	Fruit is taken as raw during cold &cough (Neogi et al., 1989).	Total phenolics and flavonoids, antioxidant activity, Antibacterial activity (Shende et al., 2016).
137.	Drymaria cordata (L.)	Whole plant	Cough	Decoction of Plant	Alkaloids, flavonoids, phenols,

	Willd. ex Schult. (Caryophyllaceae)			is used in the treatment of cough (Rama Shankar &Devalla, 2012).	tannins and saponins (Bhattacharyya et al., 2019).
138.	<i>Eclipta prostrata</i> (L.) L. (Asteraceae)	Leaf	Cough	Leaf extract along with little honey is given against cough (Devi, 2013).	Alkenynes, alkaloids, cardiacglycosides, flavonoids, coumestans, lipids, polyacetylene, steroids, saponins, steroidal alkaloids, phytosterol, triterpenes (Chung et al.,2017).
139.	<i>Elaeocarpus</i> <i>floribundus</i> Blume (Elaeocarpaceae)	Fruit	Cough	Ripe fruits are eaten raw and are prescribed as remedy for dry cough (Pfoze, 2012).	Cardiac glycosides, Anthraquinone- glycosides, Steroids, Terpenoids, Quinones, Phenol and antibacterial activity (Sircar & Mandal, 2017).
140.	Elaeocarpus serratus L. (Elaeocarpaceae)	Fruit	Cough	Fruit is useful in cough (Dahal, 2019).	Alkaloid, Glycoside, Tannin, Saponin, Flavonoid, Carbohydrate and antibacterial activity (Biswas et al., 2012).
141.	Elephantopus scaber L. (Asteraceae)	Root	Cough & Cold	Root useful in cough and cold (Dahal, 2019).	Alkaloids, Flavonoids, Tannins, quinones, and carbohydrates oils and antioxidant activity (Gangarao et al., 2012). Antibacterial activity (Jenny et al., 2012).

142.	Elsholtzia blanda (Benth) Benth. (Lamiaceae)	Leaf	Cough	Leaf juice is taken orally in cough. (Khomdram et al., 2011)	Not reported
143.	Ensete superbum (Roxb.) Cheesman (Musaceae)	Exudate	Cough	The exudate (2-5 ml.) is given orally (2-3 times daily) in the treatment of cough.	Sterol, Flavonoid, Alkaloid, Carbohydrate, Glycosides, Tannin, Protein, Antioxidant activity (Sethiya et al., 2016).
144.	<i>Ephedra gerardiana</i> Wall. ex Stapf (Ephedraceae)	Whole Plant	Asthma	Decoction of the plants is used against asthma (Dahal, 2019).	Antioxidant and antibacterial activity (Khan et al., 2017).
145.	<i>Equisetum</i> <i>ramosissimum</i> Desf. (Equisetaceae)	Whole Plant	Cough	Decoction of plant is used in cough (Zhasa et al., 2015).	Flavonoids, alkaloids, phenolic proteins, triterpenoids, saponins, phytosterols (Yusuf et al., 2020).
146.	<i>Erythrina stricta</i> Roxb. (Papilionaceae)	Stem bark	Asthma	Stem bark paste is used (Jamir et al., 2010).	Antimicrobial and antioxidant activity (Akter et al., 2016).
147.	Eucalyptus tereticornis Sm. (Myrtaceae)	Leaf	Asthma & Cough	The leaves are boiled and steam is used in treatment of cough and asthma (Nonibala, 2010).	Saponins, tannins, steroids, cardiacglycosides flavonoids and antimicrobial activity (Jain et al., 2010).

148.	<i>Euphorbia hirta</i> L. (Euphorbiaceae).	Whole plants	Bronchitis & Asthma	The plant extract is mixed with water and is taken for bronchial & asthma. (Khongsai et al., 2011). Leaf juice is taken to reduce cough (Sen et al., 2011).	Reducing sugars, terpenoids, alkaloids, steroids, tannins, flavonoids, phenolic compounds and antioxidant activity (Basma et al., 2010).
149.	<i>Euphorbia neriifolia</i> L. (Euphorbiaceae)	Latex	Cough	Latex mixed with latex of Jatropha curcas L., stem of <i>Tinospora</i> cordifolia Miers. Andhoney in equal parts is given in asthma (one or two teaspoonfuls, twice daily for a month). (Nath et al., 2008). Oven heated leaves are placed on the chest to control cough (Das & Choudhury, 2012).	Flavonoids, phlobatannins, saponin, tannins, cardenoloids, phenol, terpenoids, antimicrobial activity (M. Swamy et al., 2011).
150.	Fagopyrum esculentum	Leaf	Cough	The extract of the	Antioxidant activity (Watanabe,

	Moench. (Polygonaceae)			leaf juice is used to treat cough (Jamir et al., 2012).	1998).
151.	FicusbenjaminaL. (Moraceae)	Tender Shoots	Cough	The tender Shoots are taken as raw (Jamir et al., 2012)	Tannins, carbohydrates, phytosterols, flavonoids, phenolics, oils and fats, saponins, Antioxidant activity (Jain et al., 2013). Antimicrobial activity (Imran et al., 2014).
152.	<i>Ficus carica</i> subsp. <i>Rupestris</i> (Hausskn.) Browicz (Moraceae)	Fruit	Bronchitis	Fresh green fruit (3 to 4) are taken raw with a little salt at bed time is good for bronchitis (Singh et al., 2015).	Not reported.
153.	<i>Ficus hispida</i> L.f. (Moraceae)	Fruit and Bark	Asthma & Cough	2-3 fresh hypanthodia crushed and taken with common salt twice daily againstmild cough (Choudhury, 1999). Decoction of bark with pinch of powdered <i>Piper</i>	Alkaloids, flavonoids, flavonols, resins, saponins, proanthocyanidins, glycosides, steroids, tannins, Antioxidant activity (Tasnin et al., 2018).

				<i>nigrum</i> and honey is orally taken for 7 days to treat asthma among Meitei community in Manipur (Ningombam et al., 2014).	
154.	<i>Ficus religiosa</i> L. (Moraceae)	Fruit, Bark and Root	Asthma, Cough &respirato ry troubles	Decoction of the bark is given orally in cough (Sharma et al., 2001). The fruit juice (5 ml,) 3-5 times daily is given orally in asthma and other respiratory troubles. Decoction of the root (5-10 ml, 3-4 times daily) mixed with a little salt is given orally in asthma (Sharma et al., 2001).	flavonoids, protein, flavonols, phytosterols (Chandrasekar et al., 2010). Antibacterial activity (Farrukh & Iqbal, 2003). Antioxidant activity (Bushra
155.	Flacourtia jangomas	Dried leaves	Bronchitis	Dried leaves are	Not reported.

	(Lour.) Raeusch. (Flacourtiaceae)			effective in bronchitis. (Swargiary et al., 2019).	
156.	<i>Flueggea virosa</i> (Roxb. ex Willd.) Royle (Phyllanthaceae).	Leaves	Cough	The extract of leaves is given in cough (Singh, 1990)	Alkaloids, triterpenoids, tannins, flavonoids and saponins, resins, steroids, cardiac glycosides, anthraquinones, antioxidant activity, antimicrobial activity (Renu et al., 2018). Anti-inflammatory activity (Yerima et al. 2009).
157.	Fragaria nubicola (Lindl. ex Hook.f.) Lacaita (Rosaceae)	Fruit	Cold, cough & fever	Fresh fruit of <i>F.</i> <i>nubicola</i> , dried roots of <i>G. elatum</i> and leaves of <i>P.</i> <i>peduncularis</i> are crushed together to prepare a paste. Paste is taken orally to treat cold, cough, and fever (Chakraborty et al., 2017).	Flavonoid, Terpenoid, Glycoside, Quinone, Polyphenol, Saponin (Giri & Rajbhandari, 2020). Antioxidant activity (Anees et al., 2018).
158.	Garuga pinnata Roxb. (Burseraceae)	Leaf	Asthma	Leaf juice with honey is given for	Flavonoid, Reducing sugar, Glycosides, Tannins (Upadhye &

				asthma (Kayang et al., 2005). Leaf juice mixed with sugar is taken to cure asthma (Lalfakzuala et al., 2007).	
159.	<i>Gaultheria</i> <i>fragrantissima</i> Wall. (Ericaceae).	Leaves	Cough	Crushed leaves with water taken to cure cough (Dahal, 2019).	alkaloids, Saponin, Protein, Quinone, Sterols, flavonoids and terpenoids, steroids, Cardiac glycoside, Reducing sugar, tannin Antioxidant & antibacterial activity (Pandey et al., 2017).
160.	<i>Gaultheria trichophylla</i> Royle. (Ericaceae)	Leaves & Fruits	Cough & Cold	Leaves and fruits used to heal wounds and cure cough and cold (Dahal, 2019).	Alkaloids, flavonoids, tannins, saponins terpenoids, and anthraquinones (Alam& Saqib, 2015).
161.	<i>Gelsemium elegans</i> (Gardner & Chapm.) Benth. (Gelsemiaceae)	Leaf	Asthma	The leaf is processed like tobacco leaf for smoking, which is then smoke like cigarette to cure asthma (Lalrinkima,	

				2013).	
162.	<i>Gentiana depressa</i> D. Don (Gentianaceae).	Dried roots	Cold & Cough	Dried roots of Gentiana depressa, Gentiana ornata, Gentiana ornata, Gentiana tubiflora are crushed and then mixed with local millet wine and water. Small round pills are prepared and sun dried. pills are used to treat cough, cold, and headache (Chakraborty et al., 2017).	Reducing sugar, alkaloids, saponin, catholic, tannin, flavonoids, steroids and antibacterial activity (Lamichhane et al., 2014).
163.	Gentiana kurroo Royle (Gentianaceae)	Whole Plant	Cough	Decoction or infusion taken orally to treat cough (Tsering, 2017).	Anti-inflammatory (Khan et al., 2014). Tannins, flavonoids, phenolics, cardiac glycosides, saponin,terpenes, alkaloids and carbohydrate (Wani et al., 2011).

164.	<i>Gentiana urnula</i> Harry Sm. (Gentianaceae)	Cough & Cold	Whole plant; medicine	Water decoctiontaken orally to treat cough, could and fever (Tsering, 2017).	Tannin (Wangchuk, 2014)
165.	<i>Geranium wallichianum</i> D. Don ex Sweet (Geraniaceae)	Root	Cold & Cough	Decoction of root is taken in cold and cough (Chhetri, 2005).	Antimicrobial activity (Ismail et al., 2012).
166.	<i>Gerardiana diversifolia</i> (Link) Friis (Geraniaceae)			Decoction of root taken against asthma and sore throat (Dahal, 2019).	Phenol, flavonoids, tannin, terpenoid, amino acid, tocopherol, carotenoids content and antioxidant and antibacterial activity (Thakur et al., 2020).
167.	<i>Globba multiflora</i> Wall. ex Baker (Zingiberaceae).	Rhizome	Hooping Cough	Hot decoction of rhizome is taken internally, half cup(c 20 ml) twice dailyfor the treatment of hooping cough (Choudhury, 1999).	Not reported.

168.	<i>Gmelina arborea</i> Roxb. (Lamiaceae)	Root bark & Leaves	Cough	Root bark decoction is one of the important constituents of Dasmula Quath. (Rama Shankar &Rawat, 2013). In Meghalaya, Khasi people used to take leaves juice (10 ml, thrice daily) in the treatment of cough.	Lignans, iridoid, glycoside, flavonoids, flavons, flavone glycoside and sterols (Arora &Tamrakar, 2017). Antimicrobial activity (El- Mahmood et al., 2010). Antioxidant activity (Ghareeb et al., 2014).
169.	<i>Grewia nervosa</i> (Lour.) Panigrahi	Root	Cough	Decoction of root used in cough (Choudhury, 1999).	Saponins, tannins, flavonoids, terpenoids, phlobatannins, carbohydrates, coumarins, proteins, emodins, anthraquinones, anthocyanins, alkaloids and antioxidant activity (Ahammed et al., 2018).
170.	<i>Gymnopetalum</i> <i>chinense</i> (Lour.) Merr. (Cucurbitaceae)	Root	Pneumoni a	Root paste is used in the treatment of pneumoni (Sailo et al., 2017).	Phenolic compounds, tannin, saponin, flavonoids, glycosides (Kumar et al., 2017).
171.	Hedychium coccineum BuchHam. ex Sm.	Young shoots	Asthma	Young shoots are eaten raw to treat	Not reported.

	(Zingiberaceae)			Asthma (Tag & Das, 2004)	
172.	Hedychium coronarium Koenig. (Zingiberaceae)	Rhizome	Cough	Rhizome useful in cough (dahal, 2019).	Carbohydrates, flavonoids, saponins, steroid, alkaloids (Dash & Sheikh, 2015).
173.	Hedychium gracile Roxb. (Zingiberaceae)	Roots	Chest pain	Roots pounded into paste and juice extract taken for relief of chest pain locally known as Dawaiigutrupai. (Samati, 2007).	Not reported.
174.	<i>Hedychium spicatum</i> Sm. (Zingiberaceae)	Rhizome	Chest Pain, Cold, Cough, bronchitis & tuberculos is	Raw rhizome is crushed and small roundpills are prepared and sun dried. Pills are taken orally fortreatment of chest pain, cough and cold (Chakraborty et al., 2017). Decoction of rhizome is given twice a day to treat	Essesntial oil & Antioxidant activity (Rawat et al., 2011).

				bronchitis and tuberculosis (Chhetri,2005).	
175.	<i>Hedychium villosum</i> Wall. (Zingiberaceae)	Rhizome	Asthma	Rhizomes are washed thoroughly in running water and eaten raw or crushed with water and used to cure asthma (Neogi et al., 1989).	Not reported.
176.	<i>Hedyotis scandens</i> Roxb. (Zingiberaceae)	Leaves	Cough & Cold	Leaves juice is used to treat cold & cough (Jeeva et al., 2006). Decoction of the dried leaves is taken for cough and cold (kayang, 2005).	Antimicrobial activity (Subba& Basnet, 2014).
177.	Hedyotis uncinella Hook. & Arn. (Zingiberaceae)	Root	Cough	Roots pounded and juice extract taken 2-3 teaspoon twice daily for relief	Not reported.

				from cough, locally known as Dawaikyoh (Samati, 2007).	
178.	Helianthus annuus Linn. (Asteraceae)	Root	Cough & Cold	Root decoction as a gargle relieves toothache; dried flower chewed cures ulcers, fever, cough and cold (Pradhan and Badola, 2008).	Saponins, tannins, alkaloids flavonoids, anthraquinones, reducing sugars and terpenoids (Verma et al., 2017).
179.	Hemiphragma heterophyllum Wall. (Plantaginaceae)	Fruit	Cold and Cough	Fruit taken to cure throat pain, cold and cough (Dahal, 2019).	Not reported.
180.	Heracleum wallichii DC. (Apiaceae)	Fruit	Cold and Cough	Fruits taken against cold & cough (Dahal, 2019).	Antibacterial activity (Sharma, 2013).
181.	Hibiscus cannabinus L. (Malvaceae)	Leaves	Cough.	Extract of leaves are used to treat cough (Zhasa et al., 2015).	Flavonoids, tannins, anthroquinone & antioxidant activity (James et al., 2013).
182.	Hibiscus macrophyllus Roxb. ex Hornem.	Leaves	Cough	Leaf extract is administered to	Not reported.

	(Malvaceae)			reduce cough (Sen et al., 2011).	
183.	Hibiscus rosa-sinensis L. (Malvaceae)	Bark	Asthma	Bark extract mixed with paste of roasted leaves of <i>Sansevieria</i> <i>roxburghiana</i> Schult. f., seed of <i>Luffa acutangular</i> (L.) Roxb. and bark of <i>Litsea</i> <i>salicifolia</i> (Roxb.ex. Nees) Hook. f. in equal parts is given in asthma (about 20 gm, twice daily for a month). (Nath et al., 2008).	Alkaloids, glycosides, flavonoids, tannin, phenols protein, steroid, carbohydrate and antibacterial activity (Tiwari et al., 2015).
184.	<i>Hippophae salicifolia</i> D. Don (Elaeagnaceae)	Fruit	Asthma, Bronchitis, cold, cough	Fruits juice used to treat asthma, bronchitis, hypertension, cold, cough (Dahal, 2019).	Steroid, Phenolic compound, Saponins, Flavonoids, Coumarin glycosides, Proteins, Carbohydrates (Iiango et al., 2013). Antioxidant and antibacterial activity (Saikia and Handique, 2013).
185.	Hippophae tibetana	Fruit	Asthma,	Fruit juice used to	Not reported.

	Schltdl. (Elaeagnaceae)		Cold & Cough	treat asthma, cough and cold (Dahal, 2019).	
186.	<i>Hordeum vulgare</i> Linn. (Poaceae)	Cereal	Bronchial cough	Gruel is made by the powdered grains and given in case of painful indigestion. Barley water with honey is prescribed in bronchial coughs (Pradhan and Badola, 2008).	Carbohydrates, Starch, Sucrose, Other sugars, Water-soluble polysaccharides, Alkali-soluble polysaccharides, Cellulose, β - glucan, Lipids, Nonpolar lipid (NL), Glycolipids (GL), Albumins and globulins, Prolamins (hordeins), Glutelins (hordenins), Antioxidant & antibacterial activity (Rashid et al., 2017).
187.	Houttuynia cordata Thunb. (Saururaceae)	Rhizome	Cough	Rhizome is eaten as raw for cough. (Khongsai et al., 2011).	Anti-viralactivity (Ren et al., 2011), anti-inflammatory activity (Shin et al., 2010), Anti-oxidant anti- bacterial, activity (Kumar et al., 2014).
188.	Hyptis suaveolens (L.) Poit. (Lamiaceae)	Leaf	Cold, cough	Leaf is used (Kala, 2005)	Essential oils, alkaloids, flavonoids, phenols, saponins, terpenes, sterols, Antimicrobial activity, Anti-oxidant activity (Sharma et al., 2013).
189.	Imperata cylindrica (L.) Raeusch. (Poaceae)	Rhizome	Cough	Rhizome juice taken against cough (Dahal, 2019).	Tannins, saponins, flavonoids, alkaloids, quinines, glycosides, terpenoids, phenols, coumarin, steroids and antioxidant activity

					(Ravi et al., 2018).
190.	Indigofera dosua D. Don (Leguminosae)	Leaves	Cough	The extracts of leaves are given to cough (Singh, 1990).	Not reported.
191.	<i>Iris domestica</i> (L.) Goldblatt et Mabb. (Iridaceae).	Rhizome	Cough & Sore throat	Decoction of rhizome used against cough, fever, sore throat (Dahal, 2019).	Not reported.
192.	Jatropha curcas L. (Euphorbiaceae)	Leaves	Cough	Decoction of leaves used against cough (Dahal, 2019).	Total phenols, tannins, free amino acids and phytic acid (Tomar et al., 2015).
193.	Juniperus communis L. (Cupressaceae)	Fruit	Sore throat and throat pain	Dried fruit is chewed as a nut in case of sore throat and throat pain (Chhetri, 2005).	Alkaloid, Glycosides, Tannin, Sugar, Terpenoid, Flavonoid, Coumarin (Meena
194.	Justicia adhatodaL. (Acanthaceae)	Leaf	Cold, Cough and asthma	Leaf juice is used in treatment of cold and cough (Sailo et al., 2017). Mature leaves are sun dried and smoked in a pipe	Alkaloids, Glycosides, Steroidal/triterpenes, Phenolic & tannins, Resins (Gupta et al., 2014).

				to relieve asthma (Chankiga, 1999). Leaf juice is given in bronchitis (20 ml, twice daily for a month). (Nath et al., 2008).	
195.	Justicia procumbens L. (Acanthaceae)	Leaf	Asthma & Cough	The leaf infusion is given in asthma, cough (Singh, 1990).	Antiviral activity (Asano et al., 1996).
196.	<i>Kaempferia galanga</i> L. (Zingiberaceae)	Rhizome	Asthma	Rhizome juice is used to treat cough (Rama Shankar & Rawat, 2013). Rhizome is also used in asthma (Ramashankar et al., 2015).	Antimicrobial, antioxidant, anti- inflammatory, anti-tuberculosis activity (Kumar, 2020)
197.	Lantana camara L. (Verbenaceae)	Tender leaves	Cough	Decoction of the flowers is used in the treatment of cough (Jamir et al., 2012). Tender leaves decoction is taken against	Antibacterial and Antiinfflamatory activity (Patel et al., 2010).

				fevers and dry cough (Pfoze, 2012).	
198.	<i>Leea indica</i> (Burm. f) Merr. (Vitaceae)	Whole plant	Cough	Whole Plant is used (Rama Shankar & Devalla, 2012)	Antioxidant and Antimicrobial activity (Rahman et al., 2013).
199.	<i>Leonurus japonicus</i> Houtt. (Lamiaceae)	Leaves	Cough	Decoction of leaves is used as against cough (Khomdram et al., 2011).	Alkaloids, diterpenes, flavones, phenylethanoid glycosides, essential oilsand Antibacterial activity, Anti-inflammatory activity (Shang et al., 2014).
200.	<i>Leucas aspera</i> (Willd.) Link (Lamiaceae)	Whole plant	Sinusitis	Whole plant juice is used to treat sinusitis. (Sailo et al., 2017)	Tannins, flavonoids, glycosides, cardiac glycosides, saponins, alkaloids, reducing sugar, phenols, terpenoids, antioxidant and antimicrobial activity (Chetia&Saikia, 2020).
201.	<i>Licuala peltate</i> Roxb. ex BuchHam. (Arecaceae)	Seeds	Cough, asthma and fever	Seeds are used (Zhasa et al., 2015).	Not reported.
202.	Lindenbergia griffithii Hook. f. (Orobanchaceae)	Wholeplant	Bronchitis	The juice of the plant is used in bronchitis. (Neogi et al., 1989).	Not reported.

203.	<i>Litsaea cubeba</i> (Lour.) Pers. (Lauraceae)	Fruit	Cold and cough	Mixture of about 5 gm of the ripe fruit with equal proportions of garlic and ginger is eaten twice daily to cure cough. (Rout et al., 2012)	Alkaloids, monoterpenes, sesquiterpenes, diterpenes, flavonoids, amides, lignans, steroids, fatty acids and anti- inflammatory, antimicrobial and antioxidant activity (Li et al., 2014; Kamle et al., 2019).
204.	<i>Litsea khasyana</i> Meisn. (Lauraceae)	Root	Chronic bronchitis.	Powdered roots along with <i>Piper</i> <i>nigrum</i> and sugar candy is given for chronic bronchitis (Kayang et al, 2005).	Not reported.
205.	<i>Litsea lancifolia</i> (Roxb. ex Nees) FernVill. (Lauraceae)	Leaves	Cough	The extracts of leaves are given in cough troubles (Singh, 1990).	Not reported.
206.	Litsea salicifolia (J. Roxb. ex Nees) Hook. f. (Lauraceae)	Bark	Asthma	Bark powder mixed with powder of seed of <i>Luffa acutangular</i> (L.) Roxb. in equal parts isgiven in	

				asthma (four teaspoonfuls mixed with water, twice daily for a month). (Nath et al., 2008)	
207.	<i>Lobelia angulata</i> G. Forst. (Campanulaceae)		Asthma, Coulgh &Pneumo nia,	The fruit together with <i>Centellaasiatica</i> made into paste is taken orally to cure tonsillitis, pneumonia, asthma and lungs trouble at the dose of one teaspoon thrice daily (Lalrinkima, 2013).	Not reported.
208.	Lomatogonium carinthiacum (Wulfen) A. Braun (Gentianaceae)	Dried Roots	Cold, cough	Dried roots are crushed and small roundpills are prepared and sun dried. Pills are taken orally totreat cold, cough, and	Flavones, Xanthones, iridoids (Li et al., 2011)

209.	Lycianthes laevis (Dunal) Bitter (Solanaceae)	Twig	Cough	fever (Chakraborty et al., 2017). The extract of tender twigs are given in cough (Singh, 1990).	Not reported.
210.	<i>Lygodium japonicum</i> (Thunb.) Sw. (Lygodiaceae)	Whole plant	Cough	The fresh whole plant is pounded and the juice obtained is given 2 tea spoonfuls thrice daily for one week as expectorant in cough (Salam, 2013).	Not reported
211.	Machilus gamblei King ex Hook. f. (Lauraceae)	Bark	Asthma	Bark crushes are used in Asthma (Singh, 1990)	Antioxidant and antibacterial activity (Joshi et al., 2010).
212.	Magnolia champaca (L.) Baill. ex Pierre (Magnoliaceae)	Leaves, Bark and fruit	Asthma	Leaves, bark and fruits are used (Zhasa et al., 2015). The powdered bark (2 gm) mixed with honey is taken	Alkaloids, Glycosides, Carbohydrates, Amino acids, Flavonoids, Sterols, Sequiterpines (Shejale&Yeligar, 2019).

				orally (3 times daily) in cough (Sharma et al., 2001).	
213.	Mahonia napaulensis DC. (Berberidaceae)	Bark	Cough and bronchitis	Decoction of bark taken against cough, bronchitis (Dahal, 2019).	Alkaloids, Steroids, Polyphenols, Quinones, Glycoside, Flavonoid, Terpenoid and Cardiac Glycoside (Thusa&Mulmi, 2017).
214.	Majorana hortensis Moench (Lamiaceae)	Leaf	Cough	Leaf juice is used (Rama Shankar & Devalla, 2012)	Antioxidant, Antimicrobial and Anti-inflammatory Activity (Bina & Rahimi, 2017),
215.	Mangifera indica L. (Anacardiaceae)	Seeds	Asthama	Seeds dried and pounded into powder then mixed with water in the ratio of 1:4 and solution is taken, 2 - 3 teaspoonfuls twice daily for three days to get relief from asthma (Samati, 2007)	Saponins, glycosides, sterols, polyphenols, mangiferine, tannins and anti-oxidant, anti-microbial, gastro protective activity (Mahalik et al., 2020).
216.	Meconopsis horridula Hook. f. & Thomson (Papaveraceae)	Flower	Fever, Cough and Cold	Infusion of flower taken against fever, cough	Flavonoids, alkaloids, terpenoids (Guo et al., 2014)

				andCold (Dahal, 2019).	
217.	<i>Melastomama labathricum</i> L. (Melastomataceae)	Tender leaves	Cold and Cough	Decoction of tender leaves taken against cough, cold (Dahal, 2019)	Flavonoids,Flavan-3-ols,Triterpenes,Tannins,Anthocyanins,Saponins,Alkaloids,Steroids,Glycosides,Phenolics (Joffry et al., 2012).Antibacterial Activity (Grosvenor et al., 1995)Antiviral activity (Loh'ezic-LeD'ev'ehat et al., 2002)Antioxidant activity (Susanti et al., 2007)
218.	<i>Melia azedarach</i> L. (Meliaceae)	Juice of root bark and Wood extract	Asthma and Cough	Wood extract is used (Sumi &Shohe, 2018.). Juice of root bark used to treat asthma and cough (Dahal, 2019).	Terpenoids, flavonoids, steroids, acids, anthraquinones, alkaloids, saponins, tannins (Sharma & Paul, 2013). Antioxidant activity (Nahak et al., 2010)
219.	<i>Melissa axillaris</i> (Benth.) Bakh.f. (Lamiaceae)	Leaf	Bronchitis and Tuberculo sis	Leaf decoction is used in bronchitis and tuberculosis (Chhetri, 2005).	Not reported
220.	Melocalamus compactiflorus (Kurz)	Sap	Cough	The sap oozing out of the cut-stem is	Not reported

	Benth. (Poaceae)			given tochildren for influenza, cough and chest complaints (Lalrinkima, 2013).	
221.	<i>Mentha arvensis</i> L. (Lamiaceae)	Whole plant	Ashma	Eaten to cure asthma (Nanda et al., 2013).	Alkaloids, Tannins, Phenolics, Flavonoids, Cardiac Glycosides, Terpenoids, Steroid, Saponins, Carbohydrates, Proteins, Fats and Antioxidant activity (Dar et al., 2014).
222.	<i>Mesua ferrea</i> L. (Calophyllaceae)	Flower	Cough	Flower astringent used in cough (Rama Shankar &Rawat, 2013). Decoction of the flower is prescribed twice daily for 2 weeks in bronchitis (Salam, 2013).	Phenyl coumarins, xanthones, triterpenoids, fats and flavonoids (Chahar et al., 2013). Antioxidant activity (Cullen et al., 1997).
223.	<i>Microsorum</i> superficiale (Blume) Ching (Polypodiaceae)	Fresh rhizome	Cough	About 20 gm paste obtained by crushing fresh rhizome along	Not reported.

				with seeds of <i>Piper</i> <i>nigrum</i> is taken orally to cure cough and cold. It should be taken thrice a day till the disease is cured (Shil & & Choudhury, 2009).	
224.	<i>Mimosa pudica</i> L. (Mimosaceae)	Whole plant	Asthma	Decoction of whole plant is given with honey in asthma (about 20 ml, twice daily for amonth). (Nath et al., 2008; Choudhury et al., 2015).	Terpenoids, flavonoids, glycosides, alkaloids, quinines, phenols, tannins, saponins, and coumarins (Ahmad, 2012). Antimicrobial activity (Ahmad, 2012).
225.	<i>Mimusops elengi</i> L. (Sapotaceae)	Fruit Juice	Cough	Fruit juice is taken in Cough (Sen et al., 2011).	Antioxidant activity (Chaiyan et al., 2009)
226.	<i>Mirabilis jalapa</i> L. (Nyctaginaceae)	Rhizome	Pneumoni a	Rhizome, leaves (Kalita, N., Kalita, M.C., 2014)	Alkaloids, flavonoids, phenols, tannins, and Saponins (Kumar & Fathima, 2017).
227.	Momordica dioica	Fruit	Cough	Boiled extract of	Carbohydrates, glycosides, phenolic

	Roxb. ex Willd. (Cucurbitaceae).			the fruit with little common salt is prescribed in fever and cough by the Meitei communities and Kabui tribes (Khan, 2005).	compounds, flavonoids, alkaloid, proteins, saponins, lipids, tannins, and steroids (Rathee & Kamboj, 2017).
228.	<i>Morinda angustifolia</i> Roxburgh (Rubiaceae)	Leaf	Asthma and Bronchial trouble	Leaf pounded with root of Solanum torvum Sw., S. surattense Burm. f. and Nelumbo nucifera Gaertn., leaf of Trichosanthes diocia Roxb., and nut of Pistacia chinensis Bl. in equal partsand the extract is given in asthma and bronchial trouble (four teaspoonfuls, twice daily tillcure). (Nath et	Antimicrobial activity (Xiang et al., 2008).

				al., 2008)	
229.	Morus australis Poir. (Moraceae)	Root	Cough	Root juice taken in cough (Dahal, 2019)	Not reported.
230.	<i>Mucuna pruriens</i> (L.) DC. (Fabaceae)	Seeds	Bronchitis , pneumoni a	Seeds (Kalita, N., Kalita, M.C., 2014)	Alkaloids, Glycosides, Terpenoids, Steroids, Flavonoids, Tannins, Saponins, Reducing sugars (Kumar et al., 2009). Antioxidant activity (Tripathi& Upadhyay, 2001). Antimicrobial activity (Rajeshwar et al., 2005).
231.	<i>Murraya paniculate</i> (L.) Jack (Rutaceae)	Leaves	Cough	The extracts of leaves given in cough (Singh, 1990).	Coumarins, alkaloids, phenols, terpenoids and flavonoids (Sayaret al., 2014). Antioxidant activity (Rohman & Sugeng, 2005). Antimicrobial activity (Zhang et al., 2011).
232.	<i>Musa acuminata</i> Colla (Musaceae)	Flower	Bronchitis	Flower extract is used in bronchitis (Sen et al., 2011).	Alkaloids, Saponins, Phenols, Tannins, Flavonoids and Antibacterial activity (Umamaheswari et al., 2017).
233.	Musa balbisiana Colla (Musaceae)	Root & Bark	Cough	Roots juices are used to treat pneumonia.	Protein, carbohydrates, phenolics, and flavonoid and Antioxidant activity (Daimari & Swargiary,

				(Gogoi et al., 2019) Alkali solution prepared from the ash of dried and burnt fruit bark mixed withmustard oil is given in cough (about 15 ml, twice daily till cure). (Nath et al.,	2020)
234.	Mussaenda frondose Linn. (Rubiaceae)	Shoots	Cough	2008) Decoction of dried shoots is used (Chankija, 1999; Sumi &Shohe, 2018.)	Carbohydrates, Steroids, Alkaloids, Saponins, Terpenoids, Tannins, Flavanoid, Polyphenols and Antioxidant activity (Sijuet al., 2010) are reported.
235.	Mussaenda treutleri Stapf. (Rubiaceae)	Leaf	Bronchitis and Cough	Leaf extract is taken to cure bronchitis and cough (Chhetri, 2005)	Not reported.
236.	Myrica esculenta Hamilton ex D. Don		Asthma & Bronchitis	Decoction of bark is used ((Rongsensashi et	Phenolic compounds, flavonoids, flavonols alkaloids, glycosides,

	(Myricaceae)			al., 2016). About 5/10 fruits are eaten raw ³ / ₄ times in a week for asthma and bronchitis (Singh et al., 2015).	diarylheptanoids, ionones, steroids, saponins, triterpenoids, volatile compounds (Sood & Shri, 2018). Antimicrobial activity & Antiinflammatory activity (Agnihotri et al., 2012) Antioxidant activity (Mann et al., 2015)
237.	<i>Myricaria rosea</i> W.W. Sm. (Tamaricaceae).	Young shoots	Throat Pain	Young shoots are chewed in case of throat pain (Chhetri, 2005)	Not reported
238.	Nardostachys jatamansi (D. Don) DC. (Caprifoliaceae)	Rhizome	Bronchitis , Cold & Cough	Powder of rhizomes (1-2 gm per dose) is taken orally twice or thrice daily in case of bronchial complaints, cold and cough (Maity, 2004).	Sugars, amino acids and tannins alkaloids (Jha et al., 2012). Anti-inflammatory (Rajnish et al., 2014) Antibacterial and Antioxidant activity (Parveen et al., 2011)
239.	Nasturtium officinale R. Br. (Brassicaceae)	Leaves & Stem	Cough	Decoction of leaves and stem taken to cure cough (Dahal, 2019).	Glucosinolates, carotenoids, polyphenols, Vitamin C, Vitamin A, α- tocopherol, tannins, flavonoids, terpenoids, glycosides

					(Chaudhary et al., 2018). Antioxidant activity (Zeb, 2015). Antibacterial activity (Penecilla & Magno, 2011).
240.	Neopicrorhiza scrophulariiflora (Pennell) D. Y. Hong (Plantaginaceae)	Rhizome	Cough	Rhizome chewed to cure cough (Dahal, 2019).	Hydroxycinnamate, Phenylethanoid glycoside, Phenol, Phenyl glycoside, Iridiod, Steroidal glycoside, Coumarin, Flavonoid, Ferulic acid, Phytosterol, Alcohol, Fatty acid, Sugar and Anti-oxidative, Antimicrobial, Anti-inflammatory activity (Rokaya et al., 2020)
241.	<i>Nephrolepis auriculata</i> (L.) Trimen (Nephrolepidaceae)	Root	Cold, cough	Warmed juice of root tuber taken against cold, cough (Dahal, 2019)	Not reported.
242.	Nyctanthes arbor-tristis L. (Oleaceae)	Leaves	Cough	Leaves juice is used in treatment of cough (Gogoi et al., 2019)	Alkaloids, glycosides, flavonoids, phytosterols, phenolics, tannins, saponins (Rani et al., 2012). Antioxidant activity (Thangavelu & Thomas, 2010). Anti-inflammatory activity (Singh et al., 1984). Antiviral activity (Gupta et al.,

					2005).
243.	<i>Ocimum basilicum</i> L. (Lamiaceae)	Leaves	Cough, bronchitis and hiccough	Leaf juice mixed with honey is given in cough and bronchial congestion. Decoction of leaf is also taken in hiccough (Three teaspoonfuls, twice daily for three days). (Nath et al., 2008).	
244.	Ocimum gratissimum L. (Lamiaceae)	Leaves	Cough and asthma	Leaves juice is used in treatment of cough (Gogoi et al., 2019)	Alkaloids, flavonoids, saponin, tannins, terpenoids, phlobatannins, steroids (Akinmoladunet al., 2007) Antioxidant activity (Akinmoladunet al., 2007). Antibacterial activity (Orafidiya et al., 2006).
245.	<i>Ocimum sanctum</i> L. (Lamiaceae)	Leaves and flower	Cold and cough	Leaves, flowers juice are used to cure Cold and cough. (Gogoi et al., 2019).	Essential oil, saponins, flavonoids, triterpenoids, phenolic compounds and tannins (Bhattacharyya&Bishayee, 2013). Antioxidant activity (Trevisan et al., 2006)

					Antimicrobial activity (Singh et al., 2005)
246.	<i>Oenanthe javanica</i> (Blume) DC. (Apiaceae)	Stem	Cough	Stems juiceis taken orally to treat cough (Tsering, 2017).	Amino acids, Carbohydrates, Proteins, Flavonoids, Phenolic compounds, Steroids and Terpenoids, Saponins, Tannins, Cardiac glycosides (Bhaigyabati et al., 2017) Antioxidant activity (Bhaigyabati et al., 2017) Antiviral activity (Lu and Li, 2019).
247.	Onosma hookeri C.B. Clarke (Boraginaceae)	Root	Cough	Roots used to treat blood cough (Tsering, 2017)	Not reported.
248.	<i>Ophiocordyceps</i> <i>sinensis</i> (Ophiocordycipitaceae)	Fruiting Body	Cough, Cold, Respirator y problems	Fruiting body consumed during cough, cold, respiratory problems, stress and chronic fever. (Tsering, 2017).	Nucleoside, polysaccharide, sterol, protein, amino acid and polypeptide (Liu et al., 2015). Anti-inflammatory and antioxidant activity (Liu et al., 2015).
249.	Ophiorrhiza ochroleuca Hook.f. (Rubiaceae)	Leaves and twigs	Cough	The extract of leaves and twigs is given in cough by the Rongmeis in	Not reported.

				Manipur (Singh, 1990).	
250.	<i>Opuntia monacantha</i> (Willd.) Haw. (Cactaceae)	Ripe fruit	Bronchitis and cough	Ripe fruit taken with honey to cure bronchitis and cough (Dahal, 2019).	Not reported.
251.	<i>Oroxylum Indicum</i> (L.) Vent. (Bignoniaceae)	Bark	Cough and pneumoni a	Bark is used in cough and pneumonia (Kalita, N., Kalita, M.C., 2014).	Alkaloids, flavonoids, glycosides, tannins, terpenoids and Antimicrobial activity (Harmindar et al., 2011). Anti-inflammatory activity (Upaganlawar et al., 2009) Antioxidant activity (Upaganlawar&Tenpe, 2007)
252.	<i>Osbeckia chinensis</i> L. (Melastomataceae)	Whole plant	Cough	Whole plant extract is used commonly in cold and cough (Devi, 2013)	Alkaloids, saponins, tannins, steroids, terpenoids and flavonoids (Saio & Syiem, 2015) are reported.
253.	<i>Oxalis corniculata</i> L. (Oxalidaceae)	Leaves	Chronic cough	Leaves decoction are used in treating chronic cough (Neogi et al., 1989).	Carbohydrate, glycosides, phytosterols, phenolic compounds, flavonoids, proteins, amino acids, volatile oil, tannins, palmitic acid stearic acids (Srikanth et al., 2014)

					Antioxidant Activity (Borah et al., 2012) Antimicrobial activity (Raghavendra et al., 2006)
254.	<i>Paederia foetida</i> L. (Rubiaceae)	Young Shoot	Asthma	A decoction about 10 ml of the young shoot is taken orally daily in treatment of asthma (Sharma et al., 2001).	Iridoid glycosides, sitosterol, stigmasterol, alkaloids, carbohydrates, proteins, amino acids and volatile oils and antioxidant activity are reported (Wang et al., 2014).
255.	Panax ginseng C.A. Mey. (Araliaceae)	Root	Tuberculo sis,	The roots are dried and made into a powder that is taken orally to treat tuberculosis (Chankiga, 1999).	Polysaccharides, ginsenoside, alkaloids, glucosides, peptides, phenolic acid and ligan (Ru et al., 2015) are reported.
256.	Panax pseudoginseng Wall. (Araliaceae)	Root	Asthma	Tuber/Root decoction are used to treat asthma (Zhasa et al., 2015).	Not reported.
257.	Pandanus furcatus Roxb. (Pandanaceae)	Fruit	Asthma and Cough	Fruit useful in asthma and cough (Dahal, 2019)	Not reported.
258.	Papaver somniferum L. (Papaveraceae)	Seed	Cough	Seed paste taken to cure cough (Dahal,	Alkaloids, various acids like Meconic acid, Lactic acid, Malic

				2019).	acid, Tartaric acid, Citric acid, Acetic acid, Succinic acid, Sulphuric acid, Phosphoric acid (Masihuddin et al., 2018).
259.	<i>Paris polyphylla</i> Sm. (Melanthiaceae)	Root	Bronchitis	Root extract is used (Zhasa et al., 2015). Decoction of the rhizome is given thrice daily for one week in bronchitis (Salam, 2013).	Alkaloids, carbohydrates, cardiac glycosides, Flavonoids, glycosides, phenols, quinones, saponins, sterols, tannins and terpenoids (Rajsekhar et al., 2016) and antioxidant activity (Devi et al., 2018) are reported.
260.	Paris quadrifolia L. (Melanthiaceae)	Roots	Bronchitis	Root extract is used (Zhasa et al., 2015).	Flavonoid, Saponin and Glycosides (Nohara et al., 1982) are reported.
261.	Passiflora edulis Sims. (Passifloraceae)	Roots	Asthma	Roots are dried, mixed with tobacco, and smoked in a pipe to treat asthma (Chankija, 1999).	Carbohydrates, lipids, carboxylic acids, polyphenols, volatile compound, protein and amino acids, vitamins, mineral, flavonoids, triterpenoids, carotenoids (He et al., 2020) and Antioxidant (Thomas et.al., 2019), Anti-Inflammatory (Herawaty&Surjanto, 2017) and Antimicrobial Activity (Jagessar et al., 2017) are reported.
262.	Passiflora foetida L.	Fruit	Respirator	Fruit is used (Kala,	Reducing sugars, alkaloids,

	(Passifloraceae)		y disorder	2005)	flavonoids, tannins, steroids, gums and glycosides (Asadujjaman et al., 2014)
263.	Perilla frutescens (L.) Britton (Lamiaceae)	Seed	Cough	Seed taken to cure cough (Dahal, 2019).	Carotenoids, essential oils, triterpenes, phytosterols, phenolic acids, flavonoids, fatty acids, tocopherols, policosanols and antioxidant, antimicrobial, anti- allergic, antidepressant, anti- inflammatory are reported (Ahmed, 2018)
264.	Phlogacanthus curviflorus (Wall.) Nees (Acanthaceae)	Leaves	Cough & fever	The leaves boil and the decoction are taken in fever and cough (Nonibala, 2010).	Not reported.
265.	Phlogacanthus thyrsiformis (Roxb. ex Hardw.) Mabb. (Acanthaceae)	Leaf	Cough.	Leaf juice/ decoction is used in the treatment of cough (Rama Shankar & Devalla, 2012).	Flavonoids, tannins, phytosterols, phenol, glycosides, fatty acids, galacto-glycero lipid and volatile oil and antibacterial and antioxidant activity are reported (Gogoiet al., 2013).
266.	Phlogacanthus tubiflorus Nees (Acanthaceae)	Leaves & bark	Asthma	Decoction of bark four teaspoonfuls twice daily is taken in asthma. Leaf	Not reported.

				powder is smoked in asthma. (Nath et al., 2008)	
267.	Phlomis rotata Benth. ex Hook.f. (Lamiaceae)	Aerial Part	Cough	Decoction of aerial part is taken in cough (Dahal, 2019)	Not reported.
268.	Phyllanthus emblica L. (Euphorbiaceae)	Root and Fruit	Bronchial asthma	Root juice 25 ml is given daily for a month in treatment of bronchial asthma. Root pounded with that of <i>Citrus</i> <i>grandis</i> (L.) Osb. and rhizome of <i>Zingiber officinale</i> Rosc. in equal parts, fruit of <i>Terminalia</i> <i>chebula</i> (Gaertn.) Roxb. 5 nos., and a small amountof rock salt is given about 50 gm twice	amino acids, fatty acids, glycosides and antimicrobial, antioxidant, Anti-inflammatory (Gaire &

				daily for a month in bronchial asthma. (Nath et al., 2008). Dried fruits are soaked in mustared oil which is then massaged on the chest and the throat to get relief from bronchitis (expectorant	
				effect) and sore throat.	
269.	Phyllanthus fraternus G.L. Webster (Euphorbiaceae)	Whole plant	Asthma, Bronchitis , hiccough	Juice of whole plant is taken in bronchitis, asthma, and hiccough (Lalzarzovi & Lalramnghinglova, 2016)	Alkaloid, tannins, terpenoids, steroids and saponins and antimicrobial activity (Kavit et al., 2012) are reported.
270.	Phyllanthus niruri L. Euphorbiaceae)	Roots	Cough	Roots decoction (about 20 ml) is taken thrice daily tocure fever& cough (Sajem &	(Bagalkotkar, 2006). Antioxidant

				Gosai, 2006).	al., 2019).
271.	Picrorhiza scrophulariiflora Pennell	Leaves	Cold & Cough	Decoction of leaves (10-15 Gm per dose) is used twice or thrice daily for the treatment of cold & cough (Maity, 2004).	Not reported.
272.	<i>Pinus kesiya</i> Royle ex Gordon (Pinaceae)	Young shoots	Cough	Young shoots are taken early in the morningto get relieve from cough in children. (Hynmewta& Kumar, 2008)	Alkaloid, Cardiac Glycoside, Flavonoid, Tannin (Velasco et al., 2018) are reported.
273.	Pinus roxburghii Sarg. (Pinaceae)	Resin	Bronchitis	Resin with common salt bolied in water and taken before bed time to cure cough and also useful in chronic bronchitis (Dahal, 2019).	Flavonoids, essentialoil tannins, terpenoids, xanthones (Kaushik et al, 2013) and antimicrobial (Zafar et al., 2013) and antioxidant (Maimoona et al., 2011) are reported.

274.	<i>Piper betle</i> L. (Piperaceae)	Fruit & Leaves	Cough	Fruit used in cough (Choudhury, 1999). The leaf is crushed along with ginger and honey is taken orally in the treatment of cough (Nonibala, 2010)	Alkaloids, Carbohydrates, Proteins, Phytosterols, Flavonoids, Tannis and phenol, Volatile oils (Saini et al., 2016) and antimicrobial and antioxidant activity (Chakraborty & Shah, 2011) are also reported.
275.	Piper brachystachyum Vahl (Piperaceae)	Leaves	Cough & Bronchitis	Leaf decoction is used as a tonic for cough and bronchitis (Khongsai et al., 2011). Seed is used in the treatment of cough (Kala, 2005).	Not reported.
276.	<i>Piper griffithii</i> C. DC. (Piperaceae)	Fruit	Cough	Dried fruit pounded into powder and mixed with wild honey in proportions 1:4 andthen taken 2-3 teaspoonful twice daily at least three	Not reported.

278.	(Piperaceae) <i>Piper mullesua</i> Buch Ham, ex D. Don	Dried Seed	respiratory diseases Bronchitis	honey to treat respiratory infection and cough (Sen et al., 2011). The seed powder mixed with honey is taking against	trimehoxycinnamate (Chatterjee& Dutta, 1963, 1967) and antibacterial activity (Reddy et al., 2001) are also reported.
277.	Piper longum L.	Leaves, Fruit	Pneumoni a, cough and	Leaves (Kalita, N., Kalita, M.C., 2014). Fruits are ground and made into powder mix with	Alkaloids, Saponins, Carbohydrates, Volatile oil, starch, protein, amygdalin, piperine, piperlongumine, piperlonguminine, methyl-3, 4, 5 –
				days for curing cough and cold. ((Samati, 2007). Dried seeds are powdered and mixed with honey and the yolk of egg and this is taken for severe cough.	

				2011).	
279.	<i>Piper nigrum</i> Linn. (Piperaceae)	Fruit	Cough	Fruit is used (Deka & Nath, 2014). Dried fruits powder mixed with honey and egg yolk taken 2-3 teaspoonful twice daily at least three days for curing severe cough (Smati, 2007).	Various phytochemicals like Alkaloids, amides, propenyphenols, lignans, neolignans, terpenes, steroid, kawapyrones, piperolides, chalcones, dihydrochalcones, brachyamide, dihydropipericide, 3,4-dihydroxy-6 (N-ethyamine), benzamide, (2E, 4E)-N- eicosadienoylpereridine, N-trans- feruloyltryamine, N-formyl piperidine, guineensine, (2E, 4E)- N-5[(4-Hydroxyphenyle)- pentadienoyl] piperidine, (2E, 4E)- N-isobutyldecadienamide), (2E, 4E)-N-isobutyl-eicosadienamide, (2E,4E,8Z)-N-isobutyl- eicosatrienamide, (2E, 4E)- Nisobutyloctadienamide, piperamide,piperamine, piperettine, pipericide, piperine, piperolein, trichostachine, sarmentine, sarmentosine, tricholein, retrofractamide (Ganesh et al., 2014; Pino et al., 2003) are reported. Antibacterial (Karsha&

					Laxmi, 2010) and antioxidant (Shanmugapriya et al., 2012) activities are also reported.
280.	Piper trioicum Roxb. (Piperaceae)	Root	Cough	Root decoction is used in the treatment of cough (Kala, 2005).	Alkaloids, steroids, flavonoids, phenolic compounds, carbohydrates, tannins and glycosides (Kumar et al., 2011) are reported.
281.	Pittosporum napaulense (DC.) Rehder & E.H. Wilson (Pittosporaceae)	Stem	Bronchitis	Decoction of stem bark taken orally to treat bronchitis (Lalramnghinglova , 2016)	Alkaloids, flavonoids, phenols, lignins, anthraquinones, steroids, tannins, saponins, fixed oils and glycosides (Gunsai et al., 2020) and antibacterial activity (Singh & Diwakar, 2009) are reported.
282.	<i>Plantago erosa</i> Wall. (Plantaginaceae)	Whole plant & Root	Cough	Decoction of roots is taken orally to treat cough (Sumi & Shohe, 2018.). Decoction of whole plant is taken orally to treat dry cough (Pfoze, 2012).	Not reported.
283.	Platycodon grandifloras (Jacq.) A. DC.	Root	Cough	Decoction of the root is prescribed against cough and	Steroidal saponins, flavonoids, phenolic acids, polyacetylenes, and sterols (Zhang et al., 2015) and

Antioxidant activity (Lee et al., (Campanulaceae) cold. (Salam, 2013). 2004) are reported. Fruit powder is Alkaloids, carbohydrates, used in the cyanogenetic glycosides, treatment of cough flavonoids, protein, saponins, Plumeria rubra L. (Nonibala, 2010). 284. Bark & Fruit sterols, tannins, Cough Boiled extract of (Apocynaceae) mucilage and volatile oils. bark is prescribed (Venkatachalam et al., 2018) are in asthma (Singh, reported. 1990). Leaf juice is mixed with littlesalt and *Polycarpon prostratum* used to treat sore (Forssk.) Asch. & Sore 285. Leaf throat Not reported. Schweinf. throat (Debbarma et al., (Caryophyllaceae) 2017). glycosides, Butyl lignans, liposoluble compounds, flavonoids, Whole plant Polygonum capitatum phenolic acids, volatile oils (Yang decoction is used Buch.-Ham. ex. D. Don 286. Whole plant Cold et al., 2015), antibacterial and antito treat cold (Zhasa (Polygonaceae) et al., 2015). inflammatory activity are reported (Liao et al., 2011). *Polygonum hydropiper* Leaves decoction Pneumoni 287. L. Not reported. Leaves are used to treat а (Polygonaceae) pneumnia (Kalita,

288.	Potentilla fruticosa var. arbuscula (D. Don) Maxim.	Whole plant	Sore throats, cough and	N., Kalita, M.C., 2014) Useful in sore throats, cough and cold (Dahal,	Antioxidant activity are reported (Miliauskas et al., 2004).
	(Rosaceae)		cold	2019).	
289.	Potentilla peduncularisD.Don (Rosaceae)	Whole plant	Sore throat, cough & cold.	Decoction of whole plant is useful in sore throats, cough and cold (Dahal, 2019).	Not reported.
290.	Potentilla lineata Trevir (Rosaceae)	Root	Sore throats, cold and cough	Fresh root chewed to get relief from sore throats, cough and cold (Dahal, 2019).	Not reported.
291.	Prunus cerasoides BuchHam. ex D. Don (Rosaceae)	Bark	Cough	Decoction of bark is orally taken against cough (Dahal, 2019).	Flavonoids, glycosides, steroids, terpenoids, polyphenolics, antimicrobial and antioxidant activity are reported (Joseph et al., 2019).
292.	Prunus domestica L. (Rosaceae)	Fruit	Asthma	Fruits are used in the treatment of asthma. (Khiangte &	Anthocyanin, alkaloid, Phenolic, flavonoid, tannin, antioxidant antimicrobial activity are reported (El-Beltagi et al., 2019)

				Lalramnghinglova, 2017)	
293.	Prunus persica (L.) Batsch (Rosaceae)	Leaves	Asthma	Dried leaves smoked for asthma (Khiangte & Lalramnghinglova, 2017)	Alkaloid, steroids, terpenoids, tannins, flavonoids, coumarins, anthracenosides, anthocyanosides and fatty acids and antioxidant activity are reported (Benmehdi et al., 2017).
294.	Psidium guajava L. (Myrtaceae)	Leaves	Cough	Decoction of leaves with Citrus fruit juice and salt (Namsa et al., 2011).	Alkaloids, flavonoids, glycoside, tannins, terpenoids, saponins, and antimicrobial activity are reported (Kenneth et al., 2017)
295.	Pterocephalus hookeri (C.B. Clarke) Diels (Caprifoliaceae)	Aerial part	Cold & cough	Infusion of aerial part taken to cure cough, cold (Dahal, 2019)	Not reported.
296.	PunicagranatumL. (Lythraceae)	Leaves & fruit	Sore throat	Leaves and fruits are used in the treatment of sore throat (Zhasa et al., 2015).	Alkaloids, Phenols, Flavonoids, Quinones, Tannins, Saponins, Terpenoids, Steroids and antioxidant are reported (Jayaprakash & Sangeetha, 2015).
297.	Pyrrosia adnascens (Forst.) Ching (Polypodiaceae)	Rhizome	Cold & Cough	Decoction of rhizome mixed with powdered seeds of <i>Piper</i>	Alkaloids, anthraquinones, phenolics, saponins, tannins and terpenoids are reported (Cruz et al, 2017)

				<i>nigrum</i> is taken during cough and cold twice a day for 7 days (Shil & Choudhury, 2009).	
298.	Quercus serrata Thunb. (Fagaceae)	Exudate	Cough	Juice released from cut branches is collected and used as remedy for dry cough (Pfoze, 2012).	Flavonoid, phenol and antioxidant activity are reported (Pandey et al., 2017).
299.	<i>Rheum emodi</i> Wall. (Polygonaceae)	Leaves	Cold and cough	Leaves are cooked and eaten as a curry in cold and cough (Chhetri, 2005).	Alkaloids, Carbohydrates, Tannins, Steroids, Flavonoids, Terpenes, Glycoside, Terpenoids, Anthraquinones, Saponins and antibacterial activity are reported (Malik et al., 2018).
300.	Rheum nobile Hook. f. & Thomson (Polygonaceae)	Roots	Cold, Cough,	Decoction of root consumed during common cold, cough, throatpain, tonsillitis (Tsering, 2017)	Not reported.
301.	Rhododendron anthopogon D. Don (Ericaceae)	Leaf	Cold and cough	Leaf decoction is used in cold and cough (Chhetri,	Polyphenols, reducing compounds, quinones, sterol, triterpenes, fatty acids and antimicrobial activity are

				2005)	reported (Baral et al., 2014).
302.	<i>Rhododendron</i> <i>arboretum</i> Smith (Ericaceae)	Root Bark	Pneumoni a	Juice of root bark taken to cure pneumonia. Snuff made from the bark excellent cold reliever and the juice taken to relieve cough (Dahal, 2019).	Phytosterols, flavonoids, phenols, alkaloids, carbohydrate, glycoside, sterols and steroids, terpenoids, tannin and Anti-inflammatory, anti-bacterial activity (Agarwal & Kalpana, 1988) are reported.
303.	Rhododendron campanulatum D. Don (Ericaceae)	Leaves	Cough	Fresh leaves chewed to relieve cough (Dahal, 2019).	Carbohydrate, terpenoids, coumarine, flavonoid and phenol (Painuli, 2017)
304.	<i>Rhus chinensis</i> Mill. (Anacardiaceae)	Fruit	Cough	Boiled decoction of ripe fruits mixed with honey or sugar is given for dry cough (Pfoze, 2012)	Not reported.
305.	<i>Ricinus communis</i> L. (Euphorbiaceae)	Leaves	Asthma	Leaves rubbed with mustard oil and warmed in fire then massage over the chest of children for curing	Steroids, Saponins, Alkaloids, Flavonoids, Glycosides, Anti- inflammatory activity, Antioxidant activity, Antimicrobial activity (Suvarna et al., 2018)

	Rorippa indica (L.)			asthma (Samati, 2007; Lalrinkima, 2013). The extract of seeds is used in the	
306.	Hiern (Brassicaceae)	Seed	Asthma	treatment of asthma (Singh, 1990)	Not reported.
307.	Rosa sericea Wall. ex Lindl. (Rosaceae)	Fruit	Cough	Fruit taken to cure cough (Dahal, 2019)	Antiviral activity are reported (Rajbhandari et al., 2007).
308.	Rotheca serrata (L.) Steane & Mabb. (Lamiaceae)	Leaf & Stem	Cough, Asthma & Bronchitis	Leaf extract is taken with little honey against cough. Semi-dried stem is burned and smoked to cure asthma and bronchitis. (Devi, 2013)	Not reported
309.	Rubus ellipticus Sm. (Rosaceae)	Roots	Cold & Cough	Roots are mixed with the roots of <i>Rubus paniculatus</i> together and crushed to prepare a thick	Total Phenolic compound, flavonoid and antioxidant activity are reported (Badhani et al., 2015).

				syrup. syrup is used for treatment of cold and cough (Chakraborty et al., 2017)	
310.	<i>Rubus paniculatus</i> Sm. (Rosaceae)	Roots	Whooping Cough	Infusion of root taken against whooping cough (Dahal, 2019).	Not reported.
311.	Sagittaria sagittifolia L. (Alismataceae)	Tuber	Cough	Tuber decoction is taken with little honey in cough (Devi, 2013).	Tannin, Saponins, Flavonoids, Phenols, Steroids, Glycosides, Protein, Amino-acids, Starch, reducing sugars and Alkaloids are reported (Rao & Pandey, 2017).
312.	Salvinia cucullata Roxb. (Salviniaceae)	Whole plant	Cough	Decoction of the plant is used in cold cough (Devi, 2013)	Not reported.
313.	<i>Sapindus mukorossi</i> Gaertn. (Sapindaceae)	Bark, Fruit	Hooping- Cough Asthma	Bark pounded with black pepper, leaf of <i>Calotropis</i> <i>gigantea</i> (L.) R.Br. ex Ait. in equalparts with a little rock salt and made into pills of	Alkaloids, phytosterols, phenolic compounds, tannins, flavonoids, saponins and antibacterial activity are reported (George & Shanmugam, 2014).

				about 10 gm each, which are administered in Hooping-Cough and asthma (three pills, thrice daily for 3 to 15 days or more). (Nath et al., 2008). One or two fruits are soaked inwater overnight and the water is then used for gargle in cough and tonsillitis (Sharma et al., 2001).	
314.	Schefflera venulose (Wight &Arn.) Harms (Araliaceae)	Bark	Cough	Decoction of bark is used to treat cough (Zhasa et al., 2015).	Saponins, tannins, flavonoids, alkaloids, cardiac glycosides, reducing sugars and antioxidant activity are reported (Deepa and Nalini, 2013).
315.	Schyzophyllum communie (Schizophyllaceae)	Fruiting body	Cough	Decoction of the fruiting body is used in cough (Nonibala, 2010;	Antioxidant activity (Chandrawanshi et al., 2017).

				Rajkumari et al., 2013).	
316.	Scoparia dulcis L. (Scrophulariaceae)	Whole plant	Cough & Fever	Leaf juice is used in treatment of Fever & cough (Gogoi et al., 2019)	Amino acids, carbohydrates, coumarins flavonoid, phenols, tannins, terpenes, steroids saponins, scopadulcic acids A and B, scopadiol, scopadulciol, scopadulin, scoparic acids A – C, betulinic acid.
317.	<i>Scutellaria discolor</i> Colebr. (Lamiaceae)	Whole plant	Cough	Decoction of the whole plant (half cup) is taken twice daily for 7 days against cough (Salam, 2013)	Tannin, flavonoid, alkaloid, lignan, saponin, cardiac glucoside, terpenoid and antibacterial activity are reported (Devi & Singh, 2014)
318.	Selinum wallichianum (DC.) Raizada & H.O. Saxena (Apiaceae)	Root	Cough	Decoction of roots taken against cough (Dahal, 2019)	Essential oil and antimicrobial activity are reported (Singh et al., 2012)
319.	<i>Semecarpus</i> anacardium L.f. (Anacardiaceae)	Fruit	Asthma & Cough	Fruit powder taken with water to cure piles, cough and asthma (Dahal, 2019).	Anthraquinones, Phenols, Steroids &Triterepenoids, and antimicrobial activity (Bagewadi et al., 2012) are reported.
320.	Senna occidentalis (L.) Link	Seeds	Cough	Seeds are useful in cough (Sen et al.,	Alkaloids, saponins, tannins, reducing sugar, phenols,

(Leguminosae) 2011). anthraquinones, glycosides, resins and antioxidant (Odeja et al., 2014). Roots decoction is Alkaloids, Flavonoids, Glycosides, used to treat Phenols. Steroid, Tarpenoids breathing (Senthilkumar et al., 2018) and disorders. (Abat et antibacterial (Hoffmanet al. 2004), Sida acuta Burm.f. al., 2017). The 321. Roots Asthma Anti-inflammatory (Oboh and (Malvaceae) decoction of the Onwulame,2005), Antioxidant leaves and root is (Konate et al., 2010) activity are used for bronchial reported. cough (Nonibala, 2010). Alkaloid, Carbohydrate, flavonoid, Root leaf asthma. and Glycosides, Proteins, Saponin(bronchitis extracts are used Sida rhombifolia L. Leaves and Sundaraganapathy et al., 2013), and 322. and for asthma. (Malvaceae) Roots Antimicrobial (Cáceres et al., pneumonia pneumoni and 1987), Antioxidant (Dhalwal et al., bronchitis а 2007). Antitubercular activity (Paphita et al., 2013) are reported. Podophyllotoxin, Sinopodophyllum Pounded rhizome picropodophyllotoxin, 4hexandrum (Royle) T.S. taken with water to demethvl podophyllotoxin 323. Rhizome Cough glucoside, deoxypodophyllotoxin, Ying cure cough (Dahal, (Berberidaceae) 2019). isopicropodophyllone (Rather & Amin, 2016) and antioxidant (Ganie

					et al., 2012) and Antiviral activity are reported (Bedows & Hatfield, 1998)
324.	<i>Smilax perfoliata</i> Lour. (Smilacaceae)	Root	Asthama	Roots pounded and juice extract taken 2-3 teaspoon twice daily several days for relief from asthma, locally known as Dawaisahiaw. (Samati, 2007).	Various phytochemical like Alkaloids, Carbohydrates, Flavonoids, Glycosides, Steroids, Tannins (Sharma & Kalita, 2014) & Antimicrobial and antioxidant activity (Barkataky, 2014)
325.	Solanum aethiopicum L. (Solanaceae)	Twigs	Cough	Extract of the young twigs is given in cough (Nonibala, 2010).	Not reported.
326.	<i>Solanum anguivi</i> Lam. (Solanaceae)	Fruit	Cough	Crushed fruit mixed with honey is taken to treat cough (Devi, 2003)	Various chemicals alkaloids, flavonoids, glycosides, phenols, steroids, saponins, tannins, triterpenoids (Oyeyemi et al., 2015) and antioxidant activity (Elekofehinti et al., 2013)are reported.
327.	<i>Solanum kurzii</i> Prain (Solanaceae)	Fruit	Cough	Fruit is used (Kala, 2005)	Not reported

328.	<i>Solanum nigrum</i> L. (Solanaceae)	Fruit and Root	Asthma and Cough	Raw fruits are crushed, mixed with little amount of water, and the strained liquid is drunk to get relief from cough. Roots (10 g) are crushed, macerated overnight with milk 50 ml , and taken for 3-10 days (depending upon the severity of the disease) for the treatment of asthma in children (Jamir et al., 1999).	Various chemical Steriodalglyco- alkaloid, Steroidal saponins, Sterols, Flavonoids, Carotenoids, Vitamin C, Fatty Acids, Triterpenes, Carbohydrates and anti-tubercular, antihistaminic, anti- allergic and anti-inflammatory activity are reported (Yadav, 2014).
329.	<i>Solanum rudepannum</i> Dunal (Solanaceae)	Fruit	Cough	Fruit extract is given in cough and tonsillitis (Devi, 2013)	Not reported.
330.	Solanum stramoniifolium Jacq.	Whole plant	Asthma	Whole plant is boiled in water till	Not reported

	(Solanaceae)			it reduces into paste and this paste is taken with honey to treat asthma (Das et al., 2009)	
331.	Solanum surattense Burm. f. (Solanaceae)	Seed	Asthma	Dried seed is burn in charcoal and smoke is allowed to enter mouth to treat asthma (Ningombam et al., 2014)	Various chemicals Alkaloids, Flavonoids, Triterpenoids, Tannins, Saponins, Glycosides, and steroids (Ghildiyal& Joshi, 2014) and Antibacterial activity (Sheeba, 2010) are reported.
332.	<i>Solanum virginianum</i> L. (Solanaceae)	Leaves	Asthma & Cough	The boiled extract of the leaves is used in cough (Nonibala, 2010) Juice of roots and leaves used in treatment of asthma (Sailo et al., 2017). Stem juice is boiled in water till reduces into paste and equal amount of	Various phytoconstituents Carbohydrates, alkaloids, Terpenoids, Flavonoids, Tannins, Saponins, Proteins and amino acids, Glycoside and antioxidant and antibacterial activity (Patel et al., 2019).

honey is added and taken in the of treatment asthma (Das et al., 2009). Roots are used in asthma (Sailo et Asthma, Various phytoconstituents Saponins Bronchitis al.. 2017). The Solanum indicum Linn. Fruits, leaves, (Yahara et al., 1996), glycoside 333. , Cough, fruit juice along (Saran et al.,), phenolic compounds (Solanaceae) Roots with honey is used pneumoni (Syu et al., 2001) are reported. in cough а (Nonibala, 2010). Roots (Kalita, N., Kalita. M.C., chemicals Various alkaloids. 2014). Fruit boiled flavonoids, saponins, tannins, and Cough, and given in Solanum torvum Sw. headache. glycosides are reported (Chah et al., 334. Root, Fruit bronchial asthma (Solanaceae) 2000). Antimicrobial (David et al., pneumoni (about 10 – 12 1998). Antiviral activity а are fruits daily for a reported (Arthan et al., 2002). month). (Nath et al., 2008) Various Crushed chemical like seed Carbohydrates, Sonchus wightianus Cough taken Proteins. against Seed and Whole 335. DC. Glycosides, Phenols, Flavonoids, and cough (Dahal, plant Terpenoids & Steroids are reported (Asteraceae) bronchitis. 2019). (Bolleddu et al., 2018). Decoction of

				whole plant is used to treat cough and bronchitis (Zhasa et al., 2015).	
336.	<i>Stellaria media</i> L. (Caryophyllaceae)	Whole plant	Bronchitis , chest pain and cough	Cooked plants against bronchitis (Rajkumari et al., 2013). Infusion of aeial part taken against chest pain and cough (Dahal, 2019).	Various chemicals like Flavonoid, oligosaccharide stellariose, anthraquinone derivatives, fatty acid, steroid saponinsand phenolic compounds (Singh & Yadav, 2010 and . anti-inflammatory, antioxidant, antimicrobial activities (Oladeji&Oyebamiji, 2020)
337.	Stephania elegans Hooker f. & Thomson (Menispermaceae)	Tuber	Asthma	Juice extract from tuber is used (Rongsensashi et al., 2016)	Not reported.
338.	<i>Stephania glandulifera</i> Miers (Menispermaceae)	Tuber	Asthma	Powder of tuber mixed with honey is given in asthma (about 2 gm with one teaspoonful of honey, twice daily for a month). (Nath et al., 2008).	Not reported.

339.	<i>Stephania japonica</i> (Thunb.) Miers (Menispermaceae)	Tuber	Fever	Tuber bitter used in fever(Rama Shankar &Rawat, 2013)	Alkaloids, glycosides, flavonoids, fats, steroids and tannins (Moniruzzaman et al., 2016)and antioxidant and anti-Inflammatory activity (Ahmed et al., 2011).
340.	<i>Sticta nylanderiana</i> Zahlbr. (Lobariaceae)	Thallus	Cough	Crushed thallus taken to cure cough (Dahal, 2019).	Not reported.
341.	<i>Swertia chirayita</i> (Roxb. ex Flem.) Karst. (Gentianaceae)	Whole plants	Malaria, fever	Plant decoction is taken in fever (Nungki et al.,2015). Decoction of dried plant taken daily for few days to treat high fever, cough, malarial fever and high blood pressure (Tsering, 2017).	Xanthones, lignans, alkaloids, flavonoids, terpenoids, iridoids, secoiridoids, chiratin, ophelicacid, palmitic acid, oleic acid, stearic acid (Pant et al., 2000; Patil et al., 2013), Anti-inflammatory and antimicrobial activity are reported (Holanda et al., 2008).
342.	<i>Swertia multicaulis</i> D. Don (Gentianaceae)	Root	Cough, cold, bronchitis	Decoction of root taken to cure cough, cold, bronchitis (Dahal, 2019).	Not reported.

343.	Syzygium jambos (L.) Alston (Myrtaceae)	Flower, Seed, Fruit	Cough	Flowers, seed and fruit are used (Zhasa et al., 2015).	Polyphenols, anthraquinones, tannins steroids and antibacterial activity are reported (Wamba et al., 2018).
344.	Tabernaemontana divaricata (Apocynaceae)	Leaves, Seed, Roots	Cough	Leaves, seeds and roots used in the treatment of cough (Zhasa et al., 2015).	Alkaloids, proteins, amino acids, flavonoids, saponins, phenols, glycosides, tannis, steroids, triterpenoids, fixed oils and fats (Chanchal et al., 2015).
345.	Tagetes erecta L. (Asteraceae)	Leaves	Bronchitis	Leaves are used (Zhasa et al., 2015). Leaf juice taken against cough (Dahal, 2019).	Alkaloids, Carbohydrate, Tannins, Phenolic compound, flavonoids and antibacterial activity (Ramya et al., 2012).
346.	Tamarindus indica L. (Leguminosae)	Leaf	Cough	Leaf juice taken against cough (Dahal, 2019).	Alkaloid, glycoside, saponin, tannin, anthraquinone, steroid, terpenoid, phenol and Antibacterial activity (Abdallah & Muhammad, 2018).
347.	<i>Tectona grandis</i> L.f. (Lamiaceae)	Flower	Bronchitis & Cough	Infusion of flowers taken against cough and bronchitis. (Dahal, 2019).	Alkaloids, carotenoids and tannins (Ogunmefun et al., 2017). Antimicrobialactivity (Danlami& Simon, 2017).
348.	Terminalia bellirica	Fruit	Cough	Juice of fruit and	Tannin, Glucoside (bellericanin),

Recent Advances in Folk Medicine Research in North East India

	(Gaertn.) Roxb. (Combretaceae)			raw fruit is taken to reduce cough (Sen et al., 2011).	Ellagic acid, Gallic acid, Lignans (API, 2001) and Anti-microbial (Elizabeth et al. 2005), Antioxidant (Fahmy et al., 2015).
349.	<i>Terminalia chebula</i> Retz. (Combretaceae)	Fruit	Cough	Fruit is used in the treatment of cough (Kala, 2005)	Various chemicals Glycosides, Chebulinic acid, tannins, anthraquinones, ellagic, gallic acid (API, 2001) and antioxidant (Chang & Lin, 2010), antibacterial (Malckzadeh et al., 2001), Antiviral (Jeong et al., 2002) activity are reported.
350.	<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arn. (Combretaceae)	Bark	Bronchitis	Bark powder mixed with leaf juice of <i>Justicia</i> <i>adhatoda</i> L. in the ratio of 1:5 and again dried under sunlight, about 2 gm of this preparation mixed with little honey andpalm-candy is administered once daily in chronic bronchitis till cure.	Antioxidant (Kumar et al., 2009), antimicrobial (Gauthaman et al., 2005).

				(Nath et al., 2008).	
351.	<i>Terminalia bellirica</i> (Gaertn.) Roxb.(Combretaceae)	Cotyledons	Asthma	Crushed cotyledons about 5 gm mixed with hot water is taken in common cold and asthma thrice daily till cure (Nath et al., 2008).	Various chemicals like glycosides, flavonoids, tannins, phenolic compound, amino acids saponins and Antispasmodic and bronchodilatory, Anti-microbial (Gilani et al., 2008) antimicrobial activity (Sabnis 2014).
352.	<i>Tetradium fraxinifolium</i> (Hook.) Hartley (Rutaceae)	Fruit	Cough & Cold	Fruit or fruit powder with water taken to cure cough and cold (Dahal, 2019).	Not reported.
353.	<i>Thalictrum foliolosum</i> DC. (Ranunculaceae).	Root	Cold & Cough	About 200 g root is boiled with1.5 litres of water and the decoction 250ml is giventwice daily for one week in cold and cough with fever and	Antimicrobial activity (Joshi & Sati, 2014).

				stomachache (Salam, 2013). Decoction of root taken tocure cough (Dahal, 2019).	
354.	<i>Thysanolaena latifolia</i> (Roxb. ex Hornem.) Honda (Poaceae).	Root	Bronchial problem, Cough	Decoction of roots taken against fever and cough (Dahal, 2019). A decoction of 200-300 gm of young roots for one dose is used twice in case of bronchial problem (Maity, 2004).	The plant reported terpenoids, carbohydrates, tannins, flavonoids, saponins, glycosides chemical compounds, antioxidant and antibacterial activity (Hoque et al., 2016).
355.	<i>Tinospora cordifolia</i> (Willdenow) Hook. f. et Thomson (Menispermaceae)	Stem	asthma, bronchitis, cough	Stem juice useful againstasthma, bronchitis, cough (Dahal, 2019).	The plant reported containing chemical compound including Alkaloids, Terpenoids, Lignans, Steroids, glycosides, steroids, phenolics, aliphatic compounds, polysaccharides (Chaudhary et al., 2014) and antioxidant (Mehra et al., 2013), antimicrobial activity and antibacterial activity (Duraipandiyan et al., 2012).

356.	<i>Toonaciliata</i> M. Roem. (Meliaceae)	Bark	Bronchitis , cough	Decoction of bark used against bronchitis, cough (Dahal, 2019).	Various chemicals Phytosterol, phenols, tenins, alkaloids, anthraquinone and antibacterial activity (Gautam et al., 2010).
357.	<i>Tricholepidium superficiale</i> (Blume) Fraser-Jenk. (Polypodiaceae)	Rhizome	Cough & Cold	About 20 gm paste obtained by crushing fresh rhizome along with seeds of <i>Piper</i> <i>nigrum</i> is taken orally to cure cough and cold. It should be taken thrice a day till the disease is cured (Choudhury, 1999).	Not reported
358.	<i>Trichosanthes</i> <i>tricuspidata</i> Lour. (Cucurbitaceae)	Leaves	Asthma and cough	The smoke of dried leaves is inhaled to get relief of asthmatic attack by the local people in the Nungba and Irang areas (Rongmei) in Manipur (Singh,	Anti-Inflammatory (Ahuja et al., 2019).

				1990). Dried leaves smoked ascigrettes to cure asthma and cough (Dahal, 2019).	
359.	<i>Tridax procumbens</i> (L.) L. Asteraceae	Flower	Cough & Cold	Flowers head chewed to treat cough and cold (Dahal, 2019).	<i>T. procumbens</i> contains flavone glycosides, chromone glycosides, sterols and polysaccharides (Agrawal et al., 2010) Antimicrobial (Perumal et al., 1999) Antiinflammatory (Margaret et al., 1998), Antioxidant (Agrawal et al., 2009) activity are reported.
360.	Trigonellafoenum- graecum L. (Fabaceae)	Seed	Bronchitis	Infusion of seed powder is given in bronchitis and influenza (five teaspoonfuls, once ortwice daily till cure). (Nath et al., 2008)	Antioxidant (Baquer et al., 2011), anti-inflammatory (Vyas et al., 2008), antibacterial (Haouala et al. 2008) effect are reported.
361.	<i>Tropaeolum majus</i> L. (Tropaeolaceae)	Leaf	Bronchitis and cough.	Leaf or flower juice taken with honey against indigestion, cough	Biologically active compounds such as flavonoids, glucosilonates, fatty acids, essential oil, chlorogenic acid, amino acids, cucurbitacins,

				and bronchitis. (Dahal, 2019).	proteins and carotenoids are reported (Brondani, 2016). Antioxidant, anti-inflammatory, and antimicrobial activity are also reported (Bazylko et al., 2013).
362.	<i>Tylophora indica</i> (Burm. f.) Merr. (Apocynaceae)	Leaf	Asthma	Leaf juice is used in Asthma (Rama Shankar & Rawat, 2013).	The plant has been reported to contain various alkaloid viz Tylophorine, tylophorinine, tylophorinidine, septicine, isotylocrebrine, tylophorinicine, sterols, flavanoids, wax, resins, and tannins (Govindhari et al., 1975). Antibacterial (Balasubramanian et al., 2010), Antiallergic (Nayampalli et. al., 1979) property are reported.
363.	<i>Urena lobata</i> L. (Malvaceae)	Leaves and Root	Cough	Juice of the fresh leaves along with honey is given to cure cough (Nonibala, 2010). Root chewed to cure cough (Dahal, 2019).	Chemical Alkaloids, flavonoids, saponins, tannins and biological effect like Anti-inflammatory (Babu et al. 2016), Antioxidant (Lissy et al. 2006), Antimicrobial (Adewale et al. 2007) are reported.
364.	<i>Urtica dioica</i> Linn. (Urticaceae)	Whole plant	Cough	Decoctionisusedagainstcough(Pradhanand	Antioxidant (Mavi et al., 2004), anti-inflammatory, antiviral (Krystofova et al., 2010),

				Badola, 2008). Boiled leaves taken to cure cough, cold (Dahal, 2019).	antibacterial and antimicrobial (Kukrik et al., 2012).
365.	Verbascum Thapsus L. (Scrophulariaceae).	Leaves	Asthma and spasmodic cough	Dried leaves smoke to relieve irritations of upper respiratory tract, in asthma and spasmodic cough (Dahal, 2019)	Various chemical constituents like saponins, iridoid and phenylethanoid glycosides, flavonoids, vitamin C, minerals and anti-inflammatory, antioxidant (Kumar and Singh, 2011), antimicrobial (Khan et al., 2011), antiviral properties (Rajbhandari et al., 2009) are reported.
366.	Chrysopogon zizanioides (L.) Roberty (Poaceae)	Root	Asthma, cough	Decoction of root taken against asthma, cough (Dahal, 2019).	Antioxidant (Luqman et al., 2009), antibacterial (Luqman et al., 2005), anti-inflammatory properties (Balasankar et al., 2013).
367.	Viburnum foetidumWall (Adoxaceae)	Leaves & Root	Anti- spasmodic and asthma.	Leaves and roots are used (Zhasa et al., 2015).	Not reported.
368.	<i>Viola diffusa</i> Ging. (Violaceae)	Root	Cough	Infusion of root useful in treating cough (Dahal, 2019).	Anti-hepatitis B virus activities (Dai et al., 2015).

369.	Viola pilosa Blume. (Violaceae)	Whole plant	Cough	The crushed extract of the plant is used in cough and cold (Devi, 2013). Decoction of whole plant taken against asthma, cough (Dahal, 2019).	Various bioactive compounds flavonoids, glycosides, proteins, fats, alkaloids, steroids, saponins, carbohydrates, tannins and antimicrobial activity are reported (Bakht et al., 2017).
370.	<i>Vitex peduncularis</i> Wall. (Verbenaceae)	Bark	Chest pain	The bark juice is applied externally in chest pain (Sharma et al., 2001).	Biologically active chemical constituents pachypodol, ursolic acid, 2α -hydroxyursolic acid, vitexin and peduncularcin are reported (Meena et al., 2011); Antioxidant activity (Haque, 2012).
371.	Vitex negundo (Linn.) (Verbenaceae)	Leaves	Cough	Leaf juice taken to cure cough (Dahal, 2019).	Anti-inflammatory Activity (Chawla et al., 1992), Antioxidant Activity (Zheng et al., 1999; Zheng and Luo, 1999; Onu et al., 2004).
372.	Xanthium strumarium L. (Asteraceae)	Shoot	Cough	Infusion of shoot effective against cough (Tsering, 2017).	Antioxidant, antimicrobial, Antimalarial, Antiallergic activity (Kamboj&Saluja, 2010).
373.	Xylosma longifolia Clos (Salicaceae)	Leaf	Bronchitis & Cough	About 100 ml decoction of the	Antimicrobial, Antioxidant and anti-dermatophytic properties (Devi

				leaf is prescribed once daily for 5-7 days incough, bronchitis in Manipur (Salam, 2013).	et al., 2013)
374.	Zanthoxylum khasianum Hook. f. (Rutaceae)	Fruits	Cold & Cough	Dried fruit is chewed orally to treat cough (Myrchiang et al., 2018)	Not reported.
375.	Zanthoxylum acanthopodium DC. (Rutaceae)	Fruit	Cough	Fruit are used in toothache and cough (Nonibala, 2010). The seed and leaves are used in chronic fever, indigestion, cough and bronchitis (Sinha, 1996). Leaves are boiled with <i>Phlogacanthusthyr</i> <i>siflorus</i> leaves and the decoction is prescribed among	Anti-inflammatory activity (Dutta et al., 2013).

				the Kom community in Manipur (Kom et al., 2018).	
376.	Zanthoxylum armatum DC. (Rutaceae)	Dried fruit	Cough, Bronchitis and throat pain	The dried fruits are warmed and eaten against cough, bronchitis and throat pain (Khongsai et al., 2011).	Antibacterial, antiviral, antifungal and cytotoxic activities (Phuyal et al., 2018).
377.	Zanthoxylum nitidum (Roxburgh) DC. (Rutaceae)	Root		Root pounded and made into paste with one or two cloves, shoots of <i>Ocimum basilicum</i> L. and a little common salt is given in asthma (5 gm, twice daily for a month). (Nath et al., 2008).	5,6-dihydro-6-methoxynitidine (1), dictamnine (2), gamma-fagarine (3), skimmianine (4), and 5- methoxydictamnine (5), were isolated from the roots of Zanthoxylumnitidum (Yang & Cheng, 2008); Antiviral and antifungal effects (Yang & Cheng, 2008).
378.	<i>Zingiber gracile</i> Jack (Zingiberaceae)	Leaves	Cough & Bronchitis	Aromatic oil extracted from leaves taken orally (Lalramnghinglova	Not reported.

				, 2016)	
379.	Zingiber montanum (J. Koenig) Link ex A. Dietr. (Zingiberaceae)	Rhizome	Cough & Cold	Decoction of rhizome is warmed and taken orally to cure cough and cold. The powder of tuber is mixed with honey and taken orally to treat cough among Kom community in Manipur (Kom et al., 2018).	Antioxidant activity and major volatile oil components (Manochai et al., 2010).
380.	Zingiber zerumbet (L.) Roscoe ex Sm.			Rhizome roasted and chewed to treat cough (Dahal, 2019).	Antipyretic, Anti-inflammatory, Antibacterial activity (Haque & Jantan, 2017).
381.	Zingiber officinale (Zingiberaceae)	Rhizome	Cough, fever & Bronchitis	Juice of rhizome mixed with leaf juice of Ocimum basilicum L., Leucas plukenetii (Roth.) Spr., and Justicia adhatodaL. (10 ml each) is given to	Antimicrobial activity (Riaz et al., 2015), Anti-inflammatory effect (Penna et al., 2003), Anti-viral effect (San Chang et al., 2013).

and cold (Wangpan et al., 2019).					
Ripe fruit paste Flavonoids, glycosides, sa 382 Zizyphus mauritiana Ernit Cough Ripe fruit paste Flavonoids, glycosides, sa	382.	Fruit	Cough	Ripe fruit paste taken against	phenols, lignins, sterols and tann

Conclusions

In this review, we described the medicinal plants used to treat respiratory disorders in North East India. Local people or traditional healers are using plants without any scientific base. There is a gap between traditional use of plants and scientific evaluation in terms of pharmacological investigation. Although maximum species reported in this review are scrutinized for phytochemicals property, but details study leading to the discovery of novel active biocompound is yet to be carried out. In recenttime during this COVID pandemic, it is important to collect the valuable knowledgefrom traditional healers regarding medicinal use of plantsto treat respiratory problems and should focus on the useful pharmacological and phytochemical evaluation of medicinal plants for the identification of novel compounds as well as for their protection, usefulness and effectiveness of this disease. This review provides a baseline data for initial screening of promising plantsused in respiratory disorders in this north eastern region, India.

References

- Abat, J.K., Kumar, S. & Mohanty, A., 2017. Ethnomedicinal, Phytochemical and Ethnopharmacological Aspects of Four Medicinal Plants of Malvaceae Used in Indian Traditional Medicines: A Review. *Medicines*, 4: 1-33, doi:10.3390/medicines 4040075.
- Abdallah, M. S. & Muhammad, A. 2018. Antibacterial activity of leaves and fruit extract of *Tamarindusindica* against clinical isolates of Escherichia coli and Shigella at Potiskum Yobe state, Nigeria. *Journal of Analytical & Pharmaceutical Research*, 7(5): 606-609.
- Agarwal, S.S. & Kalpana, S. 1988. Anti-inflammatory activity of flowers of Rhododendron arboreum (SMITH) in rat's hind paw oedema induced by various phlogistic agents. *Indian Journal of Pharmacology*, 20: 86-89.
- Agnihotri, S., Wakode, S. & Ali, M. 2012. Essential oil of Myrica esculenta Buch. Ham: composition, antimicrobial and topical antiinflammatory activities. *Natural Product Research*, 26: 2266-2269.
- Agrawal, S., Mohale, D. & Talele, G. S. 2010) Pharmacological activities of Tridaxprocumbens (Asteraceae). *Medicinal Plants-International Journal of Phytomedicines and Related Industries*, 2(2): 73-78.
- Agrawal, S.S., Talele, G.S. & Surana, S. 2009. Antioxidant activity from fractions from *Tridaxprocumbens*. *Journal of Pharmacy Research*, 2(1): 71-73.
- Ahammed, M. S., Islam, M. S., Rahman, M. M., Koly, S. F., Rakib, K., Zaman, S., Goswami, R., Munira, M.S. & Islam, S. 2018. In vitro Antioxidant and

Cholinesterase Inhibitory Activities of Methanolic Extract of *Grewia nervosa* L. (Family: Tiliaceae) Leaf. *European Journal of Medicinal Plants*, 25(2): 1-33.

- Ahmad, B., Ismail, M., Iqbal, Z., Chaudhry, M.I. 2003. Biological Activities of Geranium wallichianum. Asian Journal of Plant Sciences, 2: 971-973.
- Ahmad, H., Sehgal, S., Mishra, A. & Gupta, R. 2012. *Mimosa pudica* L. (Laajvanti): an overview. *Pharmacognosy reviews*, 6(12): 115–124.
- Ahmed, H. M., Ramadhani, A. M., Erwa, I. Y., Ishag, O. A. O. & Saeed, M. B. 2020. Phytochemical Screening, Chemical Composition and Antimicrobial Activity of *Cinnamon verum* Bark. *International Research Journal of Pure and Applied Chemistry*, 21 (11): 36-43.
- Ahmed, N.U., Akter, R., Satter, M.A., Khan, M.S., Islam, F. & Abdullah, A.M. 2011. AntiInflammatory, Antioxidant and Anti-Diarrheal Effects of Ethanol Extract of Stephania japonica. *Bangladesh Journal of Scientific and Industrial Research*, 46(4): 437-442.
- Ahuja, A., Jeong, D., Kim, M. Y. & Cho, J. Y. 2019. TrichosanthestricuspidataLour. Methanol Extract Exhibits Anti-Inflammatory Activity by Targeting Syk, Src, and IRAK1 Kinase Activity. *Evidence-Based Complementary and Alternative Medicine*, 2019: 1-14.https://doi.org/10.1155/2019/6879346.
- Akinmoladun, A. C., Ibukun, E. O., Afor, E., Obuotor, E. M. & Farombi, E. O. 2007. Phytochemical constituent and antioxidant activity of extract from the leaves of *Ocimumgratissimum*. *Scientific Research and Essays*, 2(5): 163-166.
- Akter, K., Barnes, E. C., Loa-Kum-Cheung, W. L., Yin, P., Kichu, M., Brophy, J. J., Barrow, R.A., Imchen, I., Vemulpad, S.R. & Jamie, J. F. 2016. Antimicrobial and antioxidant activity and chemical characterisation of *Erythrina stricta* Roxb. (Fabaceae). *Journal of ethnopharmacology*, 185: 171-181.
- Alam, F. & Najum us Saqib, Q. 2015. Pharmacognostic standardization and preliminary phytochemical studies of *Gaultheria trichophylla*. *Pharmaceutical biology*, *53*(12): 1711-1718.
- Alam, K., Pathak, D. & Ansari, S.H. 2011. Evaluation of Anti-Inflammatory activity of Amomiumsubulatum fruit extract. International Journal of Pharmaceutical Sciences and Drug Research, 3(1): 35-37.
- Al-Snafi, A. E. 2016. Pharmacological importance of *Clitoriaternatea*–A review. *IOSR Journal of Pharmacy*, 6(3): 68-83.
- Al-Snafi, A. E. 2017. The pharmacological potential of *Dactyloctenium aegyptium*-A review. *Indo American Journal of Pharmaceutical Sciences*, 4(1): 153-159.

- Ambade, S. V. & Bhadbhade, B. J. 2015. In vitro comparison of antimicrobial activity of different extracts of *Cymbopogon citratus* on dental plaque isolates. *International Journal of Current Microbiology and Applied Sciences*, 4(7): 672-681.
- Anand, S. P., Doss, A. & Nandagopalan, V. 2011. Antibacterial studies on leaves of Clitoria ternatea Linn.- A high potential medicinal plant. *International journal* of applied biology and pharmaceutical technology, 2(3): 453-456.
- Anees, S., Dar, K. B., Bhat, A. H., Showkat Ahmad, S. & Hamid, R. 2018. Anti-Hyperlipidemic and Antioxidant Capacity of Active Extracts of *Fragaria nubicola* in High Fat Diet Fed Hyperlipidemic Rats. *International Journal of Pharmaceutical Science and Research*, 9(6): 2228-2237.
- Annesi-Maesano, I., Lundbäck, B. & Viegi, G. (Eds.). (2014). *Respiratory Epidemiology: ERS Monograph* (Vol. 65). European Respiratory Society, UK
- Antony, M., Menon, D. B., Joel, J., Lipin, D., Arun, K. & Thankamani, V. 2011. Phytochemical analysis and antioxidant activity of *Alstonia scholaris*. *Pharmacognosy Journal*, 3(26): 13-18.
- Aranya, J., Vanya, J. & Ajeya, J. 2016. Study on ethnomedicinal plants of Sherpas of Sikkim, Himalayas. *Journal of Traditional and Folk Practices*, 02, 03, 04(1): 174 – 177.
- Arokiyaraj, S., Sripriya, N., Bhagya, R., Radhika, B., Prameela, L. & Udayaprakash, N. K. 2012. Phytochemical screening, antibacterial and free radical scavenging effects of *Artemisia nilagirica*, *Mimosa pudica* and *Clerodendrum siphonanthus*–an in–vitro study. *Asian Pacific Journal of Tropical Biomedicine*, 2(2): S601-S604.
- Arora, C. & Tamrakar, V. 2017. *Gmelina arborea*: Chemical constituents, pharmacological activities and applications. *International Journal of Phytomedicine*, 9(4): 528-542.
- Arora, S., Yadav, V., Kumar, P. & Kumar, D. 2014. Antimicrobial studies of leaf extracts from *Desmodium heterocarpon* (L.) DC. *Medicinal Plants-International Journal of Phytomedicines and Related Industries*, 6(3): 206-208.
- Arthan, D., Svasti, J., Kittakoop, P., Pittayakhachonwut, D., Tanticharoen, M. & Thebtaranonth, Y. 2002. Antiviral isoflavonoidsulfate and steroidal glycosides from the fruits of *Solanum torvum*. *Phytochemistry*, 59: 459-463.
- Asadujjaman, M., Mishuk, A. U., Hossain, M. A. & Karmakar, U. K. 2014. Medicinal potential of *Passiflorafoetida* L. plant extracts: biological and pharmacological activities. *Journal of integrative medicine*, 12(2): 121-126.

- Asano, J., Chiba, K., Tada, M. & Yoshii, T. 1996. Antiviral activity of lignans and their glycosides from *Justicia procumbens*. *Phytochemistry*, 42: 713-717.
- Ashokkumar, K., Selvaraj, K. & Muthukrishnan, S. D. 2013. Cynodon dactylon (L.) Pers.: An updated review of its phytochemistry and pharmacology. Journal of Medicinal Plants Research, 7(48): 3477-3483.
- Ayoob, F.A., Awad, H.M., El-Kousy, S.M., Rashed, K.N. & AlSayed, N. H. 2014. Phytochemical and biological investigations of *Terminalia bellerica* Roxb. leaves. *Journal of Pharmacy Research*, 8(4): 500-510.
- Azab, S. S., Abdel Jaleel, G. A. & Eldahshan, O. A. 2017. Anti-inflammatory and gastroprotective potential of leaf essential oil of *Cinnamomum glanduliferum* in ethanol-induced rat experimental gastritis. *Pharmaceutical biology*, 55(1): 1654-1661.
- Badhani, A., Rawat, S., Bhatt, I. D. & Rawal, R. S. 2015. Variation in Chemical Constituents and Antioxidant Activity in Yellow Himalayan (*Rubus ellipticus* Smith) and Hill Raspberry (Rubus niveus Thunb.). *Journal of Food Biochemistry*, 39(6): 663-672.
- Bagad, A. S., Joseph, J. A., Bhaskaran, N. & Agarwal, A. 2013. Comparative evaluation of anti-inflammatory activity of curcuminoids, turmerones, and aqueous extract of Curcuma longa. *Advances in pharmacological sciences*, 2013. Article ID 805756, <u>http://dx.doi.org/10.1155/2013/805756</u>
- Bagad, A.S., Joseph, J.A., Bhaskaran, N. & Agarwal, A. 2013. Comparative Evaluation of Anti-Inflammatory Activity of Curcuminoids, Turmerones, and Aqueous Extract of *Curcuma longa*. Advances in Pharmacological Science, 2013: 805756. doi: 10.1155/2013/805756.
- Bagalkotkar, G., Sagineedu, S. R., Saad, M. S. & Stanslas, J. 2006. Phytochemicals from *Phyllanthus niruri* Linn. and their pharmacological properties: a review. *Journal of pharmacy and pharmacology*, 58(12): 1559-1570.
- Bakht, J., Panni, M. K. & Shafi, M. 2017. Antimicrobial potential and phyto chemical analysis of different solvent extracted samples of viola pilosa. *Pakistan Journal of Botany*, 49(4): 1485-1489.
- Balasankar D., Vanilarasu, K., Preetha P.S., Umadevi R.M. & Bhowmik D. 2013. Traditional and Medicinal Uses of Vetiver. Journal of Medicinal Plants Studies, 1:191–200.
- Banothu, V., Neelagiri, C., Adepally, U., Lingam, J. & Bommareddy, K. 2017. Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant *Albiziaodoratissima*. *Pharmaceutical biology*, 55(1): 1155-1161.

- Baquer, N. Z., Kumar, P., Taha, A., Kale, R. K., Cowsik, S. M. & McLean, P. 2011. Metabolic and molecular action of *Trigonellafoenum-graecum* (fenugreek) and trace metals in experimental diabetic tissues. *Journal of biosciences*, 36(2): 383-396.
- Baraik, B., Jain, P. & Sharma, H. P. 2014. Achyranthes aspera L.: As a Source of Bio-fungicide. American Journal of Advanced Drug Delivery, 2(6): 686-696.
- Baral, B., Vaidya, G. S., Maharjan, B. L. & Da Silva, J. A. T. 2015. Phytochemical and antimicrobial characterization of *Rhododendron anthopogon* from high Nepalese Himalaya. *Botanica*, 20(2): 142-152.
- Barrion, A. S. A., Hurtada, W. A., Papa, I. A., Zulayvar, T. O. & Yee, M. G. 2014. Phytochemical composition, antioxidant and antibacterial properties of pummelo (*Citrus maxima* (Burm.)) Merr. against Escherichia coli and Salmonella typhimurium. *Food and Nutrition Sciences*, 5: 749-758.
- Basma, A. A., Zakaria, Z., Latha, L. Y. & Sasidharan, S. 2011. Antioxidant activity and phytochemical screening of the methanol extracts of *Euphorbia hirta* L. Asian Pacific journal of tropical medicine, 4(5): 386-390.
- Batool, R., Aziz, E., Mahmood, T., Tan, B. K. & Chow, V. T. 2018. Inhibitory activities of extracts of *Rumex dentatus*, *Commelina benghalensis*, *Ajuga bracteosa*, *Ziziphus mauritiana* as well as their compounds of gallic acid and emodin against dengue virus. *Asian Pacific Journal of Tropical Medicine*, 11(4): 265-271.
- Bawankule, D. & Chaturvedi, A. 2014. Phytochemical investigation of Aristolochia indica L. An Ethno-medicine on Snake Bite. International Journal of Life Sciences, Special Issue A2: 172-174.
- Bazylko, A., Granica, S., Filipek, A., Piwowarski, J., Stefańska, J., Osińska, E., & Kiss, A. K. 2013. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolummajus L. *Industrial Crops* and Products, 50: 88-94.
- Bedows, E. & Hatfield, G.M. 1998. "An investigation of the antiviral activity of *Podophyllum peltatum*". *Journal of Natural Product*, 245: 725–729.
- Benmehdi, H., Fellah, K., Amrouche, A., Memmou, F., Malainine, H., Dalile, H., &Siata, W. 2017. Phytochemical study, antioxidant activity and kinetic behaviour of flavonoids fractions isolated from *Prunus persica* L. Leaves. *Asian Journal of Chemistry*, 29(1): 13-18.
- Bhaigyabati, T., Devi, P. G., Devi, N. R. & Bag, G. C. 2017. Antioxidant activity, total phenolic and total flavonoid content of *Oenanthe javanica* Blume (DC)

collected from Imphal West District. International Research Journal of Pharmacy, 8: 63-68.

- Bhalerao, S.S., Vadnere, G.P., Patil, A.V., Chirmade, H.D., Patil, S.N. 2011. In Vitro antioxidant activity of over ground parts of *Cynodon dactylon*. L. Pers. *International Journal of Herbal Drug Research*, 2(2):7-10.
- Bhattacharyya, P. &Bishayee, A. 2013. Ocimum sanctum Linn. (Tulsi): an ethnomedicinal plant for the prevention and treatment of cancer. Anti-cancer drugs, 24(7): 659-666.
- Bhattacharyya, R., Medhi, K.K. & Borkataki, S. 2019. Phytochemical analysis of Drymaria cordata (L.) Willd. Ex Schult. (Whole plant) used by tea tribes of erstwhile Nagaon district of Assam, India. *International Journal of Pharmaceutical Sciences and Research*, 10(9): 4264-4269. doi: 10.13040/JJPSR.0975-8232.
- Bhattarai, S., Chaudhary, R. P., Taylor, R. S. & Ghimire, S. K. 2009. Biological Activities of some Nepalese Medicinal Plants used in treating bacterial infections in Human beings. *Nepal Journal of Science and Technology*, 10: 83-90.
- Bhutkar, M. A. & Bhise, S. B. 2011. Studies on Antioxidant Properties of Catharanthus rosea and Catharanthus alba. Journal of Current Pharma Research, 1(4): 337-340.
- Bina, F. & Rahimi, R. 2017. Sweet marjoram: a review of ethnopharmacology, phytochemistry, and biological activities. *Journal of evidence-based complementary & alternative medicine*, 22(1): 175-185.
- Bisht, V. K., Negi, J. S., Bh, A. K. &Sundriyal, R. C. 2011. Amonum subulatum Roxb: Traditional, phytochemical and biological activities-An overview. African Journal of Agricultural Research, 6(24): 5386-5390.
- Biswas, S. K., Chowdhury, A., Das, J., Chowdhury, A., Raihan, S. Z. & Muhit, M. A. 2012. Phytochemical investigation with assessment of Cytotoxicity and Antibacterial activities of the ethanol extract of *Elaeocarpus serratus*. *American journal of plant physiology*, 7(1): 47-52.
- Bolleddu, R., Ghosal, S., Paria, D., Dutta, S., Hazra, J. & Chatterjee, R. 2018. Establishment of Quality Parameters for Leaf, Stem and Root of Sonchus wightianus DC. through Pharmacognostical Standardization. International Journal of Pharma Research and Health Sciences, 6(1): 2290-2294.
- Borah, A., Yadav, R.N.S. & Unni, B.G. 2012. Evaluation of antioxidant activity of different solvent extracts of *Oxalis corniculata* L. *Journal of Pharmacy Research*, 5(1): 91-93.

- Borkataky, M. 2014. Antimicrobial and antioxidant activity of *Smilax perfoliata* Lour. *Der Pharmacia Lettre*, 6 (6): 246-250.
- Bose, U., Gunasekaran, K., Bala, V. & Rahman, A. A. 2010. Evaluation of phytochemical and pharmacological properties of *Dillenia indica* Linn. leaves. *Journal of Pharmacology and Toxicology*, 5(5): 222-228.
- Brondani, J. C., Cuelho, C. H. F., Marangoni, L. D., de Lima, R., Guex, C. G., de FrançaBonilha, I. & Manfron, M. P. 2016. Traditional usages, botany, phytochemistry, biological activity and toxicology of *Tropaeolum majus* L.-A review. *BoletínLatinoamericano y del Caribe de Plantas Medicinales y Aromáticas*, 15(4): 264-273.
- Bushra, S. & Muhraf, F.A. 2009. Effect of extraction solvent/Technique on the antioxidant activity of selected medicinal plant extracts. *Molecules*, 14: 2168– 2180.
- Cáceres, A., Girón, L. & Alvsarado, S. 1987. Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of dermatomucosal diseases. *Journal of Ethnopharmacology*, 20: 223–237.
- Chah, K.F., Muko, K.N & Oboegbulem, S.I. 2000. Antimicrobial activity of methanolic extract of *Solanum torvum* fruit. *Fitoterapia*, 71: 187-189.
- Chahar, M. K., DS, S. K., Geetha, L., Lokesh, T. & Manohara, K. P. 2013. *Mesua ferrea* L.: A review of the medical evidence for its phytochemistry and pharmacological actions. *African Journal of Pharmacy and Pharmacology*, 7(6): 211-219.
- Chaiyan, B., Sunanta, W., Oranart, S. & Rasamee, C. 2009. Antioxidant capacity and phenolic content of *Mimusops elengi* fruit extract. *Kasetsart Journal: Natural Science*, 43: 21–27.
- Chakraborthy, G.S. 2009. Pharmacognostical and phytochemical evaluation of leaf of *Abutilon indicum* (Linn.). *International Journal of Pharmaceutical Sciences and Drug Research*, 1(1): 28-31.
- Chakraborty, D. & B. Shah, 2011. Antimicrobial, anti-oxidative and anti-hemolytic activity of *Piper betel* leaf extracts. *International Journal of Pharmacy and Pharmaceutical Sciences*, 3: 192-199.
- Chakraborty, T., Saha, S. & Bisht, N. S. 2017. First Report on the Ethnopharmacological Uses of Medicinal Plants by Monpa Tribe from the Zemithang Region of Arunachal Pradesh, Eastern Himalayas, India. *Plants*, 6:13. [doi:10.3390/plants6010013].

- Chakraborty, U. & Das, H. 2010. Antidiabetic and antioxidant activities of *Cinnamomumtamala* leaf extracts in Stz-treated diabetic rats. *Global Journal of Biochemistry and Biotechnology*, 5: 12-18.
- Chanchal, R., Balasubramaniam, A., Navin, R. & Nadeem, S. 2015. *Tabernaemontana divaricata* leaves extract exacerbate burying behavior in mice. Avicenna journal of phytomedicine, 5(4): 282-287.
- Chandrasekar, S. B., Bhanumathy, M., Pawar, A. T., & Somasundaram, T. (2010). Phytopharmacology of *Ficus religiosa*. *Pharmacognosy reviews*, 4(8): 195-199.
- Chandrawanshi, N. K., Tandia, D. K. & Jadhav, S. K. 2017. Nutraceutical properties evaluation of *Schizophyllum commune*. *Indian Journal of Scientific Research*, 13(2): 57-62.
- Chang, C.L. & Lin, C.S. 2010. Development of antioxidant activity and pattern recognition of *Terminalia chebula* Retzius extracts and its fermented products. *Hung Kuang Journal*, 61: 115–129.
- Chankija, S. 1999. Folk Medicinal Plants of the Nagas in India. *Asian Folklore Studies*, 58(1): 205-230.
- Chatterjee, A. & Dutta, C. 1963. The structure of Piper longumine, a new alkaloid isolated from the roots of *Piper longum* Linn. (Piperceae). *Science Culture*, 29: 568-570.
- Chatterjee, A. & Dutta, C. 1967. The alkaloids of *Piper longum* Linn. Structure and synthesis of piper longumine and piper longuminine. *Tetrahedron*, 23: 1769-1781.
- Chaudhary, N., Siddiqui, M.B. & Khatoon, S. 2014. Pharmacognostical evaluation of *Tinospora cordifolia* (Willd) Meirs and identification of biomarkers. *Indian Journal of Traditional Knowledge*, 13(3): 543–550.
- Chaudhary, S., Hisham, H. & Mohamed, D. 2018. A review on phytochemical and pharmacological potential of watercress plant. *Asian Journal of Pharmaceutical and Clinical Research*, 11(12): 102-107.
- Chawla, A.S., Sharma, A.K., Handa S. S. &Dhar, K. L. 1992. Chemical Investigation and anti-inflammatory activity of *Vitex negundo* seeds. *Journal of Natural Products*, 55(2): 163-167.
- Chekuri, S., Vankudothu, N., Panjala, S., Rao, N.B.&Anupalli, R. R. 2016. Phytochemical analysis, anti-oxidant and anti-microbial activity of *Acalypha indica* leaf extracts in different organic solvents. *International Journal of Phytomedicine*, 8: 444-452.

- Chen, J.L., Blank, P., Stoddart, C.A., Bogan, M. & Rozhon, E.J. 1998. New iridoids from medicinal plants *Barleria prionitis* with potent activity against respiratory syncytial virus. *Journal of Natural Products*, 1998, 61(10): 1295-1297.
- Chetan, C., Suraj, M., Maheshwari, C., Arhuland, A. & Priyanka, P. 2011. Screening of antioxidant activity and phenolic content of whole plant of *Barleria prionitis* Linn. *International Journal of Research in Ayurveda and Pharmacy*, 2: 1313-1319.
- Chetia, J., &Saikia, L. R. 2020. Phytochemical Analysis of *Leucas aspera* (Willd.) Link. from Dibrugarh. *Journal of Scientific Research*, 64(2): 96-103.
- Chhetri, D.R. 2005. Ethnomedicinal plants of the Khangchendzonga National park, Sikkim, India. *Ethnobotany*, 17: 96-103.
- Choudhury, M.D. 1999. *Ethnomedico botanical aspects of Reang tribe of Assam a comprehensive study*. Ph.D. Thesis (Unpublished) Gauhati University, Assam.
- Choudhury, P.R., Choudhury, M.D., Ningthoujam, S.S., Das, D. Nath, D., Das Talukdar, A. 2015. Ethnomedicinal plants used by traditional healers of North Tripura district, Tripura, North East India. *Journal of Ethnopharmacology*, 166: 135-148.
- Chouni, A. & Paul, S. 2018. A review on phytochemical and pharmacological potential of *Alpinia galanga*. *Pharmacognosy Journal*, 10(1): 9-15.
- Chowdhury, M. R., Chowdhury, K. H., Hanif, N. B., Sayeed, M. A., Mouah, J., Mahmud, I., Kamal, A.T.M. M., Chy, M. N. U. & Adnan, M. 2020. An integrated exploration of pharmacological potencies of *Bischofia javanica* (Blume) leaves through experimental and computational modeling. *Heliyon*, 6(9): e04895.
- Chukwuma, E. R., Obioma, N. & Christopher, O. I. 2010. The phytochemical composition and some biochemical effects of Nigerian tigernut (*Cyperus esculentus* L.) tuber. *Pakistan Journal of Nutrition*, 9(7): 709-715.
- Chung, I.M., Rajakumar, G., Lee, J.H., Kim, S.H. &Thiruvengadam, M., 2017. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of *Ecliptaprostrata*. *Applied Microbiology and Biotechnology*, 101: 5247–5257. <u>https://doi.org/10.1007/s00253-017-8363-9</u>.
- Cruz, R.Y.D., Ang, A.M.G., Doblas, G.Z., Librando, I.L., Porquis, H.C., Batoctoy, B.C.L.S., Cabresos, C.C., Jacalan, D.R.Y. & Amoroso, V.B. 2017. Phytochemical screening, antioxidant and antiinflammatory activities of the three fern (Polypodiaceae) species in Bukindon, Philipines. *Bulletin of Environment, Pharmacology and Life Sciences*, 6(3): 28-33.

- Cuellar, C., Armando, O. & Dennis, O. 2010. Preliminary Phytochemical and Antimicrobial Evaluation of the Fresh and Dried Whole Plant Extracts from *Commelina benghalensis. Revista Colombiana de Ciencia Animal*, 2(1): 104-116.
- Cullen, W.J., Dulchavsky, S.A., Thomas, P.A., Devasagayam, Venkataraman, B.V. & Dutta, S. 1997. Effect of Maharishi AK-4 on H2O2- Induced oxidative stress in isolated rat hearts. *Journal of Ethnopharmacology*, 56: 215-222.
- Dahal, S. 2019. *Studies on traditional medicinal plants of Sikkim*. Ph.D. Thesis, Gauhati University.
- Dai, J. J., Tao, H. M., Min, Q. X. & Zhu, Q. H. (2015). Anti-hepatitis B virus activities of friedelolactones from *Viola diffusa* Ging. *Phytomedicine*, 22(7-8), 724-729.
- Daimari, M. &Swargiary, A. 2020. Study of Phytochemical Content and Antioxidant Properties of *Musa balbisiana* Corm Extract. *Indian Journal of Pharmaceutical Science*, 82(4): 707-712.
- Dall'Acqua, S., Minesso, P., Shresta, B. B., Comai, S., Jha, P. K., Gewali, M. B., Greco, E., Cervellati, R., & Innocenti, G. (2012). Phytochemical and antioxidant-related investigations on bark of *Abies spectabilis* (D. Don) Spach. from Nepal. *Molecules*, *17*(2): 1686–1697. https://doi.org/10.3390/molecules17021686
- Dandona, L., Dandona, R., Kumar, G. A., Shukla, D. K., Paul, V. K., Balakrishnan, K. & Thakur, J. S. (2017). Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study. *The Lancet*, 390 (10111): 2437-2460.
- Danlami, U. & Simon, O. 2017. A Comparative Study on the Phytochemicals and Antimicrobial Activities of the Hexane Extracts of the Leaves of *Tectona* grandis and Its Mistletoe. American Journal of Heterocyclic Chemistry, 3(2):19-22.
- Dar, M. A., Masoodi, M. H. & Mir, M. A. 2014. Phytochemical screening and antioxidant potential of root of *Mentha arvensis* L. from Kashmir region. *International Journal of Pharmaceutical Sciences and Research*, 5(4): 1572-1580.
- Das, H.B., Majumdar, K., Datta, B.K. & Ray, D. 2009. Ethnobotanical uses of some plants by Tripuri and Reang tribes of Tripura. *Natural Product Radiance*, 8(2): 172-180.
- Das, M., Sarma, B. P., Ahmed, G., Nirmala, C. B. & Choudhury, M. K. 2012. In vitro anti oxidant activity total phenolic content of *Dillenia indica*, *Garcinia*

penducalata, commonly used fruits in Assamese cuisine. *Free Radicals and Antioxidants*, 2(2): 30-36.

- Dash, P. R. & Sheikh, Z. 2015. Preliminary studies on phytochemicals and cytotoxic activity of methanolic rhizome extract of *Hedychium coronarium*. *Journal of pharmacognosy and Phytochemistry*, 4(1): 136-139.
- Datta, S., Chakraborty, D. D., Sarkar, N., Chakraborty, P., Deb, J. & Ghosh, A. 2013. Pharmacognostic Profiling and Pharmacological Screening of *Zanthoxylum* acanthopodium DC–A Sub-Himalayan Shrub of Ethnomedicinal Value, American Journal of Pharm Tech Research, 3(3): 712-720.
- David, L.L., Alice, M.C., Charles, D.H., Barbara, M., Claus, M., Passreiter, J.C., Omar, I. & Adewole, L.O. 1998. Antimicrobial properties of Honduran medicinal plants. *Journal of Ethnopharmacology*, 63(1): 253-263.
- Debbarma, M., Pala, N. A., Kumar, M. & Bussmann, R.W. 2017. Traditional knowledge of medicinal plants in tribes of Tripura in northeast, India. *African Journal of Traditional, Complementary and Alternative Medicines*, 14 (4): 156-168.
- Deepa, H. R. & Nalini, M. S. 2013. Phytochemical screening, total phenolic content and in vitro antioxidant studies of leaf, bark and flower extracts of *Schefflera* spp. (Araliaceae). *Journal of applied pharmaceutical science*, 3(11): 94-98.
- Deka, K. & Nath, N. 2014. Indigenous Medicinal Plant Knowledge of Cough or Bronchial Problems in Goalpara District (N.E. India). *International Journal of Pure and Applied Bioscience*, 2 (5): 80-87.
- Devi, M. H. 2013. Macrophytes of Keibul Lamjao National Park, Manipur with special reference to ethnobotanical notes. Ph.D. Thesis, Assam University, Silchar.
- Devi, M. N. & Singh, S.R. 2014. Minerals, Bioactive Compounds, Antioxidant and Antimicrobial activities of Home remedy Therapeutic Herbal Scutellaria discolor (Colebr). International Journal of ChemTech Research, 6(2): 1181-1192.
- Devi, W. J., Laishram, J. M. & Chakraborty, S. 2018. Antioxidant Activity and Polyphenol Contents of *Paris polyphylla* Smith and Prospects of in situ Conservation. *International Journal of Current Microbiology and Applied Sciences*, 7(5): 2355-2367.
- Devi, W. R., Singh, S. B. & Singh, C. B. 2013. Antioxidant and anti-dermatophytic properties leaf and stem bark of *Xylosma longifolium* Clos, *Complementary* and Alternative Medicine, 13: 155.

- Dey, S.K., Middha, S.K., Usha, T., Brahma, B.K. & Goyal, A.K. 2015. In vitro antioxidant profiling of *Bambusa tulda* Roxb. aqueous methanolic leaf extract growing in the forests of Kokrajhar district, BTAD, Assam, India. *International Journal of Fundamental & Applied Sciences*, 4(3): 81-86.
- Dhalwal, K., Deshpande, Y.S. & Purohit, A.P. 2007. Evaluation of in vitro antioxidant activity of Sida rhombifolia (L.) ssp. retusa (L.). Journal of Medicinal Food, 10: 683–688.
- Dhanapal, V. 2017. Pharmocognostical and phytochemical evaluation of leaf and stem of *Euphorbia hirta*. Journal of Pharmacognosy and Phytochemistry, 6(6): 255-262.
- Dolui, A.K., Sharma, H.K., Marein, T.B. & Lalhriatpuii, T.C. 2004. Folk herbal remedies from Meghalaya. *Indian Journal of Traditional Knowledge*, 3(4): 358-364.
- Doss, V. A. &Thangavel, K. P. 2011. Antioxidant and antimicrobial activity using different extracts of Anacardium occidentale L. International Journal of Applied Biology and Pharmaceutical Technology, 2(3): 436-443.
- Duraipandiyan, V., Ignacimuthu, S., Balakrishna, K., Aaharbi, N.A. 2012. Antimicrobial activity of *Tinospora cordifolia*: an ethnomedicinal plant. *Asean Journal of Traditional Knowledge*, 7: 59–65.
- Ekiert, H., Pajor, J., Klin, P., Rzepiela, A., Ślesak, H. & Szopa, A. 2020. Significance of *Artemisia vulgaris* L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. *Molecules*, 25(19): 4415.
- El-Beltagi, H. S., El-Ansary, A. E., Mostafa, M. A., Kamel, T. A. & Safwat, G. 2019. Evaluation of the phytochemical, antioxidant, antibacterial and anticancer activity of *Prunus domestica* fruit. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 47(2): 395-404.
- El-Beltagi, H. S., Mohamed, H. I., Elmelegy, A. A., Eldesoky, S. E. & Safwat, G. (2019). Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia Ficus Indicia) pulp and peel. *Fresenius Environmental Bulletin*, 28(2): 1545-1562.
- Elekofehinti, O. O., Kamdem, J. P., Bolingon, A. A., Athayde, M. L., Lopes, S. R., Waczuk, E. P. & Rocha, J. B. T. 2013. African eggplant (*Solanum anguivi* Lam.) fruit with bioactive polyphenolic compounds exerts in vitro antioxidant properties and inhibits Ca2+-induced mitochondrial swelling. *Asian Pacific journal of tropical biomedicine*, 3(10): 757-766.

- El-Far, A. H., Shaheen, H. M., Alsenosy, A. W., El-Sayed, Y. S., Al Jaouni, S. K. & Mousa, S. A. 2018. *Costus speciosus*: Traditional Uses, Phytochemistry, and Therapeutic Potentials. *Pharmacognosy Reviews*, 12(23): 120-127.
- Elizabeth, K.M. 2005. Anti-microbial Activity of *Terminalia belerica*. *Indian Journal* of *Clinical Biochemistry*, 20(2):150-153.
- El-Mahmood, A. M., Doughari, J. H. &Kiman, H. S. 2010. In vitro antimicrobial activity of crude leaf and stem bark extracts of *Gmelina arborea* (Roxb) against some pathogenic species of Enterobacteriaceae. *African Journal of Pharmacy and Pharmacology*, 4(6): 355-361.
- El-SaberBatiha, G., Magdy Beshbishy, A., G Wasef, L., Elewa, Y. H., A Al-Sagan, A., El-Hack, A., Taya, A.E., Abd-Elhakim, Y.M. & Prasad Devkota, H. 2020. Chemical constituents and pharmacological activities of garlic (*Allium sativum* L.): A review. *Nutrients*, 12(3), 872.https://doi.org/10.3390/nu12030872
- Fahmy, N.M., Al-Sayed, E. &Singab A.N. 2015. Genus Terminalia: A phytochemicals and biological Review. Medicinal & Aromatic Plants, 4: 1-21.
- Fakruddin, M., Mannan, K. S. B., Mazumdar, R. M. &Afroz, H. 2012. Antibacterial, antifungal and antioxidant activities of the ethanol extract of the stem bark of *Clausena heptaphylla. BMC complementary and alternative medicine*, 12(1): 232.
- Farrukh, A. & Iqbal, A. (2003). Broad-spectrum antibacterial and antifungal properties of certain traditionally used Indian medicinal plant. World Journal of Microbiology & Biotechnology, 19: 653–657.
- Forum of International Respiratory Societies (2017). The Global Impact of Respiratory Disease. Second Edition. Sheffield, European Respiratory Society.
- Funde, S. G. 2015. Phytochemicals evaluations, anticancer, antioxidantion and antimicrobial activity of Acorus calamus different solvent extracts. *Journal of Chemical and Pharmaceutical Research*, 7, 495-504.
- Gaire, B. P. & Subedi, L. 2014. Phytochemistry, pharmacology and medicinal properties of *Phyllanthus emblica* Linn. *Chinese journal of integrative medicine*, 1-8.doi: 10.1007/s11655-014-1984-2.
- Galeane, M. C., Martins, C. H., Massuco, J., Bauab, T. I. M. & Sacramento, L. I. V. 2017. Phytochemical screening of *Azadirachta indica* A. Juss for antimicrobial activity. *African Journal of Microbiology Research*, 11(4): 117-122.

- Gambhire, M. N., Wankhede, S. S. & Juvekar, A. R. 2009. Antiinflammatory activity of aqueous extract of *Barleria cristata* leaves. *Journal of Young Pharmacists*, 1(3): 220-224.
- Gami, B. &Parabia, F. 2011. Screening of methanol & acetone extract for antimicrobial activity of some medicinal plants species of Indian folklore. *International Journal of Research in Pharmaceutical Sciences*, 2(1): 69-75.
- Gan, R. Y., Lui, W. Y. &Corke, H. 2016. Sword bean (*Canavalia gladiata*) as a source of antioxidant phenolics. *International Journal of Food Science & Technology*, 51(1): 156-162.
- Ganesh P, Kumar RS, Saranraj P. 2014. Phytochemical analysis and antibacterial activity of pepper (*Piper nigrum* L.) against some human pathogens. *Central European Journal of Experimental Biology*, 3(2): 36-41.
- Gangarao, B., Rao, Y.V., Pavani, S. & Dasari, V.S.P. 2012. Qualitative and quantitative phytochemical screening and in vitro antioxidant and antimicrobial activities of Elephantopusscaber Linn. *Recent Research in Science and Technology*, 4 (4): 15–20.
- Ganie, S. A., Zargar, B. A., Masood, A. & Zargar, M. A. 2012. Effect of long dose exposure of *Podophyllum hexandrum* methanol extract on antioxidant defense system and body and organ weight changes of albino rats. *Asian Pacific Journal of Tropical Biomedicine*, 2(3): S1600-S1605.
- Gautam, A., Jhade, D., Ahirwar, D., Sujane, M. & Sharma, G. 2010. Pharmacognostic evaluation of Toona Ciliata bark. *Journal of Advanced Pharmaceutical Technology and Research*, 1(2): 216-220.
- Gauthaman, K., Banerjee, S.K., Dinda, A.K., Ghosh, C.C. & Maulik, S.K. 2005. *Terminalia arjuna* (Roxb.) protects rabbit heart against ischemic-reperfusion injury: role of antioxidant enzymes and heat-shock protein. *Journal of Ethnopharmacology*, 96: 403–409.
- George, B. & Shanmugam, S. 2014. Phytochemical screening and antimicrobial activity of fruit extract of *Sapindusmukorossi*. *International Journal of Current Microbiology and Applied Sciences*, *3*, 604-611.
- Ghareeb, M. A., Shoeb, H. A., Madkour, H. M., Refahy, L. A., Mohamed, M. A. & Saad, A. M. 2014. Antioxidant and cytotoxic activities of flavonoidal compounds from *Gmelina arborea* (Roxb.). *Global Journal of Pharmacology*, 8(1): 87-97.
- Ghildiyal, S. & Joshi, V.K. 2014. Pharmacognostical studies on *Solanum surrattence* Burm f. Root. *Journal of Pharmacognosy and Phytochemistry*, 3(4): 240–245.

- Ghimire, B. K., Tamang, J. P., Yu, C. Y., Jung, S. J. & Chung, I. M. 2012. Antioxidant, antimicrobial activity and inhibition of α-glucosidase activity by *Betula alnoides* Buch. bark extract and their relationship with polyphenolic compounds concentration. *Immunopharmacology and immunotoxicology*, 34(5): 824-831.
- Gilani, A.H., Khan, A.U., Ali, T., Ajmal, S. 2008. Mechanisms underlying the antispasmodic and bronchodilatory properties of *Terminalia bellerica* fruit. *Journal of Ethnopharmacology*,116 (3): 528-538.
- Giri, H. & Rajbhandari, M. 2020. Phytochemical Evaluation of Some Medicinal Plants of Pyuthan District of Nepal. *Nepal Journal of Science and Technology*, 19(1): 97-106.
- Gogoi, B., Kakoti, B. B., Bora, N. S. & Goswami, A. K. 2013. Phytochemistry and pharmacology of *Phlogacanthus thyrsiflorus*Nees: A Review. *International Journal of Pharmaceutical Sciences Review and Research*, 23(2): 175-179.
- Gogoi, M., Saikia Barooah, M. & Dutta, M. 2019. Use of medicinal plants in traditional health care practices by tribes of Dhemaji district, Assam, India. *International Journal of Herbal Medicine*, 7(5): 1-6.
- Gomathi, V., Palanisamy, P. & Jaykar, B. 2013. Preliminary phytochemical and invitro antioxidant activity of the whole plant of *Acanthospermum hispidum* DC. *International Journal of Medicine and Pharmacy*, 1(1): 22-32.
- Gouthamchandra, K., Mahmood, R. & Manjunatha, H. 2010. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from *Clerodendrum infortunatum* L. *Environmental Toxicology and Pharmacology*, 30(1): 11-18.
- Govindarajan, R., Vijayakumar, M. & Pusphpagadan, P. 2005. Antioxidant approach to disease management and the role of 'Rasayana' herbs of Ayurveda. *Journal* of Ethnopharmacology, 99(2): 165-178.
- Govindhari, T.R. 1975. Tylophora alkaloids, In: R.H.F. Manske (Ed.) *The Alkaloids: Chemistry and Physiology*, 9: 517-528.
- Govt. of India. 2001. *The Ayurvedic pharmacopoeia of India*. New Delhi: Government of India Ministry of Health and Family Welfare Department of Indian System of Medicine and Homoeopathy.
- Goyal, A. K., Basistha, B. C., Sen, A. & Middha, S. K. 2011. Antioxidant profiling of Hippophaesalicifolia growing in sacred forests of Sikkim, India. *Functional Plant Biology*, 38(9): 697-701.

- Grosvenor, P.W., Gothard, P.K., McWilliam, N.C., Supriono, A. & Gray, D. O. 1995. Medicinal plants from Riau Province, Sumatra, Indonesia. Part 1: uses. *Journal of Ethnopharmacology*, 45 (2): 75–95.
- Guha, G., Rajkumar, V., Ashok Kumar, R. & Mathew, L. 2011. Therapeutic potential of polar and non-polar extracts of Cyanthillium cinereum in vitro. *Evidence-Based Complementary and Alternative Medicine*, 2011: 784826. doi: 10.1093/ecam/nep155.
- Gulcin, I., Kufrevioglu, O. I., Oktay, M. & Buyukokuroglu, M.E. 2004. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (*Urtica dioica* L.). *Journal of ethnopharmacology*, 90(2-3): 205-215.
- Guo, J. S., Cheng, C. L. & Koo, M. (2004). Inhibitory effects of CentellaAsiatica Water Extract and Asiaticoside on Inducible Nitric Oxide Synthase During Gastric Ulcer Healing in Rats, *Planta Med.*, 70 (12): 1150-1154.
- Guo, Z., Guo, Q., Zhang, S., Li, C., Chai, X. & Tu, P. 2014. Chemical constituents from the aerial parts of *Meconopsis horridula* (Papaveraceae). *Biochemical Systematics and Ecology*, 55: 329-332.
- Gupta, A., Joshi, A. & Joshi, V. K. 2014. Pharmacognostical study of *Justicia* adhatoda Linn. leaf. *International Journal of Herbal Medicine*, 1(6): 1-4.
- Gupta, P., Bajpai, S.K., Chandra, K., Singh, K.L. & Tandon, J.S. 2005. Antiviral profile of *Nyctanthesarbor-tristis* L. against encephalitis causing viruses. Indian Journal Experimental Biology, 43:1156-1160.
- Haouala, R., Hawala, S., El-Ayeb A, Khanfir, R. &Boughanmi, N. 2008. Aqueous and organic extracts of *Trigonellafoenum-graecum* L. inhibit the mycelia growth of fungi. *Journal of Environmental Sciences*, 20(12):1453-1457.
- Haque, A. &Jantan, I. 2017. Recent Updates on the Phytochemistry, Pharmacological, and Toxicological Activities of *Zingiber zerumbet* (L.) Roscoe ex Sm. *Current Pharmaceutical Biotechnology*, 18(9): 696 – 720.
- Haque, E. 2012. Phyto chemical and Biological Investigation of Vitex Peduncularis Wall. M. Phil Thesis, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangaldesh.
- Hasan, A.A., Hasan, M.C. &Zafrul Azam, A.T.M. 2011. Antimicrobial, Cytotoxic and Antioxidant Activities of *Desmodiumheterocarpon*. *Bangladesh Pharmaceutical Journal*, 14(1): 49-52.
- Hazarika, B. & Dutta, D. 2016. Ethnomedicinal Studies of Deori Tribes of Bihpuria Sub Division, Lakhimpur District, Assam. *IOSR Journal of Biotechnology* and Biochemistry, 2(1): 46-50.

- He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., Fang, J., Wang, M., Zuo, M. & Li, Y. 2020. *Passiflora edulis*: An Insight into Current Researches on Phytochemistry and Pharmacology. *Frontiers in Pharmacology*, 11: 617. doi: 10.3389/fphar.2020.00617.
- Herawaty, G., Reveny, J. & Surjanto. 2017. Antiinflammatory effects of ethanolic extract of purple passion fruit (Passiflora edulis Sims.) peel against inflammation on white male rats foot. *International Journal of ChemTech Research*, 10(4): 201–206.
- Hoque, N., Sohrab, M. H., Debnath, T. & Rana, M. S. 2016. Antioxidant, antibacterial and cytotoxic activities of various extracts of *Thysanolaena maxima* (Roxb) Kuntze available in Chittagong hill tracts of Bangladesh. *International Journal Pharmacy and Pharmaceutical Science*, 8: 168-172.
- Hussain, I., Khan, H. & Khan, M.A. 2010. Screening of selected medicinal plants for the antioxidant potential. *Pakistan Journal of Scientific and Industrial Research*, 53: 338–339.
- Hynmewta, S.R. & Kumar, Y. 2008. Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. *Indian Journal of Traditional Knowledge*, 7(4): 581-586.
- Ilango, K., Bai, N. K., Kumar, R. M., Kumar, K. A., Dubey, G. P. & Agrawal, A. 2013. Pharmacognostic studies on the leaves of *Hippophae rhamnoides* L. and *Hippophae salicifolia* D. Don. *Research Journal of Medicinal Plant*, 7(1): 58-67.
- Ilavenil, S., Kaleeswaran, B. & Ravikumar, S. 2010. Evaluation of antibacterial activity and phytochemical analysis of *Crinum asiaticum*. *International Journal of Current Research*, 1: 035-040.
- Imran, M., Rasool, N., Rizwan, K., Zubair, M., Riaz, M., Zia-Ul-Haq, M., Rana, U. A., Nafady, A. & Jaafar, H. Z. (2014). Chemical composition and biological studies of *Ficus benjamina*. *Chemistry central journal*, 8(1): 12.
- Iqbal, M. J., Hanif, S., Mahmood, Z., Anwar, F. & Jamil, A. 2012. Antioxidant and antimicrobial activities of Chowlai (*Amaranthus viridis* L.) leaf and seed extracts. *Journal of Medicinal Plants Research*, 6(27): 4450-4455.
- Ishan, S., Nakul, G., Safhi, M.M., Agrawal, M. & Prerna, C. 2013. Antipyretic activity of *Caesalpinia crista* Linn. seeds extract in experimental animals. *International Journal of Current Research*, 5(5): 1202-1205.

- Islam, M.K., Chowdhury, J.A. & Eti, I.Z. 2011. Biological activity study on a Malvaceae plant: *Bombax ceiba. Journal of Scientific Research*, 3 (2): 445-450.
- Ismail, M., Ibrar, M., Iqbal, Z., Hussain, J., Hussain, H., Ahmed, M., Ejas, A. & Choudhary, M. I. 2009. Chemical constituents and antioxidant activity of *Geranium wallichianum. Records of Natural Products*, 3(4): 193-197.
- Jadeja, R., Thounaojam, M., Ramachandran, A. V. & Devkar, R. 2009. Phytochemical constituents and free radical scavenging activity of *Clerodendrum glandulosum* Coleb methanolic extract. *Journal of Complementary and Integrative Medicine*, 6(1).doi: https://doi.org/10.2202/1553-3840.1226
- Jagessar, R. C., Hafeez, A., Chichester, M. &Crepaul, Y. 2017. Antimicrobial activity of the ethanolic and aqueous extract of passion fruit (*Passiflora edulis* Sims), in the absence and presence of Zn (OAc)2.-H2O. World Journal of *Pharmaceutical Sciences*, 6: 230–246. doi: 10.20959/wjpps20179-10010.
- Jain, A., Ojha, V., Kumar, G., Karthik, L. & Rao, K. V. B. 2013. Phytochemical composition and antioxidant activity of methanolic extract of *Ficus benjamina* (Moraceae) leaves. *Research Journal of Pharmacy and Technology*, 6(11): 1184-1189.
- Jain, P., Nimbrana, S. & Kalia, G. 2010. Antimicrobial activity and phytochemical analysis of *Eucalyptus tereticornis* bark and leaf methanolic extracts. *International Journal of Pharmaceutical Sciences Review and Research*, 4(2): 126-128.
- Jain, P., Sharma, H. P., Basri, F., Priya, K. & Singh, P. 2017. Phytochemical analysis of *Bacopa monnieri* (L.) Wettst. and their anti-fungal activities.*Indian Journal* of *Traditional Knowledge*, 16(2): 310-318.
- Jain, V., Verma, S.K., Katewa, S.S., Anandjiwala, S. & Singh, B. 2011. Free Radical Scavenging Property of *Bombax ceiba* Linn. Root. *Research Journal of Medicinal Plants*, 5:462-470.
- Jalaluddin, M., Jayanti, I., Gowdar, I. M., Roshan, R., Varkey, R. R. & Thirutheri, A. 2019. Antimicrobial activity of *Curcuma longa* L. extract on periodontal pathogens. *Journal of pharmacy & bioallied sciences*, 11(Suppl 2): 203-207.
- Jalaluddin, M., Jayanti, I., Gowdar, I. M., Roshan, R., Varkey, R. R. & Thirutheri, A. 2019. Antimicrobial activity of *Curcuma longa* L. extract on periodontal pathogens. *Journal of pharmacy & bioallied sciences*, 11(Suppl 2): S203– S207.

- James, S. A., Ladan, M. J. & Goje, D. J. 2013. Antioxidant potential of *Hibiscus* cannabinus methanolic leaf extract. *Science World Journal*, 8(1): 8-12.
- Jamir, N. S., Takatemjen& Semba, L. 2010. Traditional knowledge of Lotha Naga tribes in Wokha district, Nagaland. *Indian Journal of Traditional Knowledge*, 9(1): 45-48.
- Jamir, N.S., Lanusunep&Pongener, N. 2012. Medico-herbal medicine practiced by the Naga Tribes In the state of Nagaland (India). *Indian Journal of Fundamental and Applied Life Sciences*, 2(2): 328-333.
- Jamir, T.T., Sharma, H.K. &Dolei, A.K. 1999. Folklore medicinal plants of Nagaland, India. *Fitoterapia*, 70: 395-401.
- Jayapriya, G. & Shoba, F. G. 2015. Phytochemical analysis, Anti-Microbial efficacy and determination of bioactive components from leaves of *Justicia adhatoda* (Linn.). Asian Journal of Plant Science and Research, 5(2): 43-51.
- Jayashree, G., KurupMuraleedhara, G., Sudarslal, S. & Jacob, V.B. 2013. Antioxidant activity of *Centella asiatica* on Lymphoma Bearing Mice. *Fitoterapia*, 74(5): 431-434.
- Jeeva, S., Mishra, B.P. Venugopal, N. Kharlukhi, L. & Laloo, R.C. 2006. Traditional conservation methods in the sacred groves of Meghalaya. *Indian Journal of Traditional Knowledge*, 5(4): 563-568.
- Jenitha, A. & Anusuya, A. 2016. Phytochemical screening and in vitro antioxidant activity of *Ananas comosus*. *International Journal of Research in Pharmacology & Pharmacotherapeutics*, 5(2): 162-169.
- Jenny, A., Saha, D., Paul, S., Dutta, M., Uddin, M.Z. & Nath, A.K. 2012. Antibacterial activity of aerial part of extract of *Elephantopus scaber* Linn. *Bulletin of Pharmaceutical Research*, 2 (1): 38 – 41.
- Jeong, A.H.N., Kim, C.Y., Lee, J.S., Kim, T.G., Kim, S.H., Lee C.K., Lee, B., Shin, C.G., Huh, H. & Kim, J. 2002. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flovonol glycoside gallates from *Euphorbia pekinensis*. *Planta Medica*, 68: 457-459.
- Jha, S. V., Bhagwat, A. M. &Pandita, N. S. 2012. Pharmacognostic and phytochemical studies on the rhizome of *Nardostachys jatamansi* DC. using different extracts. *Pharmacognosy Journal*, 4(33): 16-22.
- Jha, S. V., Bhagwat, A. M. &Pandita, N. S. 2012. Pharmacognostic and phytochemical studies on the rhizome of *Nardostachys jatamansi* DC. using different extracts. *Pharmacognosy Journal*, 4(33): 16-22.
- Joffry, S. M., Yob, N. J., Rofiee, M. S., Affandi, M. M. R., Suhaili, Z., Othman, F., Akim, A.M., Desa, M.N.M. & Zakaria, Z.A. 2012. *Melastomama labathricum*

(L.) Smith ethnomedicinal uses, chemical constituents, and pharmacological properties: a review. *Evidence-Based Complementary and Alternative Medicine*, 2012, Article ID 258434, 48 pages doi:10.1155/2012/258434

- Joseph, N., Anjum, N. & Tripathi, Y. C. 2018. Prunus cerasoides D. Don: A review on its ethnomedicinal uses, phytochemistry and pharmacology. International Journal of Pharmaceutical Sciences Review and Research, 48(1): 62-69.
- Joshi, S. C., Verma, A. R. & Mathela, C. S. 2010. Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. *Food and Chemical Toxicology*, 48(1): 37-40.
- Kadam, P. V., Yadav, K. N., Karjikar, F. A., Patel, F. A., Patidar, M. K. & Patil, M. J. 2013. Pharmacognostic, phytochemical and physicochemical studies of *Allium sativum* Linn. Bulb (Liliaceae). *International Journal of Pharmaceutical Sciences and Research*, 4(9), 3524-3531.
- Kala, C. P. 2005. Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. *Journal of Ethnobiology and Ethnomedicine*, 1:11 doi:10.1186/1746-4269-1-11.
- Kalita, N. &Kalita, M.C. 2014. Ethnomedicinal plants of Assam, India as an Alternative source of future Medicine for Treatment of Pneumonia. *International*
- Research Journal of Biological Sciences, 3(10):76-82.
- Kamboj, A. & Saluja, A. K. 2010. Phytopharmacological review of Xanthium strumarium L. (Cocklebur). International Journal of Green Pharmacy, 4(3): 129-139.
- Kamle, M., Mahato, D. K., Lee, K. E., Bajpai, V. K., Gajurel, P. R., Gu, K. S. & Kumar, P. 2019. Ethnopharmacological properties and medicinal uses of *Litsea cubeba. Plants*, 8(6): 150. doi:10.3390/plants8060150.
- Karsha, P.V. & Laxmi, O.B. 2010. Antibacterial activity of black pepper with special reference to its mode of action on bacteria. *Indian Journal of Natural Products and Resources*, 1(2): 2013-2015.
- Karuppannan, K., Subramanian, D. & Venugopal, S. 2013. Phytopharmacological properties of *Albizia* species: a review. *International Journal of Pharmacy* and Pharmaceutical Sciences, 5(3): 70-73.
- Kathad, H. K., Shah, R. M., Sheth, N. R. & Patel, K. N. 2010. In vitro antioxidant activity of leaves of *Garuga pinnata* Roxb. *International Journal of Pharmaceutical Research*, 2(3): 9-13.

- Kaushik, P., Kaushik, D. & Khokra, S.L. 2013. Ethnobotany and phytopharmacology of *Pinus roxburghii* Sargent: a plant review. *Journal of Integrative Medicine*, 11(6): 371-376.
- Kavit, M., Patel, B. N. & Jain, B. K. 2013. Phytochemical analysis of leaf extract of Phyllanthus fraternus. Research Journal of Recent Sciences, 2: 12-15.
- Kayang, H., Kharbuli, B., Myrboh, B. & Syiem, D. 2005. Medicinal Plants of Khasi Hills of Meghalaya, India. In: Bernáth, J., Németh, E., Craker, L.E. & Gardner, Z.E. (Eds.) Proc. WOCMAP III, Vol. 1: Bioprospecting & Ethnopharmacology, pp.75-80.
- Khan, A., Jan, G., Khan, A., Gul Jan, F., Bahadur, A. & Danish, M. 2017. In vitro antioxidant and antimicrobial activities of *Ephedra gerardiana* (root and stem) crude extract and fractions. *Evidence-Based Complementary and Alternative Medicine*, 2017. Article ID 4040254, 6 pages.
- Khan, A.M., Qureshi, R.A., Gillani, S.A., Faizan, U. 2011. Antimicrobial activity of selected medicinal plants of Margalla Hills, Islamabad, Pakistan. *Journal of Medicinal Plants Research*, 5: 4665-4670.
- Khan, A.U. & Gilani, A.H. 2009. Antispasmodic and bronchodilator activities of Artemisia vulgaris are mediated through dual blockade of muscarinic receptors and calcium influx. Journal of Ethnopharmacology, 126: 480–486.
- Khan, H.M. 2005. *Study of Ethnomedicinal plants in Thoubal District of Manipur*. Ph. D. Thesis, Manipur University, Canchipur
- Khan, M., Khalid, G., Basir, G.A., Seema, A., Malik, Akhtar, M. H., & Akbar, M. 2014. Scientific validation of *Gentianakurroo*Royle for anti-inflammatory and immunomodulatory potential. *ISRN inflammation*, 2014 Article ID 701765, 5 pages <u>http://dx.doi.org/10.1155/2014/701765</u>.
- Khiangte, Z. &Lalramnghinglova, H. 2017. An Ethno Botanical Study of Ralte Communities in the North Eastern Part of Mizoram, North East India. *Journal of Natural. Product Plant Resource*, 7 (4): 1-10.
- Khomdram, S.D., Devi, Y.N. & Singh, P.K. 2011. Ethnobotanical uses of Lamiaceae in Manipur, India. *Ethnobotany*, 23: 64-69.
- Khongsai, M., Saikia, S.P. & Kayang, H. 2011. Ethnomedicinal plants used by different tribes of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 10(3): 541-546.
- Kichu, M., Malewska, T., Akter, K., Imchen, I., Harrington, D., Kohen, J., Vemuplad, S. R. & Jamie, J. F. 2015. An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India. *Journal of Ethnopharmacology*, 166: 5–17.

- Kiruthiga, N. & Sekar, D. S. 2014. Studies on Phytochemicals and Steroid Isolation from N-Hexane Extract of Anisochilus carnosus. International Journal of Advanced Biotechnology and Research (IJBR), 5(3): 337-345.
- Kom, L.E., Tilotama, K., Singh, T.D., Rawat, A.K.S. & Thokchom, D.S. 2018. Ethno-medicinal plants used by the Kom community of Thayong village, Manipur. *Journal of Ayurvedic and Herbal Medicine*, 4(4): 171-179.
- Kori, P. & Alawa, P. 2014. Antimicrobial activity and phytochemical analysis of *Calotropis gigantea* root, latex extracts. *IOSR J Pharm*, 4(6): 7-11.
- Krishna, C.B. 2012. Anti Inflammatory Activity of *Basella alba* Linn. in Albino Rats. Journal of Applied Pharmaceutical Science, 02(04): 87-89.
- Krishnapriya, T. V. &Suganthi, A. 2017. Biochemical and phytochemical analysis of Colocasia esculenta (L.) Schott tubers. International Journal of Research in Pharmacy and Pharmaceutical Sciences, 2(3): 21-25.
- Krystofova, O., Adam, V., Babula, P., Zehnalek, J., Beklova, M., Havel, L. &Kizek, R. 2010. Effects of various doses of selenite on stinging nettle (Urticadioica L.). *International Journal of Environmental Research & Public Health*, 7: 3804-3815.
- Kukrić, Z. Z., Topalić-Trivunović, L. N., Kukavica, B. M., Matoš, S. B., Pavičić, S. S., Boroja, M. M. &Savić, A. V. (2012). Characterization of antioxidant and antimicrobial activities of nettle leaves (Urticadioica L.). Acta periodicatechnologica, (43): 257-272.
- Kulkarni, A., Govindappa, M., Chandrappa, C. P., Ramachandra, Y. L. &Koka, P. S. 2015. Phytochemical analysis of Cassia fistula and its in vitro antimicrobial, antioxidant and anti-inflammatory activities. *Advancement in Medicinal Plant Research*, 3(1): 8-17.
- Kumar, A. & Ramu, P. 2002. Effect of methanolic extract of *Benincasa hispida* against histamine and acetylcholine induced bronchospasm in Guinea pigs. *Indian Journal of Pharmacology*, 34: 365-366.
- Kumar, A. 2020. Phytochemistry, pharmacological activities and uses of traditional medicinal plant *Kaempferia galanga* L.– An overview. *Journal of ethnopharmacology*, 253: 112667.
- Kumar, A., Rajput, G., Dhatwalia, V. K., & Srivastav, G. 2009. Phytocontent screening of Mucuna seeds and exploit in opposition to pathogenic microbes. *Journal of Biological & Environmental Sciences*, 3(9): 71-76.
- Kumar, G., Karthik, L. & Rao, K. V. B. 2013. Phytochemical composition and in vitro antioxidant activity of aqueous extract of *Aerva lanata* (L.) Juss. ex

Schult. Stem (Amaranthaceae). *Asian Pacific Journal of Tropical Medicine*, 6(3): 180-187.

- Kumar, G.P. & Singh, S.B., 2011. Antibacterial and antioxidant activities of ethanol extracts from trans Himalayan medicinal plants. *European Journal of Applied Science*, 3: 53-57.
- Kumar, M. S., Kumar, M. R., Bharath, A. C., Kumar, H. V., Kekuda, T. P., Nandini, K. C., Rakshitha, M. N. & Raghavendra, H. L. 2010. Screening of selected biological activities of *Artocarpus lakoocha* Roxb (Moraceae) fruit pericarp. *Journal of basic and clinical pharmacy*, 1(4): 239-245.
- Kumar, M., Prasad, S. K., & Hemalatha, S. 2014. A current update on the phytopharmacological aspects of *Houttuynia cordata*Thunb. *Pharmacognosy Reviews*, 8(15): 22-35.
- Kumar, P.S., Sucheta, S., Deepa, V.S., Selvamani, P. & Latha, S. 2008. Antioxidant activity in some selected Indian medicinal plant. *African Journal of Biotechnology*, 7(12): 1826-1828.
- Kumar, R.S., Sivakumar, T., Sundaram, R.S., Sivakumar, P., Nethaji, R. & Gupta, M. 2006. Antimicrobial and antioxidant activities of *Careyaarborea*Roxb. stem bark. *Iranian Journal of Pharmacology & Therapeutics*, 5(1): 35 -41.
- Kumar, S. & Fathima, E. 2017. *Mirabilis jalapa*: Phytochemical screening and antistress activity of methanolic leaf extract. *Journal of Pharmacognosy and Phytochemistry*, 6(6): 1502-1508.
- Kumar, S., Behera, S. P. & Jena, P. K. 2013. Validation of tribal claims on *Dioscorea* pentaphylla L. through phytochemical screening and evaluation of antibacterial activity. *Plant Science Research*, 35(1&2): 55-61.
- Kumar, S., Das, G., Shin, H. S., Kumar, P. & Patra, J. K. 2017. Evaluation of Medicinal Values of *Gymnopetalum chinense* (Lour.) Merr., a Lesser Known Cucurbit from Eastern Ghats of India. *Brazilian Archives of Biology and Technology*, 60:e17160580.
- Kumar, S., Enjamoori, R., Jaiswal, A., Ray, R., Seth, S. & Maulik, S.K. 2009. Catecholamine-induced myocardial fibrosis and oxidative stress is attenuated by *Terminalia arjuna* (Roxb.) *Journal of Pharmacy and Pharmacology*, 61:1529–1536.
- Kumar, S., Kumar, D., Saroha, K., Singh, N. & Vashishta, B. 2008. Antioxidant and free radical scavenging potential of *Citrullus colocynthis* (L.) Schrad. methanolic fruit extract. *Acta Pharmaceutica*. 58(2): 215-220.
- Kumar, S.D., Mandarapu, V., Banji, D., Rao, K.N.V., Chandrashekar, Sudhakar, K., Prashanthi, G. & Vidya, S. 2011. Pharmacognostical study on *Piper* 100

trioicumRoxb. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3): 129-132.

- Kumar, U., Kumar, B., Bhandari, A. & Kumar, Y. 2010. Phytochemical investigation and comparison of antimicrobial screening of Clove and Cardamom. *International Journal of Pharmaceutical Sciences and Research*, 1(12): 138-147.
- Kumar, V., Banu, R.F., Begum, S., Kumar, M.S. & Mangilal, T. 2015. Evaluation of antimicrobial activity of ethanolic extract of Dactylocteniumaegyptium. *International Journal of Ayurveda and Pharma Research*, 5(12): 338-343.
- Kumar, V.P., Chauhan, N.S., Padh, H. & Rajani, M. 2006. Search for antibacterial and antifungal agents from selected Indian medicinal plants. *Journal of Ethnopharmacology*, 107: 182-188.
- Kumudhaveni, B., Radha, R., Jiyavutheen, M., Kavithasai, M. & Kowsalya, J. 2020. A Review on Phytochemical and Pharmacological Activity of Medicinal plant *Barleria cristata. Research Journal of Pharmacy and Technology*, 13(2): 999-1003.
- Lalfakzuala, R., Lalramnghinglova, H. & Kayang, H. 2007. Ethnobotanical usages of plants in Western Mizoram. *Indian Journal of Traditional Knowledge*, 6(3): 486-493.
- Lalithakumari, H., Sirsi, M. & Govindarajan, V. S. 1965. Antibacterial and antifungal activities of *Areca catechu* Linn. *Indian journal of experimental biology*, 3(1): 66-67.
- Lalramnghinglova, H. 2001. State of the Art Report on Ethnomedicines and their plant resources in Mizoram. In: Singh, G., Singh, H.B., & Mukherjee, T.K. (eds.) *Ethnomedicine of North East India*. Pp. 1-64. NISCAIR, New Delhi.
- Lalramnghinglova, H. 2016. Documentation of Medicinal Plants based on Traditional Practices in the Indo-Burma Hotspots Region of Mizoram, North East India. *Emergent Life Sciences Research*, 2(1): 10-45.
- Lalrinkima, R. 2013. Study of Medicinal Plants in Eastern Himalayan Montane Forests of Mizoram. Ph.D. Thesis, Department of Forestry, Mizoram University.
- Lalzarzovi, S.T. & H. Lalramnghinglova, 2016. *Traditional use of medicinal plants found within Aizawl city in Mizoram, India*. Pleione 10(2): 269 277.
- Lamichhane, J., Chhetri, S. B., Bhandari, M., Pokhrel, S., Pokharel, A. & Sohng, J. K. 2014. Ethnopharmacological survey, phytochemical screening and Antibacterial activity measurements of high altitude medicinal plants of

Nepal: A bioprospecting approach.*Indian Journal of Traditional Knowledge*, 13 (3): 496-507.

- Lee, J.Y., Yoon, J.W., Kim, C.T. & Lim, S.T., 2004a. Antioxidant activity of phenylpropanoid esters isolated and identified from *Platycodon grandiflorum* A. DC. *Phytochemistry*, 65: 3033–3039.
- Li, L., Li, M. H., Zhang, N. & Huang, L. Q. 2011. Chemical constituents from Lomatogoniumcarinthiacum (Gentianaceae). Biochemical Systematics and Ecology, 39(4-6): 766-768.
- Li, W. R., Shi, Q. S., Liang, Q., Xie, X. B., Huang, X. M. & Chen, Y. B. 2014. Antibacterial activity and kinetics of *Litseacubeba* oil on Escherichia coli. *PLoS One*, 9(11): e110983.
- Liao, S. G., Zhang, L. J., Sun, F., Zhang, J. J., Chen, A. Y., Lan, Y. Y., Junli, Y., Wang, A.M., He, X., Xiong, Y., Dong, L., Chen, X.J., Li, Y.T., Zuo, L. & Wang, Y.L. 2011. Antibacterial and anti-inflammatory effects of extracts and fractions from *Polygonum capitatum*. *Journal of ethnopharmacology*, *134*(3): 1006-1009.
- Liu, Y., Wang, J., Wang, W., Zhang, H., Zhang, X. & Han, C. 2015. The chemical constituents and pharmacological actions of *Cordyceps sinensis*. *Evidence-Based Complementary and Alternative Medicine*, 2015.,Article ID 575063 <u>https://doi.org/10.1155/2015/575063.</u>
- Lohézic-Le Dévéhat, F., Bakhtiar, A., Bezivin, C., Amoros, M. &Boustie, J. 2002. Antiviral and cytotoxic activities of some Indonesian plants. *Fitoterapia*, 73(5): 400-405.
- Lu, C. L. & Li, X. F. 2019. A Review of *Oenanthe javanica* (Blume) DC. as Traditional Medicinal Plant and Its Therapeutic Potential. *Evidence-Based Complementary and Alternative Medicine*, 2019.
- Lu, Y., Shipton, F. N., Khoo, T. J. & Wiart, C. 2014. Antioxidant activity determination of citronellal and crude extracts of *Cymbopogon citratus* by 3 different methods. *Pharmacology & Pharmacy*, 5(04): 395-400.
- Luqman, S., Kumar, R., Kaushik, S., Srivastava, S., Darokar, M.P. & Khanuja, S.P.S. 2009. Antioxidant potential of the root of *Vetiveria zizanioides* (L.) Nash. *Indian Journal of Biochemistry and Biophysics*, 46: 122–125.
- Luqman, S., Srivastava, S., Darokar, M. P., Khanuja, P.S. 2005. Detection of antibacterial activity in spent roots of two genotypes of aromatic grass *Vetiveriazizanioides*. *Pharmaceutical Biology*, 43: 732–736.
- Macabeo, A. P. G., Krohn, K., Gehle, D., Read, R. W., Brophy, J. J., Franzblau, S. G.& Aguinaldo, M. A. M. 2008. Activity of the extracts and indole alkaloids

from *Alstoniascholaris* against Mycobacterium tuberculosis H37Rv. *The Philippine Agricultural Scientist*, 91(3): 348-351.

- Mahalik, G., Jali, P., Sahoo, S. & Satapathy, K. B. 2020. Ethnomedicinal, phytochemical and pharmacological properties of *Mangifera indica* L: A revew. *International Journal of Botany Studies*, 5(2): 01-05.
- Maimoona, A., Naeem, I., Shujaat, S., Saddiqe, Z., Mughal, T. & Mehmood, T. 2011. Comparison of radical scavenging capacity of different extracts of bark and needles of *Pinus roxburghii* and *Pinus wallichiana*. Asian Journal of Chemistry, 23(2): 819-822.
- Maity, D., Pradhan, N. & Chauhan, A. S. 2004. Folk uses of some medicinal plants from North Sikkim. *Indian Journal of Traditional Knowledge*, 3(1): 66-71.
- Maji, A.K., Bhadra, S., Mahapatra, S., Banerji, P. & Banerjee, D. 2011. Mast cell stabilization and membrane protection activity of *Barleriaprionitis* L. *Pharmacognosy Journal*, 3(24): 67-71.
- Majumdar, K. & Datta, B.K. 2007. A study on ethnomedicinal uses of plants among the folklore herbalist and Tripuri medical practitioner, part 2. *Natural Product Radiance*, 6: 66–73.
- Majumder, J., Bhattacharjee, P.P., Datta, B.K. & Agarwala, B.K. 2014. Ethnomedicinal plants used by Bengali communities in Tripura, northeast India. *Journal of Forestry Research*, 25(3): 713–716.
- Makabe, H., Maru, N., Kuwabara, A., Kamo, T. & Hirota, M. 2006. Antiinflammatory sesquiterpenes from *Curcuma zedoaria*. *Natural product research*, 20(7): 680-685.
- Malckzadeh, F., Ehsanifar, H., Shahamat, N., Levin, M. & Colwell, R.R. 2001. Antibacterial activity of black myrobalan (*Terminalia chebula* Retz.) against *Helicobactor pyroli. International Journal of Antimicrobial Agents*, 18 (1): 85–88.
- Malik, M. A., Bhat, S. A., Rehman, M. U., Sidique, S., Akhoon, Z. A., Shrivastava, P.
 & Sheikh, B. A. 2018. Phytochemical analysis and antimicrobial activity of Rheum emodi (Rhubarb) rhizomes. *The Pharma Innovation*, 7(5): 17-20.
- Mamidala, E. & Gujjeti, R. P. 2013. Phytochemical and antimicrobial activity of Acmella paniculata plant extracts. Journal of Bio Innovation, 2(1): 17-22.
- Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S. & Ali, G. 2012. Antioxidant activity of winter melon (*Benincasa hispida*) seeds using conventional soxhlet extraction technique. *International Food Research Journal*, 19(1): 229-234.

- Mann, S., Satpathy, G. & Gupta, R.K. 2015. In-vitro evaluation of bioprotective properties of underutilized *Myrica esculenta* Buch.-Ham. ex D. Don fruit of Meghalaya. *Indian Journal of Natural Product Resource*, 6: 183-188.
- Manochai, B., Paisooksantivatana, Y., Choi, H. & Hong, J.H. 2010. Variation in DPPH scavenging activity and major volatile oil components of cassumunar ginger, *Zingiber montanum* (Koenig), in response to water deficit and light intensity. *Scientia Horticulturae*, 126: 462–466.
- Margaret, I., Reddy, P.S. & Kaiser, J. 1998. Anti-inflammatory profile of *Tridax* procumbens in animal and fibroblast cell models. *Phytotherapy Research*, 12(4): 285-287.
- Marimuthu, K. & Dhanalakshmi, R. 2014. A study on phytochemicals in *Bauhinia* purpurea l. leaf and flower. *International Journal of Pharmaceutical Sciences Review and Research*, 29(2): 72-76.
- Marrelli, M., Amodeo, V., Statti, G. &Conforti, F. 2019. Biological properties and bioactive components of *Allium cepa* L.: Focus on potential benefits in the treatment of obesity and related comorbidities. *Molecules*, 24(1): 119.
- Masihuddin, M., Jafri, M. A., Siddiqui, A. & Chaudhary, S. 2018. Traditional uses, phytochemistry and pharmacological activities of *Papaver somniferum* with special reference of unani medicine an updated review. *Journal of Drug Delivery and Therapeutics*, 8(5-s): 10-114.
- Mau, J. L., Lai, E. Y., Wang, N. P., Chen, C. C., Chang, C. H. & Chyau, C. C. 2003. Composition and antioxidant activity of the essential oil from *Curcuma zedoaria*. Food Chemistry, 82(4): 583-591.
- Mavi, A., Terzi, Z., Ozgen, U., Yildirim, A. &Coşkun, M. 2004. Antioxidant properties of some medicinal plants Prangosferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malvaneg lecta(Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. verum (Rubiaceae), Urtica dioica (Urticaceae). Biological and Pharmaceutical Bulletin, 7: 702-705.
- Meen, A. K., Niranjan, U.S., Rao, M.M., Padhi, M.M. & Babu, R. 2011. A review of the important chemical constituents and medicinal uses of *Vitex* genus. *Asian Journal of Traditional Medicines*, 6(2): 54-60.
- Mehra, N., &kumar Jain, N. (2019). Comparative phytochemical screening of *Curcuma angustifolia*, *Curcuma decipiens* and *Curcuma longa* by using GC-MS. Journal of Pharmacognosy and Phytochemistry, 8(2), 1227-1234.

- Mehra, R., Naved, T., Arora, M. & Madan, S. 2013. Standardization and evaluation of formulation parameters of *Tinospora cordifolia* tablet. *Journal of Advanced Pharmacy Education & Research*, 3: 440–449.
- Mehta, M., Gupta, S., Duseja, A. & Goyal, S. 2019. Phytochemical and antioxidants profiling of *Phyllanthus niruri*: A hepatoprotective plant. *World Journal of Pharmacy and Pharmaceutical Sciences*, 8: 1117-1127.
- Meitei, A. L., Pamarthi, R. K., Kumar, R., Bhutia, N. T., Rai, D., Babu, P. K., Singh, A.K., Gazmer, R. & Singh, D. R. 2019. *Dendrobium nobile* orchid in traditional medicine-A phytochemical analysis. *Indian Journal of Horticulture*, 76(3): 557-560.
- Mengane, S.K. 2016. Phytochemical Analysis of Adiantum lunulatum. International Journal of Current Microbiology and Applied Sciences, 5(11): 351-356.
- Miliauskas, G., Van Beek, T. A., Venskutonis, P. R., Linssen, J. P., de Waard, P. & Sudhölter, E. J. 2004. Antioxidant activity of *Potentilla fruticosa*. *Journal of the Science of Food and Agriculture*, 84(15): 1997-2009.
- Mishra, A. K., Singh, B. K. & Pandey, A. K. 2010. In vitro-antibacterial activity and phytochemical profiles of *Cinnamomum tamala* (Tejpat) leaf extracts and oil. *Reviews in Infection*, 1(3): 134-139.
- Mishra, V. K., Passari, A. K., Vanlahmangaihi, K., Kumar, N. S. & Singh, B. P. 2015. Antimicrobial and antioxidant activities of *Blumea lanceolaria* (Roxb.). *Journal of Medicinal Plants Research*, 9(4): 84-90.
- Mobarak, H., Meah, M. S., Sikder, N., Tareq, M., Azad, A., Khatun, R., Nasrin, S. M., Raihan, M. O. & Reza, A. A. 2018. Investigation of preliminary phytochemicals, analgesic, anti-arthritic, thrombolytic and Cytotoxic Activities of *Begonia roxburghii* (Miq.) DC. Leaves. *Med One*, 3(1): 1-12. DOI: 10.20900/mo.20180001.
- Moniruzzaman, M., Hossain, M.S., Bhattacharjee, P.S. 2016. Evaluation of antinociceptive activity of methanolic extract of leaves of *Stephania japonica* Linn. *Journal of Ethnopharmacology*, 186: 205-208.
- Myrchiang, F. B., Eugene, L. & Singh, O.P. 2018. Ethno-medicinal plants in Nongtalang, Meghalaya: their uses and threats. *ENVIS Bulletin Himalayan Ecology*, 26: 75-82.
- Nagarjuna, S., Murthy, T.E. & Srinivasa, R.A. 2015. Preliminary phytochemical investigation and thin layer chromatography profiling of different extracts and fractions of *Dactyloctenium aegyptium*. *International Journal of Ayurveda and Pharma Research*, 6(05):106–112.

- Nahak G. & Sahu R.K. 2010. Antioxidant activity in bark and roots of neem (*Azadirachta indica*) and mahaneem. *Continental Journal of Pharmaceutical Sciences*, 4: 28 34.
- Namsa, N.D., Mandal, M., Tangjang, S. & Mandal, S.C. 2011. Ethnobotany of the Monpa ethnic group at Arunachal Pradesh, India. *Journal of Ethnobiology* and Ethnomedicine, 7: 31.
- Nanda, Y. Singson, N. & Rao, A.N. 2013. Ethnomedicinal plants of Thadou tribe of Manipur (India) -1. *Pleione*, 7(1): 138 - 145.
- Nandi, R. & Ghosh, R. 2016. Phytochemical and biological importance of *Boerhavia diffusa*: A plant of ethnopharmacological knowledge. *International Journal of Pharmaceutical Sciences and Research*, 7(3): 134-143.
- Nassir, Z.H., Sahib, H.B., Kadhim, E. J. 2017. Phytochemical Analysis and in-vitro Antioxidant Activity of Ethanolic Extract of Iraqi Abrusprecatorius Linn. of Leguminosae Family. International Journal of Pharmaceutical Sciences Review and Research, 46(1): 134-138.
- Nath, K.K., Deka, P., Borkataki, S. & Borthakur, S.K. 2008. Traditional Remedies of Respiratory Disorders from Assam, India. *Pleione*, 2(2): 211-216.
- Nauman, K., Iftikhar, A., Malik, S.Z.L., Tariq, R. & Sardar, A.F. 2014. Comparison of antimicrobial activity, phytochemical profile and minerals composition of garlic Allium sativum and Allium tuberosum. *Journal of the Korean Society* for Applied Biological Chemistry, 57: 311-317.
- Nayampalli, S. S. & Sheth, U. K. 1979. Evaluation of anti-allergic activity of *Tylophoraindica* using rat lung perfusion. *Indian Journal of Pharmacology*, 11(3): 229-333.
- Neogi, B., Prasad, M. N. V. & Rao, R. R. 1989. Ethnobotany of Some Weeds of Khasi and Garo Hills, Meghalaya, North Eastern India. *Economic Botany*, 43(4): 471-479.
- Nik Wil, N. N. A., Noor Adila, M. O., Ibrahim, N. A. & Tajuddin, S. N. 2014. In vitro antioxidant activity and phytochemical screening of *Aquilaria malaccensis* leaf extracts. *Journal of Chemical and Pharmaceutical Research*, 6(12): 688-693.
- Ningombam, D.S., Devi, S.P., Singh, P.K., Pinokiyo, A. &Thongam, B. 2014. Documentation and Assessment on Knowledge of EthnoMedicinal Practitioners: A Case Study on Local Meetei Healers of Manipur. *IOSR Journal of Pharmacy and Biological Sciences*, 9(1): 53-70.

- Nohara, T., Ito, Y., Seike, H., Komori, T., Moriyama, M., Gomita, Y. & Kawasaki, T. (1982). Study on the constituents of *Paris quadriforia* L. *Chemical and Pharmaceutical Bulletin*, 30(5):1851-1856.
- Nonibala, K. 2010. *Ethno-medicobotanical aspect of Kukis of Senapati District of Manipur*. Ph.D. Thesis, Assam University, Silchar.
- Odeja, O., Obi, G., Ogwuche, C. E., Elemike, E. E. & Oderinlo, Y. 2014. Phytochemical Screening, Antioxidant and Antimicrobial activities of *Senna* occidentalis (L.) leaves Extract. *Clinical Phytoscience*, 2 (4): 26-30.
- Ogunmefun, O. T., Ekundayo, E., Akharaiyi, F. C. & Ewhenodere, D. 2017. Phytochemical s creening and antibacterial a ctivities of *Tectona grandis* L. f. (Teak) leaves on microorganisms isolated from decayed food samples. *Tropical Plant Research*, 4(3): 376–382.
- Oladeji, O. S. & Oyebamiji, A. K. 2020. *Stellaria media* (L.) Vill.-A plant with immense therapeutic potentials: phytochemistry and pharmacology. *Heliyon*, 6(6): e04150.
- Oladeji, O. S., Adelowo, F. E., Ayodele, D. T. & Odelade, K. A. 2019. Phytochemistry and pharmacological activities of *Cymbopogon citratus*: a review. *Scientific African*, 6: e00137.
- Ono, M., Nishida, Y., Masuoka, C., Li, J. C., Okawa, M., Ikeda, T. & Nohara, T. 2004. Lignan derivatives and a norditerpene from the seeds of *Vitex negundo. Journal of natural products*, 67(12): 2073-2075.
- Orafidiya, L.O., Adesina, S.K., Igbeneghu, O.A., Akinkunmi, E.O., Adetogun, G.E. & Salau, A.O. 2006. The effect of honey and surfactant type on the antibacterial properties of the leaf essential oil of *Ocimum gratissimum* Linn. against common wound-infecting organisms. *International Journal of Aromatherapy*, 16: 57-62.
- Ordóñez, R. M., Cardozo, M. L., Zampini, I. C. & Isla, M. I. 2010. Evaluation of antioxidant activity and genotoxicity of alcoholic and aqueous beverages and pomace derived from ripe fruits of *Cyphomandra betacea* Sendt. *Journal of agricultural and food chemistry*, 58(1): 331-337.
- Othman, F. A., Mohamad, S. F. S. & Sabarudin, N. A. A. 2018. Phytochemical analysis of *Citrus maxima* and its effect on male reproductive system in highfat diet induced spraguedawley rats. *Gading Journal for Science and Technology (e-ISSN: 2637-0018)*, 1(01): 95-104.
- Owolabi, M. S. & Lajide, L. 2015. Preliminary phytochemical screening and antimicrobial activity of crude extracts of *Bambusa vulgaris* Schrad. Ex JC

Wendl. (Poaceae) from southwestern Nigeria. *American Journal of Essential Oils and Natural Products*, 3(1): 42-45.

- Oyeyemi, S. D., Ayeni, M. J., Adebiyi, A. O., Ademiluyi, B. O., Tedela, P. O. & Osuji, I. B. (2015). Nutritional quality and phytochemical studies of *Solanum* anguivi (Lam.) fruits. *Journal of Natural Sciences Research*, 5(4): 99-105.
- Painuli, S. 2017.Phytochemical and biomedicinal analyses of Rhododendron arboreum and Rhododendron campanulatum from Uttarakhand region India. Ph.D. Thesis, Graphic Era University, Uttarakhand.
- Pal, A., Al Mahmud, Z., Akter, N., Islam, S. & Bachar, S. C. 2012. Evaluation of antinociceptive, antidiarrheal and antimicrobial activities of leaf extracts of Clerodendrumindicum. *Pharmacognosy Journal*, 4(30): 41-46.
- Panchal, P. & Singh, K. 2015. Antimicrobial activity of *Barleria prionitis* on pathogenic strains. *International journal of current pharmaceutical research*, 7(4): 73-75.
- Pandey, A., Sekar, K. C., Tamta, S. & Rawal, R. S. 2018. Assessment of phytochemicals, antioxidant and antimutagenic activity in micropropagated plants of Quercus serrata, a high value tree species of Himalaya. *Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology*, 152(5): 929-936.
- Pandey, B. P., Thapa, R. &Upreti, A. 2017. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of Artemisia vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pacific Journal of Tropical Medicine, 10(10): 952-959.
- Pang, Y., Wang, D., Fan, Z., Chen, X., Yu, F., Hu, X., Wang, K. & Yuan, L. 2014. Blumea balsamifera—A phytochemical and pharmacological review. Molecules, 19(7): 9453-9477.
- Papitha, N., Jayshree, N., Sreenivasan, S. & Kumar, V. 2013. Anti-tubercular activity on leaves and roots of *Sida rhombifolia* L. *International Journal of Pharmaceutical Sciences Review and Research*, 20: 135–137.
- Parekh, J. & Chanda, S. 2007. *In vitro* screening of antibacterial activity of aqueous and alcoholic extracts of various Indian plant species against selected pathogens from Enterobacteriaceae. *African Journal of Microbiology Research*, 1(6): 92-99.
- Partap, M., Alagesan, A., Kumari, B.D.R. 2014. Anti-bacterial activities of silver nanoparticles synthesized from plant leaf extract of *Abutilon Indicum* (L.) Sweet. *Journal of Nanostructure in Chemistry*, 4: 106.

- Parveen, Z., Siddique, S., Shafique, M., Khan, S. J. & Khanum, R. 2011. Volatile constituents, antibacterial and antioxidant activities of essential oil from *Nardostachys jatamansi* DC. roots. *Pharmacology online*, 3: 329-337.
- Patel, J., Shahimqureshi, M. D., Kumar, G. S., kumar, B. D. & Kumar, A. K. 2010. Phytochemicals and pharmacological activities of *Lantana camara* Linn. *Research Journal of Pharmacognosy and Pharmacodynamics*, 2(6): 418-422.
- Patel, N., Jain, U., Yadav, Y. & Jain, S. 2019. Formulation and Evaluation of Silver Nanoparticles of Methanolic extract of *Solanum virginianum* L. for Antimicrobial and Antioxidant potential. *Journal of Drug Delivery and Therapeutics*, 9 (2-A): 20-28.
- Patil, P. J. & Ghosh, J. S. 2010. Antimicrobial activity of *Catharanthus roseus*–a detailed study. *British Journal of Pharmacology and Toxicology*, 1(1): 40-44.
- Penecilla, G. L. & Magno, C. P. 2011. Antibacterial activity of extracts of twelve common medicinal plants from the Philippines. *Journal of Medicinal Plants Research*, 5(16): 3975-3981.
- Penna, S.C., Medeiros, M.V., Aimbire, F.S., Faria-Neto, H.C., Sertie, J.A., LopesMartins, R.A. 2003. Anti-inflammatory effect of the hydralcoholic extract of *Zingiber officinale* rhizomes on rat paw and skin edema. *Phytomedicine*, 10(5): 381-385.
- Perme, N., Nath Choudhury, S., Choudhury, R., Natung, T. & De, B. 2015. Medicinal Plants in Traditional Use at Arunachal Pradesh, India. International Journal of Phytopharmacy, 5(5): 86-98.
- Perumal, P., Sekar, V., Rajesh, V., Gandhimathi, S., Sampathkumar, R. &Nazimudin, K. S. 2010. In vitro antioxidant activity of *Argemone mexicana* roots. *International Journal of PharmTech Research*, 2(2): 1477-1482.
- Pfoze, N. L. 2012. Ethnobotanical studies and phytochemical analysis of Selected medicinal plants of senapati district, Manipur. Ph.D. Thesis, North Eastern Hill University, Shillong, Meghalaya.
- Phuyal, N., Jha, P. K., Raturi, P. P. & Rajbhandary, S. 2019. Zanthoxylum armatum DC.: Current knowledge, gaps and opportunities in Nepal. Journal of ethnopharmacology, 229: 326-341.
- Pino, J.A., Aguero, J. & Fuentes, V. 2003. Chemical composition of the aerial parts of *Piper nigrum* L. from Cuba. *Journal of Essential Oil Research*, 15: 209-210.
- Powar, N. S., Kasarkar, A. R. & More, V. N. 2020. Preliminary phytochemical analysis of different plant parts of *Albiziaodoratissima* (LF) benth. *Journal of Medicinal Plants*, 8(2): 144-146.

- Prabhavathi, R. M., Prasad, M. P. & Jayaramu, M. 2016. Studies on qualitative and quantitative phytochemical analysis of *Cissusquadrangularis*. *Advances in Applied Science Research*, 7(4): 11-17.
- Pradhan, B.K. & Badola, H. K. 2008. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim, India. *Journal of Ethnobiology and Ethnomedicine*, 4: 22.
- Prakash, A., Jain, D. & Tripathi, R. 2019. Pharmacognostical analysis of different parts of *Cyperusrotundus* L. *Plant Science Today*, 6(sp1): 607-612.
- Prakash, B., Singh, P., Yadav, S., Singh, S. C. & Dubey, N. K. 2013. Safety profile assessment and efficacy of chemically characterized Cinnamomumglaucescens essential oil against storage fungi, insect, aflatoxin secretion and as antioxidant. *Food and chemical toxicology*, 53: 160-167.
- Prakash, G. & Hosetti, B. B. 2012. Bio-efficacy of *Dioscorea pentaphylla* from midmid-western ghats, India. *Toxicology international*, 19(2): 100-105.
- Premanand, R. & Ganesh T. 2010. Neuroprotective effects of Abrusprecatorius Linn. aerial extract on hypoxic neurotoxicity induced rats. *International Journal of chemical and pharmaceutical sciences*, 1(1): 9-15.
- Priya, P. V. & Rao, A. S. 2017. Preliminary pharmacognostic and phytochemical screening of *Crinum asiaticum* and *Pedalium murex.Journal of Natural Product Plant Resources*, 7 (1): 1-8.
- Raghavendra, M. P., Satish, S. &Raveesha, K. A. 2006. Phytochemical analysis and antibacterial activity of Oxalis corniculata, a known medicinal plant. *My science*, 1(1): 72-78.
- Rahman, M.A., Imran, T. Islam, S. 2013. Antioxidative, antimicrobial and cytotoxic effects of the phenolics of *Leeaindica* leaf extract. *Saudi Journal of Biological Sciences*, 20: 213-225.
- Rahul, C., Pankaj, P., Sarwan, S. K. & Mahesh, J. K. 2010. Phytochemical screening and antimicrobial activity of *Albizzia lebbeck*. *Journal of Chemical and Pharmaceutical Research*, 2(5): 476-484.
- Rai, D. K., Sharma, V., Pal, K. & Gupta, R. K. 2016. Comparative phytochemical analysis of *Cuscutareflexa*Roxb. Parasite grown on north India by GC-MS. *Tropical Plant Research*, 3(2): 428-443.
- Rai, P.K. & Lalramnghinglova, H. 2010. Lesser known ethnomedicinal plants of Mizoram, North East India: An Indo-Burma hotspot region. *Journal of Medicinal Plants Research*, 4(13): 1301-1307.

- Rajamani, R., Arts, K., Kuppusamy, K. S. & Arts, K. 2016. Preliminary phytochemical screening of aqueous extract of betel nut and betel leaves. *International Journal Of Biosciences and Nanosciences*, 3(1): 14-18.
- Rajbhandari, M., Mentel, R., Jha, P. K., Chaudhary, R. P., Bhattarai, S., Gewali, M. B. & Lindequist, U. 2009. Antiviral activity of some plants used in Nepalese traditional medicine. *Evidence-Based Complementary and Alternative Medicine*, 6: 517-522.
- Rajbhandari, M., Mentel, R., JHA, P.K., Chaudhary, R.P., Bhattarai, S., Gewali, M.B., Karmacharya, N., Hipper, M. & Lindequist, U. 2009. Antiviral activity of some plants used in Nepalese traditional medicine. *Evidence-Based Complementary and Alternative Medicine*, 6: 517-522.
- Rajeshwar, Y., Gupta, M. & Mazumder, U. K. 2005. In vitro lipid peroxidation and antimicrobial activity of *Mucunapruriens* seeds.*Iranian Journal of pharmacology and therapeutics*, 4(1): 32-35.
- Rajkumari, R., Singh, P.K., Das, A.K. & Dutta, B.K. 2013. Ethnobotanical investigation of wild edible and medicinal plants used by the Chiru Tribe of Manipur, India. *Pleione*, 7(1): 167 - 174.
- Rajnish, K.S., Vaishali, Susanta, K.P., Padala, N.M., Ghanashyam, P., Sharma, P.K.
 & Gupta, R.K. 2014. Evaluation of antiinflammatory potential of *Nardostachys jatamansi* rhizome in experimental rodents. *Journal of coastal life medicines*, 2(1): 38-43.
- Rajsekhar, P. B., Bharani, R. S., Jini, A. K., Ramachandran, M., Sharadha, P. & Rajsekhar, V. (2016). Extraction of *Paris polyphylla* Rhizome using different solvents and its phytochemical studies. *International Journal of Pharmacognosy and Phytochemical Research*, 8(1): 18-21.
- Rajurkar, N. S. & Gaikwad, K. 2012. Evaluation of phytochemicals, antioxidant activity and elemental content of *Adiantum capillus* Veneris leaves. *Journal of chemical and pharmaceutical research*, 4(1): 365-374.
- Rama Shankar & Devalla, R. B. 2012. Conservation of folk healing practices and commercial medicinal plants with special reference to Nagaland. *International Journal of Biodiversity and Conservation*, 4(3): 155-163.
- Rama Shankar & Rawat, M.S. 2013. Conservation and cultivation of threatened and high valued medicinal plants in North East India.*International Journal of Biodiversity and Conservation*, 5(9): 584-591.
- Ramashankar, Deb, S. & Sharma, B.K. 2015. Traditional Healing Practices in North East India. *Indian Journal of History of Science*, 50(2): 324-332.

- Rana, S. & Suttee, A. 2012. Phytochemical investigation and evaluation of free radical scavenging potential of *Benincasahispida* peel extracts. *International Journal of Current Pharmaceutical Review and Research*, 3(3): 43-46.
- Rani, C., Chawla, S., Mangal, M., Mangal, A. K., Kajla, S. & Dhawan, A. K. (2012). *Nyctanthesarbor-tristis* Linn. (Night Jasmine): A sacred ornamental plant with immense medicinal potentials.*Indian Journal of Traditional Knowledge*, 11 (3): 427-435.
- Rao, A. & Pandey, V. 2017. Phytochemical screening of tubers and leaf extracts of Sagittaria sagittifolia L.: News a (Arrowhead). International Journal of Scientific and Research Publications, 7: 431-437.
- Rao, R.R. 1981. Ethnobotany of Meghalaya: Medicinal Plants Used by Khasi and Garo Tribes. *Economic Botany*, 43(4): 471-479.
- Rashid, K., Kumar, C. S., & Haleel, P. M. (2017). Healthcare Benefits of Hordeum vulgare L. (Barley): A Phyto-Pharmacological Review. Research Journal of Pharmacology and Pharmacodynamics, 9(4): 207-210.
- Rathee, S. &Kamboj, A. 2017. Phytochemical characterization and antidiabetic potential of standardized total methanolic extract and phytosomes of *Momordica dioica* Roxb. *ex*Willd. fruit. *International Journal of Green Pharmacy (IJGP)*, 11(01): S157-S165.
- Rathore, S.K., Bhatt, S., Dhyani, S. & Jain, A. 2012. Preliminary phytochemical screening of medicinal plant *Ziziphus mauritiana* Lam. Fruits. *International Journal of Current Pharmaceutical Research*, 4(3): 160-162.
- Ravi, S., Kaleena. P. K., Babu, M., Janaki, A., Velu, K. & Elumalai, D. 2018. Phytochemical screening, antioxidant and anticancer potential of *Imperata cylindrica* (L.) Raeusch against human breast cancer cell line (mcf-7). *International Journal of Pharmacy and Biological Sciences*, 8(3): 938-945.
- Rawat, K., Prasad, K. & Bisht, G. 2017. Phytochemical analysis and antioxidant activity essential oil of *Anaphalis contorta* from Uttrakhand Himalayas. *Journal of Analytical & Pharmaceutical research*, 6(2): 00172. DOI: <u>10.15406/japlr.2017.06.00172</u>
- Rawat, P., Bachheti, R. K., Kumar, N. & Rai, N. (2018). Phytochemical analysis and evaluation of in vitro immunomodulatory activity of *Rhododendron arboreum* leaves. *Phytochemical Analysis*, 11(8): 123-128.
- Rawat, S., Bhatt, I. D. & Rawal, R. S. 2011. Total phenolic compounds and antioxidant potential of *Hedychium spicatum* Buch. Ham. ex D. Don in west

Himalaya, India. Journal of Food Composition and Analysis, 24(4-5): 574-579.

- Reddy, B.U. 2010. Enumeration of Antibacterial Activity of Few Medicinal Plants by Bioassay Method. *E- Journal of Chemistry*. 7(4): 1449-1453.
- Ren, X., Sui, X. & Yin J. 2011. The effect of *Houttuynia cordata* injection on pseudorabies herpesvirus (PrV) infection *in vitro*. *Pharmaceutical Biology*, 49: 161–166.
- Renu, Narain, S., Rawat, A., Kaur, J., Kumar, S. & Fatima, N. 2018. Taxonomy, phytochemistry, pharmacology and traditional uses of *Flueggea virosa* (Roxb. ex Willd.) Royle: A Review. *International Journal of Life Sciences*, 6(2): 579-585.
- Reshmi, S.K., Aravinthan, K.M. &Suganya, D.P. 2012. Antioxidant analysis of betacyanin extracted from *Basella alba* fruit. *International Journal of PharmTech Research*, 4(3): 900-913.
- Rokaya, M. B., Parajuli, B., Bhatta, K. P. &Timsina, B. 2020. Neopicrorhizascrophulariiflora (Pennell) Hong: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Journal of ethnopharmacology, 247, 112250.
- Rongsensashi, Mozhui, R., Limasenla, Changkija, S. & Ajungla, L. 2016. Ethnobotanical studies on Yimchunger-Naga tribe living in and around Fakim Wildlife Sanctuary in Nagaland, India. *Pleione*, 10(1): 53 - 65.
- Rout, J., Sajem, A.L. & Nath, M. 2012. Medicinal plants of North Cachar Hills district of Assam used by the Dimasa tribe. *Indian Journal of Traditional Knowledge*, 11(3): 520-527.
- Roy, A., Laxmi Krishnan, M. & Bharadvaja, N. 2018. Qualitative and quantitative phytochemical analysis of *Centellaasiatica*. *Natural Products Chemistry and Research*, 6(4): 4. DOI: 10.4172/2329-6836.1000323
- Roy, S., Madhu, K. P. & Krishna, J. G. (2019). Pharmacognostical and phytochemical evaluation of the drug sahadevi (*Cyanthillium cinereum* (L.) H. ROB.). *International Journal of Ayurveda and Pharma Research*, 7(9):19-27.
- Ru, W., Wang, D., Xu, Y., He, X., Sun, Y. E., Qian, L. & Qin, Y. 2015. Chemical constituents and bioactivities of *Panax ginseng* (CA Mey.). *Drug discoveries* & therapeutics, 9(1): 23-32.
- Ruwali, P., Ambwani, T. K. & Gautam, P. 2017. In vitro antioxidative potential of Artemisia indica willd. Indian Journal of Animal Sciences, 87(11), 1326-1331.

- Ruwali, P., Ambwani, T. K., Gautam, P. & Thapliyal, A. 2015. Qualitative and Quantitative phytochemical analysis of *Artemisia indica* Willd. *Journal of Chemical and Pharmaceutical Research*, 7: 942-949.
- Sabnis, S. 2014. Antimicrobial efficacy of *Terminalia bellerica* against virulence factors of respiratory pathogens. *International Journal of Current Microbiology and Applied Sciences*, 3: 215-221.
- Saeed, S. & Tariq, P. 2007. Antibacterial activities of Emblicaofficinalis and Coriandrum sativum against Gram negative urinary pathogens. *Pakistan Journal of Pharmaceutical Science*, 20: 32-35.
- Sahle, T. & Okbatinsae, G. 2017. Phytochemical investigation and antimicrobial activity of the fruit extract of *Solanum incanum* grown in Eritrea. *Ornamental* and Medicinal Plants, 1(1):15–25.
- Sahu, R. K., Kar, M. & Routray, R. 2013. DPPH free radical scavenging activity of some leafy vegetables used by tribals of Odisha, India. *Journal of Medicinal Plants*, 1(4): 21-27.
- Said, A., Ali, A.E., Nofal, S.M., Harukuni, T. & Mona, R. 2011. Phytoconstituents and bioctivity evaluation of *Bombax ceiba* L. flowers. *Journal of Traditional Medicines*, 28(2): 55-62.
- Saikia, M., & Handique, P. J. (2013). Antioxidant and antibacterial activity of leaf and bark extracts of seabuckthorn (*Hippophae salicifolia* D. Don) of North East India. *International Journal of Life Sciences Biotechnology and Pharma Research*, 2(1), 80-90.
- Sailo, L., Kushari, S. & Kumar, S. 2017. Traditionally used medicinally plants of Bhergaon sub-division, Udalguri district, Assam. *Journal of Medicinal Plants Studies*, 5(6): 109-113.
- Saini, S., Dhiman, A. & Nanda, S. 2016. Pharmacognostical and phytochemical studies of *Piper betle* Linn. leaf. *International Journal of Pharmacy and Pharmaceutical Sciences*, 8(5): 222-226.
- Saio, V. & Syiem, D. 2015. Phytochemical analysis of Some Traditionally used Medicinal Plants of North-East India. *Journal of Science and Environment Today*, 1: 6-13.
- Sajem, A. L. & Gosai, K. 2006. Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India. *Journal of Ethnobiology and Ethnomedicine*, 2: 33-40.
- Sakharkar, P. & Chauhan, B. 2017. Antibacterial, antioxidant and cell proliferative properties of *Cocciniagrandis* fruits. *Avicenna journal of Phytomedicine*, 7(4): 295-307.

- Salam, S. 2013. Salam Ethnobotanical study of the tangkhul-naga tribe in ukhrul district, Manipur State. Ph.D. Thesis, Nagaland University.
- Salles Trevisan, M. T., Vasconcelos Silva, M. G., Pfundstein, B., Spiegelhalder, B. & Owen, R. W. 2006. Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus *Ocimum. Journal* of agricultural and food chemistry, 54(12): 4378-4382.
- Salvi, S., Kumar, G. A., Dhaliwal, R. S., Paulson, K., Agrawal, A., Koul, P. A. & Dandona, L. (2018). The burden of chronic respiratory diseases and their heterogeneity across the states of India: the Global Burden of Disease Study 1990–2016. *The Lancet Global Health*, 6(12), e1363-e1374.
- Samati, H. 2007. An ethnobotanical study of Jaintia Hills district, Meghalaya. Ph.D Thesis. Gauhati University, Guwahati.
- Sambathkumar, R., Sivakumar, T., Sundaram, R.S., Sivakumar, P., Nethaji, R., Vijayabasker, M., Perumal, P., Gupta, M. & Mazumdar, U.K. 2006. Antiinflammatory and analgesic effects of *Careyaarborea* stem bark in experimental animal models. *Nigerian Journal of Natural Products and Medicine*, 9(1): 38-43.
- San Chang, J., Wang, K.C., Yeh, C.F., Shieh, D.E. & Chiang, L.C. 2013. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. *Journal of Ethnopharmacology*, 145(1), 146-151.
- Saran, B. & Singh, B.K. 1942. Chemical examination of the seeds of Solanum indicum and the component glycerides of the oil and a reexamination of its acids. Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, 12A: 219-229.
- Saranya, M. S., Arun, T. & Iyappan, P. 2012. *In-vitro* antibacterial activity and preliminary phytochemical analysis of leaf extracts of *Argemone mexicana* Linn–A medicinal plant. *International Journal of Current Pharmaceutical Research*, 4(3): 85-87.
- Saranya, S., Nair, A.V., Prathapan, M.P., Neethu, A.S. & Kumar, N.S. 2017. Phytochemical analysis of *Centella asiatica* L. leaf extracts. *International Journal of Advanced Research*, 5(6): 1828-1832.
- Sarkar, R., Hazra, B., Mandal, S., Biswas, S. & Mandal, N. 2009. Assessment of in vitro antioxidant and free radical scavenging activity of *Cajanus cajan. Journal of Complementary and Integrative Medicine*, 6(1): 1-19.

- Satti, A. A. & Edriss, A. E. 2014. Preliminary Phytochemical Screening and Activities of *Citrullus colocynthis* (L.) Schrad. as mosquito larvicides. *World Journal of Pharmaceutical Research*, 3(10): 1705-1720.
- Saxena, M. & Saxena, J. 2012. Phytochemical screening of Acorus calamus and Lantana camara. International Research Journal of Pharmacy, 3(5): 324-326.
- Sen, N., Paul, D. & Sinha, S. N. 2016. In vitro antibacterial potential and phytochemical analysis of three species of chilli plant. *Journal of Chemical* and Pharmaceutical Research, 8(2): 443-447.
- Sen, P., Dollo, M., Choudhury, M.D. & Choudhury, D. 2008. Documentation of traditional herbal knowledge of Khamptis of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 7(3): 438-442.
- Sen, S., Chakraborty, R., De, B. & Devanna, N. 2011. An ethnobotanical survey of medicinal plants used by ethnic people in West and South district of Tripura, India. *Journal of Forestry Research*, 22: 417–426.
- Sethiya, N. K., Brahmbhat, K., Chauhan, B. & Mishra, S. H. 2016. Pharmacognostic and phytochemical investigation of *Ensete superbum* (Roxb.) Cheesman pseudostem. *Indian Journal of Natural Products and Resources*, 7(1): 51-58.
- Shang, X., Pan, H., Wang, X., He, H. & Li, M. 2014. *Leonurus japonicus*Houtt.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. *Journal of ethnopharmacology*, 152(1): 14-32.
- Shanmugapriya, K., Saravana, P.S., Payal, H., Mohammed, S.P. & Williams, B. 2012. Antioxidant potential of pepper (*Piper nigrum* Linn.) leaves and its antimicrobial potential against some pathogenic microbes. *Indian Journal of Natural Products and Resources*, 3(4): 570- 577.
- Shantabi, L., Jagetia, G. C., Vabeiryureilai, M. & Lalrinzuali, K. 2014. Phytochemical screening of certain medicinal plants of Mizoram, India and their folklore use. *Journal of Biodiversity, Bioprospecting and Development*, 2(1): 1-9.
- Sharan Shrestha, S., Sut, S., Ferrarese, I., Barbon Di Marco, S., Zengin, G., De Franco, M., Raj Pant, D., Mahomoodally, M.F., Ferri, N., Biancorosso, N., Maggi, F., Acqua, S.D. & Rajbhandary, S. 2020. Himalayan Nettle *Girardinia diversifolia* as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays. *Molecules*, 25(7): 1563.
- Sharma, A., Bhardwaj, S., Mann, A.S., Jain, A. & Kharya, M.D. 2007. Screening Methods of Antioxidant Activity: An Overview. *Pharmacognosy Review*, 2: 232-238.

- Sharma, B. C. 2013. In vitro antibacterial activity of certain folk medicinal plants from Darjeeling Himalayas used to treat microbial infections. *Journal of Pharmacognosy and Phytochemistry*, 2(4): 1-4.
- Sharma, D. & Paul, Y. 2013. Preliminary and pharmacological profile of Melia azedarach L.: An overview. Journal of Applied Pharmaceutical Science, 3(12): 133-138.
- Sharma, D., & Paul, Y. 2013. Preliminary and pharmacological profile of Melia azedarach L.: An overview. Journal of Applied Pharmaceutical Science, 3(12): 133-138.
- Sharma, H.K. & Kalita, M. 2014. Phytochemical Screening, Estimation of Total Phenol and Flavonoid Content of the Leaves of Smilax perfoliata Lour. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 5(4): 1156-1160.
- Sharma, H.K. Chhangte, L. & Dolui, A.K. 2001. Traditional medicinal plants in Mizoram, India. *Fitoterapia*, 72: 146-161.
- Sharma, P. P., Roy, R. K., Anurag, D. G. & Vipin, K. S. 2013. Hyptis suaveolens (L.) Poit: A phyto-pharmacological review. International Journal of Chemical and Pharmaceutical Sciences, 4(1): 1-11.
- Sheeba, E. 2010. Antibacterial activity of *Solanum surattense* Burm. f. *Kathmandu* University Journal of Science, Engineering and Technology, 6:1–4.
- Shejale, S. R. & Yeligar, V. C. 2019. Phytochemical Screening on Champakapushpam (*Michelia champaca*). *Research Journal of Pharmacy* and Technology, 12(7): 3541-3546.
- Shende, K.M., Singh, N.I. & Negi, P.S. 2016. Phytochemical Characterization and Biological Activities of *Docynia indica* (wall) Fruit Extracts. *Molecular and Genetic Medicine*, 10: 204 doi:10.4172/1747-0862.1000204.
- Shi, B., Liu, W., Gao, L., Chen, C., Hu, Z. & Wu, W. 2012. Chemical composition, antibacterial and antioxidant activity of the essential oil of *Anemone rivularis. Journal of Medicinal Plants Research*, 6(25): 4221-4224.
- Shil, S. & Choudhury, M.D. 2009. Ethnomedicinal Importance of Pteridophytes Used by Reang tribe of Tripura, North East India. *Ethnobotanical Leaflets*, 13: 634-643.
- Shin, S., Joo, S. S., Jeon, J. H., Park, D., Jang, M. J., Kim, T. O., Kim, H.K., Hwang, B.Y., Kim, K.Y. & Kim, Y. B. 2010. Anti-inflammatory effects of a *Houttuynia cordata* supercritical extract. *Journal of veterinary science*, 11(3): 273-275.

- Shirazi, M.H., Amin, G., Lavasani, B.A. &Eshraghi, S.S. 2011. Study of antibacterial properties of *Adiantum capillus-veneris* extract on eight species of gram positive and negative bacteria. *Journal of Medicinal Plants*, 10(40): 124-132.
- Shirkani, A., Mozaffari, M. & Zarei, M. 2014. Antimicrobial effects of 14 Medicinal plant speices of Dashti in Bushehr province. *Iranian South Medical Journal*, 17(1): 49-57.
- Singh, A., Saharan, V. A. & Bhandari, A. 2014. Pharmacognostic standardization with various plant parts of *Desmostachya bipinnata*. *Pharmaceutical biology*, 52(3): 298-307.
- Singh, B. & Yadav, S.K. 2010. In vitro studies on antibacterial activity and phytochemical analysis of whole plant extracts of *Stellaria media*. *International Journal of Phytomedicine*, 2: 260–266.
- Singh, B. R., Singh, V., Singh, R. K., Toppo, S., Haque, N. &Ebibeni, N. 2012. Antimicrobial activity on common pathogens in essential oil of aerial parts of *Selinum wallichianum. Natural Products*, 8(6): 233-237.
- Singh, B.R., Singh, V., Singh, R. K., Toppo, S., Haque, N. & Ebibeni, N. 2011. Antimicrobial effect of Artemisia vulgaris essential oil. Natural Products an Indian Journal, 7(5): 272-278.
- Singh, H.V. & Chaudhary, A.K. 2011. A review on the taxonomy, ethnobotany, chemistry and pharmacology of *Oroxylum indicum* vent. *Indian journal of pharmaceutical sciences* 73(5): 483.
- Singh, Kh. N. & Devi, Kh. B. 2016. Medicinal plants used by local people of Jiribam, Manipur for treatment of malaria and its associated symptoms: A step to assess the traditional knowledge of herbal healing. *International Journal of Herbal Medicine*, 4(1): 12-15.
- Singh, L. R. & Singh, O. M. 2013. Datura stramonium: An overview of its phytochemistry and pharmacognosy. Research Journal of Pharmacognosy and Phytochemistry, 5(3): 143-148.
- Singh, O.K. 1990. Floristic Study of Tamenglong District, Manipur with ethnobotanical notes. Ph.D. Thesis, Manipur University, Imphal.
- Singh, P.K., Gajurel, P.R. & Rethy, P. 2015. Ethnomedicinal value of traditional food plants used by the Zeliang tribe of Nagaland. *International Journal of Traditional Knowledge*, 14(2): 298-305.
- Singh, R.C., Saxena, R.S., Gupta, B., Saxena, K.K. & Prasad, D.N.1984. On some more pharmacological properties of *Nyctanthes arbor-tristis* Linn. (Harsingar)
 The plant known for anti-inflammatory actions. *Indian Journal of Pharmacology*, 16: 47.

- Singh, S., Malhotra, M. & Majumdar, D.K. 2005. Antibacterial activity of *Ocimum* sanctum L. fixed oil. *Indian Journal of Experimental Biology*,43: 835–837.
- Sinha, S.C., 1996. *Medicinal Plants of Manipur*. Manipur Association for Science and Soceity, Manipur.
- Sircar, B. & Mandal, S. 2017. Screening of *Elaeocarpus floribundus* fruit extracts for bioactive phytocomponents and antibacterial activity against food-borne bacteria. *International Journal of Research in Medical Sciences*, 5(8): 3665-3671.
- Sivagnanasundaram, P. & Karunanayake, K. 2015. Phytochemical screening and antimicrobial activity of *Artocarpus heterophyllus* and *Artocarpus altilis* leaf and stem bark extracts. *OUSL Journal*, 9: 1-17.
- Sivanantham, S. & Thangaraj, N. 2015. Phytochemical screening, characterization, compound identification and separation from *Daucus carota L. International Journal of Current Research in Biosciences and Plant Biology*, 2(7): 168-172.
- Somwong, P., Moriyasu, M. &Suttisri, R. 2015. Chemical constituents from the roots of *Clerodendrum indicum* and *Clerodendrum villosum*. *Biochemical Systematics and Ecology*, 63: 153-156.
- Sood, R., Raut, R., Tyagi, P., Pareek, P. K., Barman, T. K., Singhal, S., Shirumalla, R.K., Kanoje, V., Subbarayan, R., Rajerethinam, R. & Sharma, N. 2015. *Cissampelos pareira* Linn: Natural source of potent antiviral activity against all four dengue virus serotypes. *PLoS neglected tropical diseases*, 9(12): e0004255.
- Sowjanya, P., Babu, P. S. &Narasu, M. L. 2014. Phytochemical and pharmacological potential of *Amaranthus viridis* L.:-a review. *International Journal of Phytomedicine*, 6: 322-326.
- Srikanth, M., Tadigotla, S. &Veeresh B.: Phytochemistry and Pharmacology of Oxalis corniculata Linn.: A Review. *International Journal of Pharmaceutical Sciences and Research*, 3(11): 4077-4085.
- Srividya, A. R., Dhanabal, S. P., Misra, V. K. &Suja, G. 2010. Antioxidant and antimicrobial activity of *Alpinia officinarum*. *Indian journal of pharmaceutical sciences*, 72(1): 145-148.
- Stavri, M. & Gibbons, S. 2005. The antimycobacterial constituents of Dill (*Anethum graveolens*). *Phytotherapy Research*, 19: 938-941.
- Subash, K. R., Bhaarathi, G. M., Rao, N. J. & Cheriyan, B. V. 2013. Phytochemical screening and acute toxicity study of ethanolic extract of *Alpinia galanga* in rodents. *International Journal of Medical Research & Health Sciences*, 1(2): 93-100.

- Subba, B. & Basnet, P. 2014. Antimicrobial activity of some medicinal plants from east and central part of Nepal. *International Journal of Applied Sciences and Biotechnology*, 2(1): 88-92.
- Sulthana, B.S. 2017. Investigation of anti-bacterial activity of different extracts of *Barleria cristata* leaves. *International Journal of Health Sciences and Research*, 7(9): 90-95.
- Sumi, A. &Shohe, K. 2018. Ethnomedicinal Plants of Sumi Nagas in Zunheboto District, Nagaland, Northeast India. Acta Scientific Pharmaceutical Sciences, 2(8): 15-21.
- Sundaraganapathy, R., Niraimathi, V., Thangadurai, A., Jambulingam, M., Narasimhan, B. & Deep, A. (2013). Phytochemical studies and pharmacological screening of *Sida rhombifolia* Linn. *Hygeia: journal for drugs and medicines*, 5(1): 19-22.
- Sundarraj, A. A. &Thottiam, V. R. 2017. Phytochemical screening and spectroscopy analysis of jackfruit (*Artocarpus integer* thumb.) peel. *International Research Journal of Pharmacy*, 8(9): 151-159.
- Susanti, D., Sirat, H.M., Ahmad, F., Ali, R.M., Aimi, N. & Kitajima, M. 2007. Antioxidant and cytotoxic flavonoids from the flowers of *Melastoma* malabathricum L. Food Chemistry, 103 (3): 710-716.
- Suvarna, C.M., Sriva, P., Arshad, M.D. & Pavan. 2018. A Review on Phytochemical and Pharmacological Properties of *Ricinus communis*. *International Journal* of Pharma Research and Health Sciences, 6 (4): 2651-2655.
- Swamy, M. K., Pokharen, N., Dahal, S. & Anuradha, M. 2011. Phytochemical and antimicrobial studies of leaf extract of *Euphorbia neriifolia*. *Journal of Medicinal Plants Research*, 5(24): 5785-5788.
- Swargiary, N., Dey, T. & Das, A. N. 2019. A Survey on Traditionally Used Medicinal Plants of Rangjuli (Belpara), Goalpara, Assam. *Periodic Research*, 7(4): 86-96.
- Swarnalata, N., Sharma, S., Thokchom, D. S., Singh, C. D., Tiwari, A. & Sivapatham, L. 2016. Phytochemical Profiling and Evaluation of Antihypertensive Activity of ethanolic extract of *Allium hookeri* Thaw. Enum.leaves. *International Journal of Research in Pharmacology & Pharmacotherapeutics*, 1: 146-155.
- Syu, W., Don, M., Lee, G. & Sun, C. 2001. Cytotoxic and novel compounds from *Solanum indicum. Journal of Natural Product*, 64(9): 1232-1233.
- Tag, H. & Das, A.K. 2004. Ethnobotanical notes on the Hill Miri tribe of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 3(1): 80-85.

- Taha, A. M. &Eldahshan, O. A. 2017. Chemical characteristics, antimicrobial, and cytotoxic activities of the essential oil of Egyptian *Cinnamomum* glanduliferum bark. Chemistry & Biodiversity, 14(5): e1600443.
- Tanruean, K., Kaewnarin, K., Suwannarach, N. &Lumyong, S. 2017. Comparative evaluation of phytochemicals, and antidiabetic and antioxidant activities of *Cuscuta reflexa* grown on different hosts in northern Thailand. *Natural* product communications, 12(1): 51 - 54.
- Tasnin, N.M., Islam, A., Islam, D. M., Islam, M.M., Rahman, M.M., Hossain, I. M. & Islam, A.M. (2018). Study on the phytochemical and antioxidant properties of the aerial parts of *Ficushispida* Linn. World Journal of Pharmaceutical and Life Sciences, 4 (10): 13-20.
- Taur, D. J. & Patil, R. Y. 2011. Evaluation of antiasthmatic activity of *Clitoria* ternatea L. roots. Journal of ethnopharmacology, 136(2): 374-376.
- Temraz, A. & El-Tantawy, W.H. 2008. Characterization of antioxidant activity of extract from Artemisia vulgaris. Pakistan Journal of Pharmaceutical Sciences, 21: 321–326.
- Thakur, A., Singh, S. &Puri, S. 2020. Nutritional evaluation, phytochemicals, antioxidant and antibacterial activity of *Gerardiana diversifolia* Linn. and *Bauhinia variegata* Linn. wild edible plants of Western Himalayas. *Plant Archives*, 20 (2): 8155 – 8162.
- Thangavelu, N.R. & Thomas, S. 2010. In-vitro anti-oxidant studies on ethanolic extracts of leaves and stems of *Nyctanthesarbor-tristis* L. (Night flowering Jasmine), *International Journal of Biological and Medical Research*, 1 (4): 188-192.
- Thokchom1, S., Ningombam, D.S., Chanchal, C. & Singh, H. B. 2015. Folk-Medicare System of Chakpa community of Andro Village of Manipur in Northeast India. American Journal of Ethnomedicine, 2(4): 239-264.
- Thomas, B., Vithiya, B. S. M., Prasad, T. A. A., Mohamed, S. B., Magdalane, C. M., Kaviyarasu, K. & Mazza, M. 2019. Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of Silver Nanoparticles using *Passiflora edulis* f. *flavicarpa. Journal of Nanoscience and Nanotechnology*, 19: 2640–2648. doi: 10.1166/jnn.2019.16025.
- Thomas, T. 2014. A study on antibacterial and phytochemical evaluation of fronds of *Aadiantum raddianum* c. Presl. *Journal of Biomolecular Screening*, *4*(2): 85-88.

- Thusa, R. & Mulmi, S. 2017. Analysis of Phytoconstituents and Biological Activities of Different Parts of *Mahonia nepalensis* and *Berberis aristata*. *Nepal Journal of Biotechnology*, 5(1): 5-13.
- Tiwari, U., Yadav, P. & Nigam, D. 2015. Study on phytochemical screening and antibacterial potential of methanolic flower and leaf extracts of *Hibiscus rosasinensis*. *International Journal of Innovative and Applied Research*, 3: 9-14.
- Tomar, N. S., Sharma, M. & Agarwal, R. M. 2015. Phytochemical analysis of *Jatropha curcas* L. during different seasons and developmental stages and seedling growth of wheat (*Triticum aestivum* L) as affected by extracts/leachates of *Jatropha curcas* L. *Physiology and Molecular Biology of Plants*, 21(1): 83-92.
- Tomer, N. & Moin, S. 2021. Pharmacological Potential of *Curcuma Caesia.Journal of environment, science and technology*, 7(1): 56-61.
- Tripathi, Y.B. & Upadhyay, A.K. 2001. Antioxidant property of *Mucuna pruriens* Linn. *Current Science*, 80(11): 1378.
- Tsering, J. 2017. Ethnobotany and phytochemical analysis of selected traditional wild food and medicinal plants of the Monpa community of Arunachal Pradesh. Ph.D. Thesis, Rajiv Gandhi University, Itanagar.
- Uddin, M. A., Jakaria, D.M., Roy, A., Islam, M., A., Emdadulla, M., Ahmed, M. S., Bari, F.M.S.N. & Neon, M.N. 2016. Evaluation of antioxidant and antimicrobial property of different extracts of *Litsea salicifolia* (Roxb.ex Nees) Leaf. *International Journal of Pharmacy*, 6(3): 116-123.
- Uddin, N., Hasan, M. R., Hossain, M. M., Hasan, M. M., Roy, A., Islam, T., Hossain, M.S., Faruque, A. & Rana, M.S. 2014. Antioxidant, brine shrimp lethality and antimicrobial activities of methanol and ethyl-acetate extracts of *Citrus macroptera* Montr. fruit using in vitro assay models. *Journal of Pharmaceutical Research International*, 4(1): 1725-1738.
- Umamaheswari, A., Puratchikody, A., Prabu, S. L. & Jayapriya, T. 2017. Phytochemical screening and antimicrobial effects of *Musa acuminata* bract. *International Research Journal of Pharmacy*, 8(8): 41-44.
- UmiKalsum, Khotimah, H., Riawan, W., Trisnaini, H. A. & Zubaidah, E. 2018. Sugar Palm Fruit (*Arenga pinnata*) Diminish Pain and Inflammatory Symptoms of Osteoarthritis in male Wistar Rat (Rattus norvegicus). *Research Journal of Pharmacy and Technology*, 11(9): 3745-3751.

- Upadhye, A. S. & Rajopadhye, A. A. 2010. Pharmacognostic and phytochemical evaluation of leaf galls of Kakadshringi used in Indian system of medicine. *Journal of Scientific and Industrial Research*, 69: 700-704.
- Upaganlawar, A. B. & Tenpe, C. R. 2007. In vitro antioxidant activity of leaves of Oroxylum indicum Vent. Biomedicine, 2(3): 300-304.
- Upaganlawar, A.B., Tende, C.R. & Yeole, P.G. 2009. Antiinflammatory activity of aqueous extract of *Oroxylum indicum* Vent. leaves extract-preliminary study. *Pharmacology online*, 1: 22–26.
- Valady, A., Nasri, S. & Abbasi, N. 2010. Anti-inflammatory and analgesic effects of hydroalcoholic extract from the seed of *Anethum graveolens* L. *Journal of Medicinal Plants*, 9: 130-124.
- Velasco, R.R., Dollente, D.J., Natividad, L.R. &Abella, T.A. 2018. Benguet pine pollen (*Pinus kesiya*) as natural source of phytoandrogen. *International Journal of Biology, Pharmacy and Allied Sciences*, 7(6): 1121-1132.
- Venkateswarlu, K. 2012. Vitex negundo: Medicinal Values, Biological Activities, Toxicity Studies and Phytopharmacological Actions. International Journal of Pharmaceutical and Phytopharmacological Research, 2(2): 126-133.
- Verma, D., Sahu, M. & Harris, K. K. 2016. Phytochemical analysis of *Helianthus* annus Lin., (Angiosperms: Asteraceae). World Journal of Pharmacy and Pharmaceutical Sciences, 6 (3): 825-846.
- Verma, S.K., Rajeevan, V., Bordia, A. & Jain, V. 2010. Greater cardamom (Amonum subulatum Roxb.) – A cardio-adaptogen against physical stress. Journal of Herbal Medicine and Toxicology, 4(2): 55-58.
- Vyas, S., Agrawal, R.P., Solanki, P. & Trivedi, P. 2008. Analgesic and antiinflammatory activities of *Trigonellafoenum-graecum* (seed) extract. *Acta Pol Pharm*, 65: 473–476.
- Wamba, B. E., Nayim, P., Mbaveng, A. T., Voukeng, I. K., Dzotam, J. K., Ngalani, O. J. & Kuete, V. 2018. Syzygium jambos Displayed Antibacterial and Antibiotic-Modulating Activities against Resistant Phenotypes. Evidence-Based Complementary and Alternative Medicine, 2018.
- Wang, L., Jiang, Y., Han, T., Zheng, C. & Qin, L. 2014. A phytochemical, pharmacological and clinical profile of *Paederia foetida* and *P.* scandens. Natural product communications, 9(6): 879 - 886.
- Wangchuk, P. 2014. Phytochemical analysis, bioassays and the identification of drug lead compounds from seven Bhutanese medicinal Plants. Ph.D. Thesis, University of Wollongong, Australia.

- Wangpan, T., Tasar, J., Taka, T., Giba, J., Tesia, P. &Tangjang, S. 2019. Traditional use of plants as medicine and poison by Tagin and Galo Tribe of Arunachal Pradesh. *Journal of Applied Pharmaceutical Science*, 9(09): 098-104.
- Wani, B. A., Ramamoorthy, D. &Ganai, B. A. 2011. Preliminary phytochemical screening and evaluation of analgesic activity of methanolic extract of roots of *Gentiana kurroo* Royle in experimental animal models. *International Journal* of Pharmacy and Pharmaceutical Sciences, 3(4): 164-166.
- Watanabe, M. 1998. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. Journal of Agricultural and Food Chemistry, 46(3): 839-845.
- Wilson, B., Abraham, G., Manju, V. S., Mathew, M., Vimala, B., Sundaresan, S. & Nambisan, B. 2005. Antimicrobial activity of *Curcuma zedoaria* and Curcuma malabarica tubers. *Journal of Ethnopharmacology*, 99(1), 147-151.
- Xiang, W., Song, Q. S., Zhang, H. J. & Guo, S. P. 2008. Antimicrobial anthraquinones from *Morinda angustifolia*. *Fitoterapia*, 79(7-8): 501-504.
- Yadav, L.K. 2014. Chemical and biological study of Solanum Nigrum. Ph.D. Thesis, V. B. S. Purvanchal University, Uttar Pradesh.
- Yadav, V. K. 2018. Phytochemical and pharmacognostical studies of *Blumea lacera* (Roxb.) DC. *International Journal of Green Pharmacy* (IJGP), 12(01): 141-148.
- Yahara, S., Nakamura, T., Someya, Y., Matsumoto, T., Yamashita, T. & Nohara, T. 1996. Steroidal glycosides indiosides A–E, from *Solanum indicum*. *Phytochemistry*, 43(6): 1319-23.
- Yang, G. & Chen, D (2008). Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects. Chemistry & Biodiversity, 5(9): 1718-1722.
- Yang, Y., Wu, Z. J. & Chen, W. S. 2015. Chemical constituents of *Polygonum capitatum*. Chemistry of Natural Compounds, 51(2): 332-335.
- Yerima, M., Magaji, M.G., Yaro, A.H., Tanko, Y. & Mohammed, M.M. 2009. Analgesic and antiinflammatory activities of the methanolic leaves extract of *Securinega virosa* (Euphorbiaceae). *Nigerian Journal of Pharmaceutical Science*, 8(1): 47-53.
- Yoosook, C., Bunyapraphatsara, N., Boonyakiat, Y. & Kantasuk, C. 2000. Antiherpes Simplex Virus Activities of Crude Water Extracts of Thai Medicinal Plants. *Phytomedicine*, 6: 411-419.
- Yusuf, M., Shrivastav, A., Porwal, M. & Khan, M.A. 2020. A Review on *Equisetum* ramosissimum. Journal of Drug Delivery and Therapeutics, 10(5): 311-315.

- Zafar, I., Fatima, A., Khan, S.J., Rehman, Z. & Mehmud, S. 2010. GC-MS studies of needles essential oil of Pinus roxburghaii and their antimicrobial activity from Pakistan. *Electronic Journal of Environmental, Agricultural and Food Chemistry*, 9(3): 468-473.
- Zeb, A. 2015. Phenolic profile and antioxidant potential of wild watercress (*Nasturtium officinale L.*). Springerplus, 4: 714.
- Zhang, J. Y., Li, N., Che, Y. Y., Zhang, Y., Liang, S. X., Zhao, M. B., Jiang, Y. & Tu, P. F. (2011). Characterization of seventy polymethoxylated flavonoids (PMFs) in the leaves of Murrayapaniculata by on-line high-performance liquid chromatography coupled to photodiode array detection and electrospray tandem mass spectrometry. *Journal of Pharmaceutical and Biomedical Analysis*, 56: 950-961.
- Zhang, L., Wang, Y., Yang, D., Zhang, C., Zhang, N., Li, M. & Liu, Y. 2015. *Platycodon grandiflorus*–An ethnopharmacological, phytochemical and pharmacological review. *Journal of ethnopharmacology*, 164: 147-161.
- Zhasa, N.N., Hazarika, P. & Tripathi, Y.C. 2015. Indigenous Knowledge on Utilization of plant Biodiversity for Treatment and Cure of diseases of Humanbeings in Nagaland, India: A case study. *International Research Journal of Biological Sciences*, 4(4): 89-106.
- Zheng, G. & Luo, Z. 1999. Determination of antioxidant composition in *Vitex negundo* L. Seeds. *Guangdong Huangong*, 2: 8-9.
- Zheng, G., Lue, Z. & Chen, D. 1999. Studies on the antioxygenic composition of *Vitex* plant leaves. *Guangdong Gongye Daxue Xuebao*, 16(2): 41-47.
- Zu, Y., Liu, X., Fu, Y., Wu, N., Kong, Y. & Wink, M. 2010. Chemical composition of the SFE-CO2 extracts from *Cajanus cajan* (L.) Huth and their antimicrobial activity in vitro and in vivo. *Phytomedicine*, 17(14):1095-1101.

Chapter 5

A Review on Entomotherapeutic practices by Ethnic Tribes of North East India

Santana Saikia¹ Anjana Singha Naorem^{1*}and Naba Jyoti Borah² ¹Department of Zoology, Cotton University, Assam, India, Pin-781001 ²Department of Botany, Sibsagar College, Joysagar, Assam, India, Pin- 785665 *Corresponding author: <u>anjanasingha@cottonuniversity.ac.in</u>

Abstract

Traditional medicine has been practiced in India since time immemorial and even today, a majority of the tribal populations of North East India rely on this age-old system for treating several ailments. This knowledge has played an important role in identifying biological resources for commercial exploitation. Entomotherapy is one of the traditional medical practices that play a crucial role in healing various human diseases in this region. The present chapter reviews the use of different insects by different tribal communities of North East India, their preparation methods and the diseases for which these insects are consumed either as food or medicine. Due to the increasing urbanization there is a rapid degradation of natural resources therefore, there is an urgent need to record the knowledge that rests with these ethnic communities and to conserve the endemic bio-resources for the benefit of mankind. Though, these medicines have been used by traditional healers, there is a need to validate them scientifically to find out the active components of these insects responsible for its action so that the knowledge can be put to use for researching and developing drugs or treatments for many diseases.

Keywords: Traditional medicine, Traditional Knowledge, Biodiversity, Entomotherapy.

Introduction

India occupies only 2.4% of the total world's land area yet its contribution in terms of biological diversity is immense (Chinlampianga et al., 2013). Biodiversity has proved to be boon to a mankind not only for food resources but also as a reservoir of medicines which has been explored both traditionally as well as scientifically. Amongst this biodiversity, globally, insects alone make up more than 50% of the floral and faunal diversity put together (Grimaldi et al., 2005). 59,353 species of insects belonging to 619 families have been reported from India alone (Alfred et al., 1998). This diversity of insects is greater in Northeastern states and in Western Ghats. Northeastern region lies between 20°50'- 29°30'N latitude and 89°49'- 9°30'E longitudes (Hazarika, 2018). This region which lies in mid to high latitude tends to have abundance of insects due to warm temperature and humid climate (Deutsch et al., 2008). Many of these insects possess many medicinal properties that are exploited by the local tribes of these regions and also used as a food source (Rahman et al., 2018). Use of insects as a food is very common among the ethnic people of North East India According to a report, total of 255 different insect species are taken as food by different tribes of India (Hazarika, 2018). Among all the edible insects, the most commonly consumed insects belong to the family Coleoptera (34%) followed by Orthoptera (24%), Hemiptera (17%), Hymenoptera (10%), Odonata (8%), Lepidoptera (4%) and Isoptera (2%) (Hazarika, 2018; Sangma et al., 2016). The method of preparation of all these edible insects varies among different communitiessome being roasted, some are deeply fried, some are ground into paste and some are eaten raw. Ethno-medicine deals with the use of plants, animals, minerals and insects etc. for treating different ailments (Werner, 1970; Solanki & Chutia, 2009). Traditional medicines and their practitioners reflect cultural expressions through indigenous beliefs, concepts, knowledge and practices prevailing among the ethnic people for preventing or curing disease (Solanki & Chutia 2009; Young, 1983). The vast knowledge base of use of insects in ethno-medicine that lies with the different ethnic tribes of North Eastern states are being reviewed in the following sections.

A. Insects in traditional medicines used by different communities of Arunachal Pradesh

Arunachal Pradesh is the largest state in North East India that lies between 26°28' and 29°30' N latitude and 90°30' and 97°30' E longitude and is situated in the Eastern Himalayan province, a region characterized by mountains and valleys of variable elevation (50 to 7000 m) (Chakravorty et al., 2011a). By virtue of this geographical location, climatic condition and altitudinal variation, this region is very rich in biodiversity and regarded as global biodiversity hotspot (Myers et al., 2000). This state is not only biologically diverse but also known for its variety of traditional

communities with 26 tribes and 110 subtribes. Among all the tribes- *Adi, Nyishi, Monpa, Tagin, Idu, Khampti, Tangsa, Nocte, Singpho, Mishmi, Miji, Wangcho, Apatani, Aka, Sherdukpen, Khawa, Hill Miri* (Mahanta & Tiwari, 2005, Singh et al., 2010), *Galo, Memba and Khamba* (Kato & Gopi, 2009) are the main tribes. These communities are close with nature and get minimal access to modern medical and food facilities due to their remote location. Hence, they are mostly dependent on locally available resources for food and medicines. Use of different insects in treating different ailments by the tribal communities of this region is given in the Table 5.1.

Adi people use larvae of Oecophylla smaragdina as a medicine to a person suffering from malaria and even the adult ants are used to make the patient get bitten by them so that the acids/ hormones injected by these ants raise the body heat of the malaria patient which is believed to help patient in getting cured. Traditional healers also restrict the consumption of bamboo shoot (fresh/ fermented) to avoid malaria relapse (Chinlampianga et al., 2013). They also use *tari* insect (Aspongopus janus) for treating malaria after mixing it with local plants (eg- origin- Clerodendrum colebrookiantum, bangko- Solanum spirale etc).

Jugli et al. (2019) reported the entomotherapeutic practices of two of the tribes – *Wancho* and *Tangsa* of Arunachal Pardesh. Tangsa tribe alone uses total of 55 different animal species (including vertebrates and invertebrates) in different diseases and out of that, 15% are insects. Some of the commonly used insects are *Apis cerana, Apis mellifera, Apis dorsata, Apis florea, Apis andreniformis, Vespa orientalis, Chondracris rosea and Blattid* sp. Similarly, Wancho tribe is reported to use 20 different species, out of which ~20% are insects, viz- *Macrocheraia grandis, Melamphaus rubrocinctus, Apis cerana, Apis mellifera and Apis dorsata* (Jugliet al.,2019). The preparation method of the insects and the name of diseases for which these insects are used is given on the Table 5.1. In majority of the tribes, insects belonging to the order Hymenoptera are used for therapeutic purpose.

Table 5.1. List of insects used for medicinal purpose by different tribes of Arunachal Pradesh.

Name of insect	Body part used	Tribe	Preparation method	Disease cured	Author
Apis cerana, Apis florea, Apis mellifera,	Honey, wax,	Galo and Nyishi	Raw honey is taken 2/3 times daily and for skin irritation, honey is directly	Cough, fever, stomachac he, skin irritation, stomach cleanser	Chakravort y <i>et al.</i> , 2011b

			1
		applied to skin	
Bathroponeraru fipes	Whole body	Insects are crushed into paste and applied on the affected areas, 1/2 ants are eaten for high blood pressure, 	-do-
Vespa orientalis	Whole body	Insects are directly allowed to sting the person suffering from cough and cold	-do-
Oecophylla smaragdina	Whole insect	One full colony is friedKey stomachwithout oil; SmokedStomachdried, mixed with salt and taken as small amount once a day tillFever	do-

			recovered		
	Whole		Wet paste is		
Catharsius sp.	insect without body cover		made and given during acute diarrhoea	Diarrhoea	-do-
Ephemera danica	Nymph		Roasted or boiled nymphs are consumed	Stomach disturbanc e	-do-
Melamphus rubrocinctus	Hemoly mph	Wanc ho	Haemolymp h is squeezed out by gently pressing the abdominal portion of the insect. Then it is consumed either mixed with water or directly	Cough and cold	Jugli et al., 2019
Macrocheria grandis	Haemoly mph		-do-	-do-	-do-
Apis cerana, Apis mellifera, Apis dorsata	Honey		Fresh honey is taken orally	-do-	-do-
Apis cerana, Apis mellifera, Apis dorsata, Apis florea, Apis andreniformis	Honey and sting	Tangs a	Honey along with Tulsi leaves (<i>Ocimum</i> sanctum) is a good remedy for cough and cold; honey is also used as ointment for eye problem Once a year,	Cough and cold, eye problem	-do-

			sting was		
			thought to		
			prevent		
			septic		
			problems		
			Insect paste		
			is applied to		
	Whole		the affected	Antiveno	
Vespa orientalis	insect		skin in case	m	-do-
	mooot		of spider		
			bites		
Chondracris	Whole		Fresh or		
rosea	insect		roasted	Allergy	-do-
			Roasted	_	
Blattid sp.	Whole		insects are	Prevent	
Diania sp.	insect		given to	drooling	-do-
	mseet		children	in children	
			cinitatent	Given to	
				old people	Chinlampia
Oecophylla				to cure	-
smaragdina			-		nga et al.,
-				digestive	2013
			T	problems	
			Insect is		
			mixed with		
Aspongopus		Adi	leaves of		
janus			some local		
			plants like-		
			Clerodendru	malaria	-do-`
			т		
			colebrookia		
			num and		
			Solanum		
			spirale		
			Insects are		
			allowed to	Cough,	
	Whole		bite directly	cold.	Chakravort
Polistes sp.	insect	Galo	to the person	stomach	y et al.,
			suffering	disorder	2011b
			from cold	distriction	
	Whole		nom cona	Skin	
Cantharid sp.	body	Galo	-	allergy	-do-
	Whole			Skin	
<i>Lepidiota</i> sp.		Galo	-		-do-
-	body			allergy	

B. Insects in traditional medicines used by different communities of Assam:

Assam is one of the mega hotspot regions and is known for its rich culture with numbers of different tribes varying in their traditional culture, food habit and traditional knowledge. Zootherapy is a part of local culture among different tribes and the information about the insect or animal and their uses is passed down generation to generation through folklore or shared by word of mouth mainly among the older generation. In Asaam, *Karbi, Dimasa, Bodo, Mann Tai, Kuki, Rengma, Jayantia, Hmar, Adivasi, Rabha, Miris, Sonowal Kochari, Mishing* are the main tribes. All these tribes have their own traditional knowledge of using locally available insects for the ailment of many diseases.

Hazarika & Goyari (2017) reported that Bodo tribe of Udalguri district of Assam uses 23 insect species belonging to the order *Hemiptera, Coleoptera, Hymenoptera, Orthoptera, Lepidoptera, Isoptera* and *Odonata* comprising of 21 genera and 16 families as food resources. The insects which they eat as food is a good resource of monounsaturated and/or polyunsaturated fatty acids and a rich source of micronutrients like copper, iron, magnesium, manganese, phosphorous, selenium, zinc, riboflavin, pantothenic acid, biotin and in some cases folic acid (Hazarika & Goyari, 2017, Rumpold & Schluter, 2013). These insects are therefore eaten as dietary supplements.

Bodo community use 'Sosroma' (Gryllotalpa africana) in a fried or roasted form as a therapeutic medicine for curing certain childhood diseases (Narzari & Sarmah, 2015). In Dhemaji district of Assam which is dominated by Mishing, Lalong, Koch and Ahom community, 16 species of insect belonging to 6 orders are reported to be consumed by different communities for the treatment of different kinds of diseases -like whooping cough and asthma. Interestingly, pupae and larvae of Eri silkworm (Samia Cynthia ricini) are used to cure 'Dudmur' disease in children (Dutta et al., 2016). In another study by Doley & Kalita, (2012) total 15 edible insects were reported from Dhemaji district by Mishing people, out of which, 7 species were for therapeutic purpose. Mishing and Ahom tribe eat eggs of red tree ants (Oecophyllasmaragdina) during Assamese festival of Bohag Bihu and believe that these insects keep them healthy. The formic acid produced by these ants have a shown to have potent effect on curing ailments like scabies, malaria, tooth aches, stomach disorder, blood pressure anomalies etc. (Chakravorty et al., 2011b; Doley & Kalita, 2012).

Karbi Anglong district is the largest among 27 districts of Assam and *Karbi* is the main tribe in this district. 8 different insects are reported to be used for traditional treatment [Table 5.2] (Verma et al., 2014). Bhuyan (2016) reported total 4

insects (*Apis sp., Antheraea assama, Periplaneta americana and Philosomia ricini*) with therapeutic use along with other vertebrates that are commonly used by *Tai Ahom* people. Honey is seen to be commonly consumed or applied by the Ahoms for curing cough, snake bites and skin problems. Extract of the roasted cockroaches (*Periplaneta americana*) and *Philosomia ricini* and *Antheraea assama* are consumed after boiled or fried to cure weakness and anaemia Table 5.2 gives the comprehensive list of insects utilized for therapeutic purpose by different tribes of Assam.

Table 5.2. List of insects used for medicinal purpose by the tribes of Assam.

Name of insect	Body part used	Tribe	Preparati on method	Diseased cured	Author
Achaeta sp.	Hind leg	Karbi	Burn on fire and eaten	Diuretic	[Verma et al., 2014]
Aeshma mixta	Whole body	Karbi, Rengm a and Mishin g	-	For anti- diuretic drug in children	[Ronghang and Ahmed, 2010]
	Whole	Ahom	Boiled and fried	Weakness, anaemia	[Bhuyan, 2016]
Antheraea	Silk and pupa	Karbi and Rengm a	Chutney and baking	Diet supplement	[Ronghang and Ahmed, 2010]
assama	Larva, pupae and adult	Mishin g, Lalong, Koch	Frying and boiling	Constant itching, soreness of throat and diet supplement	[Doley and Kalita, 2012; Dutta et al., 2016]
<i>Apis</i> sp.	Whole body	Ahom	Honey is taken and applied. Powder of the roasted animal is mixed	Cough, snakebite, skin disease	[Bhuyan, 2016]

			with		
			honey and		
			applied.		
Apis indica	Honey , Beewa x	Mishin g	_	Cough, cold and fever	[Doley and Kalita, 2012]
Apis indica	Egg, larvae, honey	Mishin g, Lalong, Koch	Crushed and mixed with honey	Whooping cough	[Dutta et al., 2016]
Apis mellifera	Honey , egg, larva and pupa	Karbi, Rengm a	Chutney and baking	Cold, flu, cough, face facial	[Ronghang and Ahmed, 2010; Verma et al., 2014]
Bombyx mori	Larva e, pupae and adult	Mishin g, Lalong, Koch	Frying and boiling	Cure constant itching and soreness of throat	[Dutta et al., 2016]
Coridius chinensis	Adult	Miris	Eaten cooked	Cures Urino- genital problems	[Senthilkuma ret al., 2008]
Dorylus orientalis	Eggs, adults	Mishin g	-	Protect against small pox, chichen pox. Adults in stomachac he, dysentery.	[Doley and Kalita, 2012]
Eumenes petiolatus	Eggs, larvae	Mishin g	-	Protect from headache, burn relief	[Doley and Kalita, 2012]
Eumenus sp.	Nest	Karbi	Nest is	Stomach	[Dutta et al.,

		and	mixed	problem,	2016]
		Rengm	with local	cough and	
		а	herbs and	cold	
			consumed		
Gryllotalpa africana	Larva e	Bodo	Wings are removed then fried or roasted	Certain childhood diseases	[Narzari and Sarmah, 2015]
Hierodula westwoodi	Adult	Sonowa l- kachari	Eaten roasted	Strengthen s kidney and relieve convulsion s	[Senthilkuma ret al., 2008]
Lytta vesicatoria	Whole insect	Karbi	Crushed, dissolved and orally	Anticancer, increase sexual	[Verma et al., 2014]
			consumed	pleasure	
Musca domestica	Whole body	Karbi and Rengm a	Roasted	Baldness	[Verma et al., 2014]
Myrmica rubra	Larva and pupa	Karbi, Rengm a and Mishin g	Roasting and deep frying	Consumed for improving potency	[Ronghang and Ahmed, 2010]
Mylabris cichorii Epicauta tereticornis	Whole insect	Karbi and Rengm a	Crushed, dissolved and orally consumed	Anticancer, warts. rabies	[Verma et al., 2014]
Neurathemis fluctuans	Whole body	Karbi and Rengm a	Raw	Urinary disorder cure in children	[Ronghang and Ahmed, 2010]
Periplaneta americana	Whole insect	Karbi, Mishin g, Lalong, Koch	Boiled/ burned, fried and consumed	Asthma, Tuberculos is	[Verma et al., 2014; Dutta et al., 2016]
	Whole	Ahom	Extract of	Asthma,	[Bhuyan,

	insect		the roasted insect with water is	Tuberculos is	2016]
Pediculus sp.	Whole insect	Karbi and Rengm a	Eaten alive	Clears urinary tract obstruction s	[Verma et al., 2014]
	Whole	Ahom	Boiled and fried	Weakness, anaemia, stomach disorder	[Bhuyan,201 6]
Philosomiaricini	Cocco n and cocco n ash	Karbi	Cooked, baked, chutney and curry	For prevention of evil spirit	[Ronghang and Ahmed, 2010]
	Larva e, pupae and adult	Mishin g, Lalong, Koch	Frying and boiling	Infection of tongue and mouth	[Dutta et al., 2016]
Poekilocerus pictus	Whole insect	Karbi	Fried	Lung infection	[Verma et al., 2014]
Pomponia sp.	Adult	Mishin g, Lalong and Koch	Wings and intestine removed and fried in oil	Food values	[Dutta et al., 2016]
Pseudacanthoter mes sp.	Whole body	Karbi	Fried	Asthma	[Verma et al., 2014]
Reticulitermes flavipes	Whole body	Karbi and Rengm a	Chutney and simple dry fry	Diet supplement	[Ronghang and Ahmed, 2010]
Rhynchophorus phoenicis	Larva	Karbi and Rengm a	Chutney and baking	-do-	[Ronghang and Ahmed, 2010]

Samia cynthiaricini	Pupae, cocoo n and cocoo n ash	Mishin g	-	Protect the liver. Cocoon and cocoon ash used to protect children from evil spirit.	Doley and Kalita, 2012
Schistocerca gregaria	Whole body and body oil	Karbi, Rengm a and Mishin g	Chutney and roasting	For lip cracking	[Ronghang and Ahmed, 2010; Doley and Kalita, 2012]
Trigona spinipes	Honey	Karbi	Raw honey consumed	Throat inflammati on	[Verma et al., 2014]
Ocecophylla smaragdina	Weav er ant and their eggs	Karbi, Rengm a and Mishin g	Chutney, baking and curry	Diet supplement	[Ronghang and Ahmed, 2010]
Vespa orientalis	Eggs and larvae	Mishin g, Lalong and Koch	Crushed and boiled and then consumed	Stomach problem, cough, cold	[Doley and Kalita, 2012; Dutta et al., 2016]
Vespa magnifera	Eggs and larvae	-do-	-do-	Stomach problem, cough, cold	[Dutta et al., 2016]

C. Insects in traditional medicines used by different communities of Manipur:

Manipur is a distinct part of Indo-Burma biodiversity hotspot and is very rich in diversity of insect fauna. There are 30 different ethnic communities with different identity, culture and food habits (Shantibala et al., 2012). So, entomophagy and entomotherapy is seen to be commonly practiced by these ethnic people. Out of all these communities *Meitei*, *Tarao*, *Tangkhul*, *Chothe and Thadou* consumes approximately 28-30 species in comparison to 9-26 species consumed by other ethnic communities. There are total 11 species of medicinal insects found to be used by these peoples which belongs to six orders *-Orthoptera*, *Hemiptera*, *Coleoptera*, *Lepidoptera*, *Hymenoptera* and *Isoptera* (Table 5.3).

Name of insect	Body part used	Disease cured
Antheraea proylei	Young stages	Relief from bronchitis &
		pneumonia
Apis mellifera	Honey	Memory enhancer, relief from
		gastric troubles
Cimex lectularius	Whole body	Relief from toe pains
		associated with nail problems
		or other injuries
Gryllotalpa orientalis	Body except head	Recovery from sprains,
	and appendages	dropsy & anaemia
Hydrophilus olivaceous	Body except head	Dietary supplements,
	and appendages	recovery from appetite loss
Locusta migratoria	-do-	Dietary supplement to
		alleviate nutritional
		deficiencies
Lethocerus indicus	-do-	Recovery from appetite loss
		and nutritional supplementary
Odontotermes	Mud from the inner	Recovery of external
formosanus	side of the nest	inflammations
Prionosomapodopioides	Abdomen	Recovery from white patches
		on the body skin
Polistesannularis	Larvae & Pupae	Recovery from nerve
		weakness & recovery from
		appetite loss
Samia cynthiarecini	Young stages	Hemorrhages& relief from
		bronchitis &pneumonia

Table 5.3. List of insects used for medicinal purpose by tribes of Manipur [Singh,
2015].

D. Insects in traditional medicines used by different communities of Meghalaya:

Meghalaya state is bounded by Assam state in north and Bangladesh in south. This state has three major tribes- *Garo, Khasi* and *Jayantia* living on the western, central and eastern hills of Meghalaya (Singh et al., 2010). Out of these three communities Khasi people are reported to use different insects in healing different diseases. According to Khasi traditional practitioners, a particular type of cockroach is used in whooping cough. Cockroaches, deep fried in mustard oil are used as a cure

for many diseases ('1 & Keshan, 2017). To remove wooden or iron splinters from flesh, they use paste of fresh stick insects (*Caurausius* sp.) to the wound and keep it overnight. Some type of rashes which is accompanied by bleeding and pain and common in men is cured by the use of the intestine of an insect called '*niang-saw-khlieh*'. One insect called '*niangkhap*' similar to '*niangkhapskhor*' is also seen to be used by Khasi tribe to cure dark blemishes/ pigmentation on the cheeks of women. Garo tribe use honey for treating 'dudmur' (infection of mouth and tongue in children) (Ghosh & Deka, 2015).

E. Insects in traditional medicines used by different communities of Mizoram:

Mizoram is the last frontier of Himalayan range surrounded by Bangladesh in the west, Myanmar in the east and south and Assam in the north. The *Mizos* formerly known as *Lushais*, are the main tribe that resides here. According to a report given by Lalramnghinglova (1999), they use 31 different invertebrates for the treatment of over 40 kinds of diseases. Out of all these, total 5 different insect species are used for healing diseases like pain, wound, stomach problem, asthma etc. Insects are crushed into paste and directly applied to affected area or sun-dried or boiled and that water is taken as tea. In the Table 5.4, insects name with their body part used and their preparation methods is mentioned.

Name of the insect	Part of the body used	Preparation method	Diseased cured	Author
Carausius morosus	Whole body	Insect is grounded into paste and applied directly on the body	Wounds, prickling spines	Laramngh iglova , 1999; Chinlampi angaet al., 2013
Periplanet aamerican a	Body	Insect is killed, sundried, boiled and water is taken as tea	Asthma, stomach ache, saliva exuding out of mouth in children	-do-
Cimexlect ularis	Whole part	Bugs are crushed and applied on the affected area	Inflammatory glands, boils & ulcers	-do-

Table 5.4. List of insects used for medicinal purpose by Mizo tribe of Mizoram.

Myrmeleo nformicari us	Whole part, Posterior end of the body	Crushed and applied on the warts	Removal of warts or verrucose	-do-
Apis mellifera	Bee wax, Honey	Honey is mixed with ginger or alcohol (traditional beverage) or turmeric powder and taken orally	To relieve and heal the pain, throat pain, irregular menstruation, burns and cuts	-do-
Grylluspe nnsylvanic us	Whole insect	Roasted and taken orally	Chest problem	Chinlampi angaet al., 2013

F. Insects in traditional medicines used by different communities of Nagaland:

Nagaland is surrounded by Assam in the west, Arunachal and Assam in the north, Myanmar in the east and Manipur in the south. Tribal people of Nagaland have been consuming insects since time immemorial as their traditional food but in recent time people have realized its benefit to human health. In Nagaland, *Angami, Ao, Chakhesang, Khiamnuingan, Konyak, Lotha, Sumi* (Mozhuiet al., 2021), *Sera Naga* (Senthilkumar et al., 2008; Ao & Singh, 2004) are the main tribe that occupy different sections of the state. Meyer-Rochow and Changkija (1997) documented 42 types of insects that are used as food by Ao Naga tribe of Nagaland state. They also make use of insects in healing different diseases. *Darthula hardwickii* or treehopper, commonly called as '*Longmi*' is used as an appetizer and also claimed to cure diabetes and high blood pressure. This insect has a queer odour but after several washes, smell disappears and can be cooked (Pongener et al., 2019). Such use of insects in different diseases is listed in Table 5.5

Table 5.5. List of insects used	as medicine by different	communities of Nagaland.

Name of insect	Body part used	Preparatio n method	Disease cured	Author
Tessarotoma	Body	Directly	Remove	[Pongener et
javanica	secretion	used on the	warts	al., 2019]
		skin		
Oecophylla	Adult	Not known	Cure high	[Pongener et

smaradina			blood	al., 2019]
smargdina				al., 2019]
			pressure in adult and	
			asthma in	
			children	
		Filtred after	To cure	[Pongener et
		boiling	chicken pox	al., 2019]
		used while		
		bathing as		
		an		
		antiseptic		
Prionoxystus	-do-	Not known	Tuberculosis,	[Pongener et
robiniae			anaemia,	al., 2019]
			believe to	
			cause	
			miscarriage	
			in pregnant	
			women	
	Caterpilla	Broth after	Arthritis and	[Pongener et
	r	boiling is	body pain	al., 2019]
		rubbed		
Cossus sp.	Larvae	Raw	Crtain	[Pongener et
_			ailments	al., 2019]
		Boiled	Used as a	[Pongener et
		water of	Balm for	al., 2019]
		larvae	muscle aches	
			and join pain	
Batocera rubra	Larvae	Eaten alive	Wounds	[Senthilkumae
		(Ao tribe)		ret al., 2008]
Batocera titana	-do-	-do-	-do-	-do-
		(Ao and		
		Sema		
		Naga)		
Coelosterna	-do-	Crushed	Burns	-do-
scubrata		live and		-
		applied (Ao		
		Naga)		
Neocerambyx	-do-	Tonic used	Expectorant	-do-
paris		(Ao Naga)	Zapotorant	
Xysterocera	-do-	Crushed	Antiseptic	-do-
<i>issuitu</i>	u0-	221	riniseptie	u0-

globosa		and applied		
C C		(Ao Naga)		
Balaninus c-	-do-	Tonic used	Respiratory	-do
album		(Ao Naga)	disorder	
Rhynchophorus	-do-	-do-	Bronchial	-do-
ferugineus			catarrh	
Oryctes	-do-	Crused and	Dissipates	-do-
rhinoceros		applied (Ao	clots and	
		Naga)	bruises	
Xylotrupes gideon	-do-	Tonic used	Scofula and	-do-
		(Ao Naga)	ulcer	
Hierodula	Adult	Crushed	Resolves	-do-
coaretata		and applied	bruises and	
		(Ao Naga)	clots	
Eupolyphaga	-do-	Crushed	Stop	-do-
sinensis		and applied	bleeding,	
		(Sema	heal bone	
		Naga)	fractures and	
			swelling	
Blatta orientalis	-do-	Roasted	Milk inducer	-do-
		(Ao Naga)		
Lethocerus	-do-	Tonic by	Health tonic	-do-
indicus		Ao Naga		
Betastoma indica	-do-	Roasted	Dietary	-do-
		(Ao Naga	supplement	
		and		
		SemaNaga)		
Antheraea assama	Pupa	Eaten alive	Impotence	-do-
		(Ao Naga)		
Antheraea paphia	-do-	Eaten	Diarrhea	-do-
		cooked (Ao		
		Naga)		
Antheraea roylei	-do-	-do-	Stomach	-do-
			disorder	
Samia Cynthia	-do-	Eaten	Back pain	-do-
ricini		cooked		
Pericyma cruegri	-do-	-do-	Stomach	-do-
		(Ao and	disorder	
		Sema		

		Naga)		
Acisomapanorpoi	Nymph	Tonic (Ao	Blood	-do-
des		Naga)	purifier	
Aechnepetulure	-do-	Tonic	Anaemia	-do-
		(Ao Naga)		
Hieroglyphus	Adult	Eaten	Liver	-do-
banian		roasted	disorder	
		(Ao /Sema		
		Naga)		
Acrida exaltata	-do-	-do- (Ao	Anaemia	-do-
		Naga)		
Acridium	-do-	-do-	Protein	-do-
malanocorne			supplement	
Acridium	-do-	-do-	-do-	-do-
peregrinum				
Locusta	-do-	-do-	Substitute for	-do-
migratoria			fish meat as	
			protein	
			supplement	
Dolycoris indicus	Adult	Not known	Paralysis	-do-
		(Ao Naga)		
Bagrada picta	-do-	Eaten	Goiters (Ao	-do-
	1	cooked	Naga)	
Gerriss pinole	-do-	Eaten	General	-do-
		roasted (Ao	weakness	
	1	Naga)	D 1 .	1
Erthesina fulo	-do-	Eaten	Paralysis	-do-
		roasted (Ao		
Nongoingung	-do-	Naga)	Protein	-do-
Nepa cinerea	-00-	-do-(Ao / Sema		-00-
			supplement	
Lohita anandia	-do-	Naga) Crushed	Arreat	-do-
Lohita grandis	-40-	live and	Arrest bleeding	-40-
		applied (Ao	orceaning	
		Naga)		
Cicada verides	Adult	Crushed	For skin	-do-
Creana remains	1 10011	live for skin	eruption and	
		disorder,	ulcers,	
		uisoiuci,	uicers,	

		tonic for	urticarial,	
		indigestion	deafness with	
		-		
		(Ao Naga)	running pus	
			from ear,	
			indigestion	
			and vomiting	
			and clear	
			lungs	
Apis dorsata	Larva	Tonic	Fatigue and	-do-
	and pupa	(Sema	sun's heat	
		Naga)		
Cerana indica	Bee sting,	Live animal	Arthritis,	-do-
	venom	sting and	Rheumatoid	
	and wax	application	arthritis	
		of wax on		
		knees (Ao		
		/Sema		
		Naga)		
Apis mellifera	Egg,	Decoction,	Spleen and	-do-
	larva,	Live hives	stomach	
	pupa and	eaten (Ao/	disorders	
	beehives	Sema	relieves	
		Naga)	flatulence	
			counteracts	
			toxicities and	
			kills worms	
Vespa orientalis	Larvae	Crushed	Arthritis	-do-
		live and		
		applied (Ao		
		Naga)		
Vespa mangifica	Larvae	Tonic (Ao/	Bone	-do-
		Sema	building	
		Naga)		
Odontotermes	Adult	_Fried (Ao/	Anaemia	-do-
feae		Sema		
Ť		Naga)		
Oecophylla	Larvae,	Tonic /	Resistance to	-do-
smaragdina	adult	eaten	fatigue and	
		roasted	sun heat	
		(Ao/Sema	Sum nout	
L		(110, 501110		

		Naga)		
Macrotermes	Adult	Fried	Anaemia and	-do-
gilvus		(Ao/Sema	weakness	
		Naga)		
Macrotermes	Adult	Eaten alive	Antidiarrhoe	-do-
obesi		(Sema	al agent	
		Naga)		
Digorigio obliguo	Dung	Eaten	Couch	-do-
Diacrisic oblique	Pupa	cooked (Ao	Cough, shortness of	-00-
		,	breath	
Malaasaasaa	Drawa	Naga)		4
Malacosoma	Pupa	-do-	Weak lung	-do-
indica	P		and kidneys	1
Bombyx mori	Pupa	-do-	Relieves	-do-
			flatulence	
			and loosens	
			congestion	
Schistocerca	Nymph,	Roasted	Substitute for	-do-
gregaria	adult	(Ao Naga)	fish meat as	
			protein	
			supplement	
Thylotropides	-do-	-do-	General	-do-
vericornis			weakness	
Holochlora albida	-do-	Fried (Ao	Ulcer	-do-
		Naga)		
Mecapoda	-do-	Tonic (Ao	Health tonic	-do-
elongata		Naga)		
Holochlora indica	-do-	-do-	Ulcer	-do-
		(Ao/Sema		
		Naga)		
Lima cordid	-do-	Roasted	Protein	-do-
		(Ao Naga)	supplement	
Acheta domestica	-do-	Cooked	Promotes	-do-
		(Ao Naga)	diuresis	
Gryllus	-do-	Crushed	Skin disease	-do-
bimaculatus		live and		
		applied		
		(Ao/ Sema		
		(AU) DUIIA		

Brachytrypes	-do-	-do-	-do-	-do-
portentosus		(Ao Naga)		
Gryllodes	-do-	-do-	-do-	-do-
singullatus				
Liogryllus	-do-	-do-	Eliminates	-do-
saussure			oedema	
Gryllotalpa fossor	-do-	-do-	Wound	-do-
		(Ao / Sema		
		Naga)		
Gryllotalpa	-do-	-do-	Wound	-do-
ornate		(Ao Naga)		
Hydropsyche	-do-	Tonic	Stomach	-do-
sikkimensis		(Ao Naga)	disorder	

G. Insects in traditional medicines by different communities of Sikkim:

Sikkim, the north eastern state of India is surrounded Tibet in north, Bhutan in the east, Nepal in the west and West Bengal in the south. Different communities of people living in Sikkim constitute homogeneous blend. The main communities are Lechas, Bhutias and Nepalis (Dhakal*et al.*, 2020). The people of Sikkim mainly rely on their rich faunal diversity for the use of traditional medicine. Males of the local communities were more dominant in the knowledge regarding the use of traditional medicine than the females. Dhakal and his team reported total 59 animal species which were used in zoo-therapy and out of these, total 12 were insects, amphibians, reptiles and mollusks etc. though not much studies are reported from this state and more such studies need to be carried out.

H. Insects in traditional medicines by different communities of Tripura:

Tripura is a part of Indo- Burma biodiversity hotspot region in north eastern part of India and total 19 different ethnic communities are there. These communities have gifted the state with advantage for evolving innumerous knowledge on ethnozoology. They have developed their own practice through their own traditional knowledge system. Out of all the communities- *Tripuri, Reang, Jamatia, Naotia, Lusai, Uchai, Chaimal, Halam, Kukis, Garos, Mog*and *Chakma*can be categorized as aboriginal tribes and on the otherhand, the tribes like *Bill, Munda, Orang, Santal, Lepcha, Khasia*and *Bhutias* can be categorized as immigrant tribes (Das, 2015). 5 arthropods are reported to be used as traditional medicine. The tribal people use these insects along with other animals for the treatment of 23 different kinds of disease likeasthma, paralysis, cough, fever, wound healing etc. Roasted crickets (*Gryllus* sp.) mixed with honey is used as a rub for infants to cure pneumonia. Ash of cockroach (*Periplanata americana*) is used with honey and consumed for healing urinary obstruction (Das, 2015).

Conclusion:

Use of insects in traditional medicine for their therapeutic values cannot be ignored as these communities are using these homemade remedies since time immemorial and this knowledge is being passed from generations. Studies reveal that same insects are used differently by different communities for different diseases. Benefit of using these insects for so many generations must be associated with the presence of some active components which is responsible for the cure of several ailments. Hence these traditional practices are relevant to science and human society for bringing better understanding of traditional medicines and its relationship from sociological, economical, anthropological and environmental viewpoints. So, it is of utmost importance that we must record the traditional knowledge of the ethnic people and to conserve these natural resources for the therapeutic purposes. Hence the knowledge and expertise of the folk healers should also be researched and scientifically validated in the laboratory to not only preserve the ancient healing technology but also to explore the possibilities of developing drugs for serious diseases like cancer. The potential that rests with these insects hold promising outcomes in the field of research and medical sciences.

Acknowledgement:

Authors are thankful to The Director, North- Eastern Institute of Folk Medicine, Pasighat, Arunachal Pradesh for giving the opportunity to write a review chapter on the traditional medicine knowledge.

References-

- Alfred, J.R.B., Das, A. & Sanyal, A.K. 1998. Faunal diversity in India. ENVIS Centre. Zoological Survey of India, Kolkata, 495
- Ao, M.A. & Singh, H.K. 2004. Utilization of insects as human food in Nagaland. *Indian Journal of Entomology*, 66(4): 303-310
- Bhuyan, D.A. 2016. Studies on ethno medicinal aspects and zoo therapeutic knowledge of Tai-Ahom people of Upper Brahmaputra Valley. *International Journal of Faunal and Biological Studies*, 4(2): 117-119

- Chakravorty, J., Ghosh, S. & Meyer-Rochow, V. B. 2011b. Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North-East India). *Journal of Ethnobiology and Ethnomedicine*, 7:5.
- Chakravorty, J., Meyer-Rochow V.B. & Ghosh, S. 2011a. Vertebrates used for medicinal purposes by members of the Nyishi and Galo tribes in Arunachal Pradesh (North-East India). *Journal of Ethnobiology and Ethnomedicine*, 7(1): 1-14
- Chinlampianga, M., Singh, R.K. & Shukla, A.C. 2013. Ethnozoological diversity of Northeast India: Empirical learning with traditional knowledge holders of Mizoram and Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 12(1): 18-30
- Das, D. 2015. Ethnozoological practices among tribal inhabitants in Khowai district of Tripura, North-East India. *Journal of Global Bioscience*, 4(9): 3364-3372
- Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. & Marti, P.R. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), pp.6668-6672
- Dhakal, P., Chettri, B., Lepcha, S. & Acharya, B.K. 2020. Rich yet undocumented ethnozoological practices of socio-culturally diverse indigenous communities of Sikkim Himalaya, *India. Journal of ethnopharmacology*, 249, p.112386
- Doley, A.K. & Kalita, J. 2012. Traditional uses of insect and insect products in medicine and food by the Mishing tribe of Dhemaji District, Assam, North-East India. Social Science Researcher, 1(2):11-21
- Dutta, L., Ghosh, S.S., Deka, P. & Deka, K. 2016. Terrestrial edible insects and their therapeutic value in Moridhal Panchayat of Dhemaji district, Assam, Northeast-India. *International Journal of Fauna and Bioscience Studies*, 3(6), 11-14
- Ghosh, S. & Deka, K. 2015. Therapeutic use of insects by the Garo tribe of Goalpara district, Assam. Zoon, Annual Journal, 13: 59-64
- Grimaldi, D., Engel, M.S. & Engel, M.S. 2005. Evolution of the Insects. Cambridge University Press
- Hazarika, H. 2018. Entomophagy with special reference to Assam, International Journal for Research in Engineering Application and Management, 04: 458-462
- Hazarika, R. & Goyari, B. 2017. Entomophagy among the Bodos of Udalguri district, BTAD, Assam, India, Asian Journal of Science and Technology, Vol. 08: 6228-6233
- Jugli, S., Chakravorty, J. & Meyer-Rochow, V. 2019. Zootherapeutic uses of animals and their parts: an important element of the traditional knowledge of the

Tangsa and Wancho of eastern Arunachal Pradesh, North-East India. *Environment, Development and Sustainability*, 1-36

- Kato, D. & Gopi, G.V. 2009. Ethnozoology of Galo tribe with special reference to edible insects in Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 8(1): 81-83
- Lalramnghinglova, H. 1999. Ethnobiology in Mizoram state: folklore medicozoology. Bulletin of the Indian Institute of History of Medicine (Hyderabad), 29(2): 123-148
- Mahanta, D. & Tiwari, S.C. 2005. Natural dye-yielding plants and indigenous knowledge on dye preparation in Arunachal Pradesh, northeast India. *Current Science*, 1474-1480
- Meyer Rochow, V.B. & Changkija, S. 1997. Uses of insects as human food in Papua New Guinea, Australia, and North-East India: Cross-cultural considerations and cautious conclusions. *Ecology of Food and Nutrition*, 36(2-4):159-185
- Mihsill, K.R.R. & Keshan, B. 2017. Ethno-zoological Practices by Khasis, An Indigenous Tribe of Meghalaya, India, *The NEHU Journal*, Vol. XV: 89-96
- Mozhui, L., Kakati, L.N. & Changkija, S. 2021. A study on the use of insects as food in seven tribal communities in Nagaland, Northeast India. *Journal of Human Ecology*, 60(1): 42-53
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. *Nature*, 403(6772): 853
- Narzari, S. & Sarmah, J. 2015. A study on the prevalence of entomophagy among the Bodos of Assam. *Journal of Entomology and Zoology Studies*, 3(2): 315-320
- Pongener, A., Ao. B., Yenisetti, S. C. & Lal, P. 2019. Ethnozoology and entomophagy of Ao tribe in the district of Mokokchung, Nagaland. *Indian Journal of Traditional Knowledge*. 18(3):508-515
- Rahman, A., Bordoloi, S. & S. Mazid. S. 2018. Entomophagy practiced among the Tiwa community of Morigaon district, Assam. *Journal of Entomology and Zoology Studies*, 6(1): 484-486
- Ronghang, R. & Ahmed, R. 2010. Edible insects and their conservation strategy in KarbiAnglong district of Assam, North East India. *The Bioscan*, 2: 515-521
- Rumpold, B.A. & Schlüter, O.K. 2013. Nutritional composition and safety aspects of edible insects. *Molecular Nutrition. & Food Research*, 57(5): 802-823
- Sangma, R.H.C., Pal, R. & Singh, D.R. 2016. Edible Insects of Northeast India. In Bioprospecting of Indigenous Bioresources of North-East India, 253-267
- Senthilkumar, N., Barthakur, N. & Rao, M.L. 2008. Bioprospecting with reference to Medicinal Insects and tribes in India: An overview. *Indian Forester*, 134:1575-1591

- Shantibala, T., Lokeshwari, R.K. & Sharma, H.D. 2012. Entomophagy practices among the ethnic communities of Manipur, north-east India, *International Journal of Integrative Sciences, Innovation and Technology*, 1(5): 13-20
- Singh, O.L. 2015. Medicinal insects of Manipur. International Journal of Research in Management & Social Science, 100-104
- Singh, R.K., Pretty, J. & Pilgrim, S. 2010. Traditional knowledge and biocultural diversity: learning from tribal communities for sustainable development in northeast India. *Journal of Environmental Planning and Management*, 53(4): 511-533
- Solanki, G.S. & Chutia, P. 2009. Studies on ethnomedicinal aspects and zoo-therapy in tribal communities in Arunachal Pradesh, India. *International Journal of Ecology & Environmental Sciences*, 35: 67-76
- Verma, A.K., Prasad, S.B., Rongpi, T. & Arjun, J. 2014. Traditional healing with animals (zootherapy) by the major ethnic group of Karbi Anglong district of Assam, India. *International Journal of Pharmacy and Pharmaceutical Sciences*, 6(8): 593-600
- Werner, D. 1970. Healing in the Sierra Madre. The Natural History, 79(9): 61-66
- Young, A. 1983. The relevance of traditional medical cultures to modern primary health care. *Social Science & Medicine*. 17(16): 1205-1211

Chapter 6

Diversity of medicinal plants traditionally used to treat hemorrhoids among the ethnic groups in North East India: A review

Debashree Kakati^{1*}, S. K. Borthakur²

¹Department of Botany, Mangaldai College, Darrang, Assam ²Department of Botany, Gauhati University *Corresponding author: debashree.kakati@gmail.com

Abstract:

North east India is considered as the hub of medicinal and aromatic plant resources. Local people here primarily visit traditional and folk healers for the treatment of different ailments. Piles or hemorrhoid is one of the most common health ailments now a days prevailing both in rural as well as urban localities. People use both allopathic and herbal treatments for the cure of this disease. Therefore, present reviewinvestigates the indigenous knowledge on medicinal plants used by the ethnic people totreat hemorrhoids in North East India. It has been shown that 104 medicinal plants belonging to 59 families have been used to cure hemorrhoids. More than 20 plants are commonly used in all the states for this treatment. All the plants used exhibits scientific evidence of gastrointestinal curative as well as wound healing properties apart from the other pharmacological properties. Hence it is urgent need to compile all the available traditional knowledge for the treatment of hemorrhoids for the discovery of novel compound, which will be helpful for formulation of new drugs.

Keywords: Piles, hemorrhoid, traditional medicine, North East India

Introduction

North East India comprises of eight states viz. Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura and Sikkim. This region is famous for its rich biodiversity. The rich floristic diversity is because of the unique geographical location wide range of forest comprising of tropical to alpine serve as a repository of vast diversity of plants. It is considered as an important part of the Indian Floristic Zone and has been identified as one of the twelve "Genetic Epicenters" for the evolution of world flora (Hazarika et al., 2012). Over 6000 plants in India are extensively used in traditional, folk and herbal medicine, representing about 75% of the medicinal needs of the Third World countries (Bharat, 2014). North-Eastern Indian sub-continent harbours 50% of the plant wealth of India (Rao, 1981).

The Merck Manual defines hemorrhoid as "Varicosities of the veins of the hemorrhoidal plexus, often complicated by inflammation, thrombosis, and bleeding" (Berkow, 1992). Simplified definition of hemorrhoid or piles is vascular cushions, consisting of thick submucosa containing both venous and arterial blood vessels (Thomson, 1975). Hemorrhoid is a life style related ailment that causes swollen rectum develops from the lining of the anus and lower rectum that causes excruciating pain and bleeding to thepatients. It is acommon health disorder among adults and sometimes observed in children also (Bharat, 2014). Almost fifty percent of the men and women above 50 years and older will experiences hemorrhoid at least once in their lifetime (Bailey, 2004). In spite of advancement in medical science, the actual cause of hemorrhoids is notknown (Madoff et al., 2004). Some of the probable causes may be temperament, body habits, customs, passions, sedentary life, tight-laced clothes, climate, and seasons (Dennison et al., 1989). People having constipation, chronic diarrhea, poor bathroom habits, postponing bowel movements, poor-fiber diet and patients with spinal-cord injuries are reported to develop the symptoms of hemorrhoids very often (Yarnell, 2000). Recent finding suggest that hemorrhoids may get develop due to the implicate gravity intrinsic weakness of the blood vessel wall, genetic predisposition and hereditary history, increased intra-abdominal pressure from many causes, including prolonged forceful valsalva defecation, obstruction of venous outflow secondary to pregnancy and constipated stool in therectal ampulla (Bharat, 2007). Though several surgical and nonsurgical techniques are available to treat hemorrhoids but the best treatment of hemorrhoid is always prevention (Brisinda, 2000). Some common operative and intervention treatments for hemorrhoids are; Sclerotherapy, Cryotherapy, Rubber BandLigation (RBL), Bipolar Diathermy, Direct-Current electrotherapy, Infrared photocoagulation (IRC) etc. (Bharat, 2014). Due to high cost, co operative and post operative pain, complications and discomforts,

recurrence of the symptoms even after the treatment patients are often attracted to the herbal, folk and traditional healing systems.

Ethno-medico-botany deals with the relationship of plants and human to prevent and cureailments (Alcorn, 1981; Jain, 1986). Herbal treatment is the most common and popular method for healthcare among the ethnic and tribal communities. According to WHO, rural people in developing countries, comprising about 80% of the world's population, prefers folk and traditional methods as primary means of treatment for health ailments. From time immemorial plants have been extensively used to cure a variety of ailments but the people in ancient time keep no records and the information is mainly passed on verbally from generation to generation (Puspangadan & Atal, 1984). The traditional knowledge and folk narratives were transmitted from one generation to another only verbally and with the advent of modernizationthe traditional knowledge is vanishing with time. Lots of research works have been carried out on various utilization of medicinal plant by the indigenous tribes of north east India for different ailments, and therefore, a comprehensive review has been prepared on the different herbal treatments applied for cure of piles or hemorrhoids.

Various states and communities using folk treatment for hemorrhoid:

Assam is known for its rich diversity in forests and vegetation because of its uniquetopography, climate and altitude patterns (Mao & Hynniewta, 2000). This region of India serves as homeland of people belonging to more than 100 ethnic tribes and sub tribes (Dutta & Nath, 1998). Folk remedies for hemorrhoid have been practiced in several districts of Assam by the rural local people since generations with a notable degree of efficiency in preventing or in controlling the symptoms (Devi et al. 2018).

Mishing community of Assam and foothills of East Siang District of Arunachal Pradesh uses *Pedilanthus tithymaloides* or *Devil's Backbone* for curing hemorrhoids. Tribal communities of Kamrup district of Assam use several traditional methods for healing hemorrhoids (Das, 2017). Piles is locally known as "Kesumuria" in villages of Assam and is one of the commonest diseases. Native people often use to take treatment from local folk healers for its treatment and they use medicinal plants as well as animal products for preparing the medicine (Das, 2017). Medicines can be applied locally or can be taken orally. One of the common ingredients is *Lumbricus terrestris*, (Common name: Earthworm) which has anti-inflammatory properties as mentioned in Ayurveda (Sharma, 2001).

Meghalaya comes under globally recognized Indo-Burma biodiversity hotspot within the 17 mega biodiversity countries of the world due to its abundant floral and faunal diversity. The tribal communities of Meghalaya consist of the native people of Garo Hills, Khasi Hills and Jayantia Hills who use to practice enough traditional and folk herbal treatments in their day-to-day life (Roy et al., 2017).

The state of Manipur isincluded under the "Indo-Burma Hot spot" and hence exhibits a rich biodiversity in flora and fauna harboring over 3500 species ofhigher plants including many medicinally important plant species (Singh et al., 2000). Traditional medicinal treatments are done through traditional healers "Maiba" (male medical practitioners) and "Maibis" (female medical practitioners) (Singh et al., 2014). In Manipur Chakpa community uses *Acorus calamus, Melia azedarach* and *Ocimum basilicum* in the treatment of hemorrhoids (Thokchom et al., 2015). Herbal medicines are also popular among the schedule caste people 'Lois' of Andro Village in Imphal East district and they treat treat the ailment successfully with traditional herbal procedures (Singh et al., 2014).

Mizoram lies in the extended Himalayan southern tip of North East India. The state is a part of Indo-Burma Hotspots Region comprising a rich wealth of flora and fauna. Several herbal treatments for piles are practiced in the states which includes extensive uses of *Amorphophallus poeniifolius, Averrhoa carambola, Bauhinia variegate, Curcuma zedoaria*etc. (Lalramnghinglova, 2016; Devi et al., 2018; Kayang, 2005).

In Tripura "Ochoi" prescribed traditional herbal remedies for the treatment of health ailments. They uses Alstoniascholaris, Mangiferaindica, Psidium guajava are extensively used in the healing in the treatment of pile. (Acharyya et al., 2004; Debberma et al., 2017; Debberma et al., 2017).

Sikkim, 'the cradle of flowering plant' is the land of traditional faith healer comprises of vast resources ofherbal medicine, perhaps due to the physiographical isolation. Due to geopgraphical isolation native people have to rely on the medicinal properties of the available plants around them (Bharati & Sharma, 2010). Over twenty ethnictribes reside here, the major ones being the Bhutias, Lepchas, Limboos, Nepalese and Tibetans (Mandal et al., 2013).

Conducive ecological and climatic conditions gifted Nagaland as a rich repository of biodiversity, including medicinal plants. Indigenous knowledge about the local medicinal plants and their uses in curing different ailments is very rich among the native tribes in Nagaland viz. *Angami, Zeliang, Ao, Lotha, Sangtam, Konyak, Chakhesang, Rengma,* and *Khiamniungam* (Zhasa et al., 2015). Their traditional recipes and ingredients of folk herbal medicines are usually restricted to the Local Medicine Men/Local Healers, village head or "Gaon Burha" and village elders (Zhasa et al., 2015).

Ethnobotanical of medicinal plants used for piles treatment

In the present study 103 plants belonging to 59 families have been found to be used all over the eight states in North East India for the treatment of piles or hemorrhoid by the traditional and folk healers. This is the first of its kind attempt to document the available ethno medicinal knowledge for the treatment of hemorrhoid or piles prevailing in the native people of NE India.Botanical data along with method of uses, important phytochemicals present and the reported pharmacological properties of the plants have been listed in Table 6.1.

Out of the 59 families, most predominant are Zingiberaceae (7 spp.), Euphorbiaceae (6 spp.), Lamiaceae (6 spp.), Liliaceae (5 spp.), Amaranthaceae (4 spp.), Mimosaceae (4 spp.), Solanaceae (4 spp.), Araceae (3 spp.), Verbanaceae (3 spp.) and Rutaceae (3 spp.) in terms of number of species (Fig.6.1). Among the plants used for the treatment of hemorrhoid majority are herbs (34 spp.), tree (25 spp.) and shrubs (23 spp.) and a few are perennial herbs (7 spp.) and climbers (Fig. 6.2). One succulent herb *Kalanchoe pinnata* is also used in Assam for the treatment of piles.

Sl. No	Scientific name	Family	Local name	States used	Habit	Plant parts used	Mode of uses with reference	Phytochemical constituent/ Pharmacological properties with reference
1	Abutilon indicum (L.) Sweet	Malvace ae	Japaband ha (AS)	AS	Shrub	Root, seed	Root juice (20 ml) or fruit powder (4-6 gm) along with jaggery is to take in the morning (Devi et al., 2018).	Carbohydrates, proteins and aminio acids, saponins, flavanoids, glycosides, phytosterols and phenolic compounds; Hepatoprotective, wound healing, immunomodulatory, analgesic, antimicrobial (Ramasubramania&Kailasam, 2015).
2	Acacia farnesiana Linn.	Mimosac eae	Chingon gleihang ampal (MN)	MN	Tall shrub	Leave s	Decoction of the leaves is used (Singh et al., 2014)	Alkaloids, saponin, carotenoids, flavonoids, terpenoides, acasiane, farnesirane, anti spasmodic, antiinflammatory, antioxidant properties (Sharmin&Syeda, 2018).
3	Acarynthus aspera	Amarant h aceae	Uktihor (AS), Pickles chaff flower, Aokrhua (NG), Latjera	AS, MZ, MG, NG	Shrub	Root, seed, leaf, root, whole plant	Root of <i>Acarynthus</i> <i>aspera</i> , head of <i>Lumbricust errestries</i> (Local name-Kesu) and (C3H) n (Local name- Elandhu) are burnt together and ash is applied locally. Crushed juice	Alkaloids, flavonoids, saponins, steroids and terpenoids; purgative, diuretic, antispasmodic, antibacterial (Ratra et al. 1970; Narayana et al. 2001; Londonkar et al. 2011).

 Table 6.1: Ethnopharmacological details of the studied plants.

			(AS),				taken Orally, The	
			(AS), Buchhaw				decoction of the herb is	
			Buchnaw					
			1				used (Das, 2017; Singh et	
							al., 2016; Chopra, 2002;	
							Lalramnghinglova, 2016.)	
							For non bleeding piles 50	
							g rhizome boiled in 500	
							ml of water till to reduce	
							the volume to $1/5$. The	Flavonoid, monoterpene, quin
							concentrated liquid	one, sesquiterpene and
							applied to the anus with	phenylpropanoid, sedative,
	Acorus	Acoracea	Ok-hidak			Rhizo	the help of cotton. For	acetylcholinesterase
4	calamus L.	e	(MN)	MN	Herb	me	bleeding piles 20 g	inhibitory, anti-inflammatory,
	culumus L.	C				inc	rhizome boiled in 500 ml	antioxidant, antispasmodic,
							of water. 100 ml of the	antidiarrheal (Patra & Mitra,
							filtrate sweeten with	
								1981; Pandit et al., 2011).
							honey was taken once	
							daily for 5 days	
							(Thokchom et al., 2015)	
								Saponin, tannin, terpenoids,
								cardiac glycosides, reducing
			Bel			Fruit.		sugar, steroid, anthraquinone,
	Aegle		(AS),				Juice of 9 leaves to be	flavanoids, alkaloids,
5	Marmelos	Rutaceae	Heirikha	AS,	Tree	leaves	taken daily (Das, 2017;	antioxidant, antimicrobial,
	Linn.		gok	MN		and	Hazarika et al., 2012.).	hepato protective, analgesic,
			(MN)			root	······································	immuno modulatory
			((Emurotuet al., 2017;
								Swarnkar et al., 2019).
	Albizia	Mimosac	Sirish			Bark	2-4 gm seed powder is	Melacacidin, D-catechin, β-
6			(AS)	AS	Tree		mixed with fresh bark	sitosterol, albiziahexoside,
	lebbeck (L.)	eae	(AS)			and	mixed with fresh bark	situsteroi, aibizianexoside,

	Benth.					seed	juice and taken (Devi et	betulnic acid, echinocystic
							al., 2018).	acid glycosides; anti- inflammatory, anti-diarrhoeal, antiseptic (Vema et al., 2013).
7	Allium sativum Linn.	Liliaceae	Chanam (MN)	MN	Perenn ial herb	Bulbs	The bulb of the plant cooked in milk and eaten (Singh et al., 2014).	Alkaloids, glycosides, essential oil, saponins, tannins, steroids, terpenoids, resins, flavonoids, proteins; antioxidant, renoprotective, antibacterial. (Fadiji, 2019; El-SaberBatiha et al., 2020).
8	Allium cepa L.	Liliaceae	Naharu (AS)	AS	Herb	Rhizo me	Fruit of <i>Piper nigrum</i> is burnt along with rhizome of <i>Allium cepa</i> , stem of <i>Tinospora</i> <i>cordifolia</i> and Externaludate of <i>Cinnamomum camphora</i> , ash is mixed with camphor and coconut oil and applied locally (Das, 2017).	Alkaloids, flavnoids, steroids, phenols, amino acids, glycosides, tannins triterpanoids and carbohydrates; Antimicrobial, antioxidant, analgesic, anti- inflammatory, and immunoprotective (Panya&Gadhavi, 2015).
9	Allium tuberosum Rottb. External Spreng.	Liliaceae	Maroina kuppi (MN)	MN	Soft leather y herb	Leave s	Boiled Extract of the leaves is prescribed Orally against piles (Singh et al., 2014).	Sulfides, linalool, flavonoid glycosides, steroids, spirostanol saponins, lignan, volatile compounds, essential oils; antioxidant (Singh et al., 2014).

10	Alocasia macrorrhizos (L.) G. Don	Araceae	Mankach u (AS)	AS	Shrub	Tuber	Four (4) gram dried corm powder is mixed with a cup of milk, to take twice daily for 10 days (Devi et al., 2018).	Alkaloids, flavonoids, saponins, tannins, quinones, triterpenoid; antimicrobial (Fitria et al., 2019).
11	<i>Alpinia galanga</i> (Linn.) Swartz.	Zingiber aceae	Kanghu (MN)	MN	Herba ceous having tubero us aromat ic root stocks	Rhizo mes	Boiled Extract of the rhizome is prescribed Orally (Singh et al., 2014).	Pentadecane, α-humulene, acetoxyeugenol acetate, phenol, flavonoids, terpenoids, saponins, phenolic acids and essential oils Aphrodisiac, carminative, antipyretic and anti- inflammatory (Singh et al., 2014; Tang et al., 2018).
12	Alpinia nigra (Gaertn.) Burtt	Zingiber aceae		AS	Herb		Whole plant is used (Sahoo et al., 2013).	Alkaloids, glycosides, cardiac glycosides, flavonoids, steroids, tannins, anthraquino ne glycosides and saponins; antibacterial, analgesic (Ahmed et al., 2015).

13	Alstonia scholaris (L.) R.Br.	Apocyna ceae	Chatim (TR)	TR	Tree	Plant extract , shoot	The plant extract is used in the preparation of piles medicine (Debberma et al. 2017).	Glycosides, alkaloids, saponins, terpenoids, anthraquinones, reducing sugars and steroids, alkaloids, carbohydrates, tannins, phenolic compounds, terpenoids, cardiac glycosides and amino acids; Antioxidant, analgesic, anti-inflammatory, antiulcer (Debberma et al., 2017; Bagheri et al. 2020; Shang et al., 2010).
14	Amaranthus gangeticus Linn.	Amarant haceae	Chengkr ukangan gba (MN)	MN	Herb	Stem and leaves	Boiled extract of the stem and leaves is mixed with an equal volume of the boiled extract of whole plant of <i>Centella asiatica</i> (Linn.) Urban (Local name-Peruk) (MN) and the decoction mixture is taken one yaum (approximately equal to 5 or 6 teaspoon) per day for 4 to 6 days in constipation and piles (Singh et al., 2014).	Phenols, tannins and flavonoids, protein, carotenoids, vitamin C, dietary fiber, minerals such as calcium, iron, zinc and magnesium, carotenoids, ascorbic acid and phenolic acids; anti-inflammatory, antioxidant activity (Singh et al., 2014; Al-Mamun et al., 2016).
15	Amaranthus spinosus L.	Amarant haceae	Maon, yankhiso ulpa	AP,	Weed	Whole plant	Whole plant is used (Kongsaiet al. 2011, Perme et al., 2015).	Terpenes, alkaloids, glycosides, and sugars; Emollient poultice, antimalarial, antioxidant, anti-

16	Amorphophall us poeniifolius (Bennst) Nichol.	Araceae	Telhawn g (MZ)	MZ	Herb	Rhizo me, tuber	Powder rhizomes mixed with water taken orally crushed fresh tuber applied externally (Lalramnghinglova, 2016).	inflammatory, antimicrobial, antihepatic (Perme et al., 2015). Carbohydrates, proteins, alkaloids, flavonoids, sterols, phenolic compounds and tannins; Anti-inflammatory and antioxidant (Jhade et al., 2011; Dey et al., 2012).
17	Asparagus racemosus Willd.	Lillaceae	Satmul (AS), Nunggar ei (MN)	AS, MN	Herb	Roots, tubers, rhizo me	Whole plant is used (Hazarika et al., 2012).	Saponin, tannins, alkaloids, protein, isoflavone, sterols, Racemosol, trace minerals such as copper, zinc, cobalt with magnesium, calcium, ketone, aldehyde, Quercetin, Hyperoside and Rutin, flavonoid; Anticancer, antiulcer, antioxidant, antidiarrhoeal, antibacterial, anti-inflammatory (Hazarika et al. 2012; Ratdiya & Aher, 2020).
18	Averrhoa carambola L.	Oxalidac eae	Kordoi (AS), Theihera wt (MZ)	AS, MZ	Small tree	Fruits, leaves	Fruit juice or raw decoction is taken for bleeding piles (Devi et al., 2018; Lalramnghinglova, 2016.).	Flavonoids, steroides, alkaloids, saponins, tannins, vitamins C and A, calcium and potassium; Antioxidant, antimicrobial, emulsifier, anti- inflammatory, antifungical, astringent, antidiarrheal, antiseptic, antioxidant (Devi

								et al., 2018; Lalramnghinglova, 2016; Silva et al., 2021).
19	Azadirachtain dica A. Juss.	Meliacea e	Nim (AS)(M N)	MN	Tree	Tende r branch es	The patient is made to be seated in the concentrated hot decoction for a few minute daily for about one week (Singh et al., 2014).	Flavonoid, Querestien and sitosterol, Azadirachtin, nimbolinin, nimbin, nimbidin, nimbidol, sodium nimbinate, gedunin, salannin, and quercetin; Antibacterial, anti- inflammatory, antigastric ulcer, antibacterial, and antitumour (Srivastava et al. 2020).
20	Bauhinia variegata (L.)	Caesalpi niaceae	Diengtha rlong (MG), Vaufava ng (MZ)	MG, MZ	Tree	Flowe r, bud	Flowers are boiled and eaten for piles for dysentery. One tea spoon of powdered dried buds taken with fresh water thrice a day as a remedy for piles and dysentery (Kayang, 2005; Shankar, 2013).	Terpenoids, flavonoids, tannins, saponins, reducing sugars, steroids and cardiac glycosides; Anticancer, antioxidant, hypolipidemic, antimicrobial, anti- inflammatory, hepatoprotective, antiulcer and wound healing effects (Ali, 2013; Shankar, 2013).
21	Carica papaya Linn.	Caricace ae	Awathab i (AS), Amita (AS)	MN	Tree	Milky latex	Whole plant (Singh et al., 2014).	Glucosinolates, tocopherols, carotenoids, and benzyl isothiocyanate, phenolics, flavonoids and alkaloids; Antioxidant, antibacterial, anticancer activity, anti- inflammatory, antiulcer,

								hepatoprotective (Singh et al., 2014; Sharma et. al, 2020)
22	Careyaarbore a Roxb	Lecythid aceae	Ghimbee l (MG)	MG	Tree	Bark	Decoction (Roy et al., 2017).	Phenol, sterols, terpenes, saponins and tannins; anti- inflammatory, analgesic, antibacterial, antifungal, antioxidant, hepatoprotective, cytotoxic (Roy et al., 2017).
3	Cassia occidentalis L.	Fabaceae	-	TR	Shrub	Leave s	Leaf paste used externally (Debberma et al., 2017).	Achrosin, aloeemodin, emodin, anthraquinones, anthrones, apigenin, aurantiobtusin, campesterol, cassiollin, chryso-obtusin, chrysophanic acid, chrysarobin, chrysophanol, chrysoeriol, carbohydrates, saponins, sterols, flavonoids, resins, alkaloids, terpenes, anthraquinones, glycoside and balsam; antidiabetic, antimicrobial, antioxidant, anti-inflammatory (Singh, et. al., 2016; Debberma et al., 2017).
24	Celtis australis Linn.	Ulmacea e	Heikreng (MN)	MN	Large tree	Leave s	Decoction of the leaves is used externally (Singh et al., 2014).	Aliphatic hydrocarbons, alcohols, ketones, fatty acids and terpenes (Margarita et al., 2018).
25	Centella asiatica	Careya	Peruk (MN),	MN	Small soft		Whole plant is used (Singh et al., 2014).	Sesquiterpenes, plant sterols, pentacyclic triterpenoids and

	(Linn.)		Manimu		herb			saponins, eugenol derivatives,
			ni (AS)					caffeoylquinic acids and
								flavonoids; the plant is
								effective in the treatmement
								of venous disorder. (Gray et
								al., 2018, Moayyedkazemi et
								al., 2020).
								Alkanes, triterpenes,
	Chamaesvce							phytosterols, tannins,
	hirta (L.)	F 1 1.	Pakhangl		G. C.	XX71 1	Decoction of the plant is	polyphenols, alkaloids and
26	Millsp Syn.	Euphorbi	eiton		Soft herb	Whole	taken orally (Singh et al.,	flavonoids; antibacterial,
	Euphorbia hirta L.	aceae	(MN)		nerb	plant	2014).	antimalarial, anti-
								inflammatory, antioxidant,
	E. pilulifera L							antiamoebic (Kumar et al. 2010).
								,
								Alkaloids, tannins, proteins,
	Cissus		Haljora		Climb	Whole	Whole plant is used	phenolic compounds and flavonoids; antioxidant,
27	quadrangular	Vitaceae	(MG)	MG	er	plant	(Sharma et al., 2013).	antibacterial, anti-
	is L.		(INIC)		CI	plant	(Sharma et al., 2013).	inflammatory (Talreja et. al.,
								2016).
							<u></u>	Alkaloids, flavonoids,
							Patients suffering from	phenols, saponin, glycosides,
							piles and worm infections	carbohydrates, proteins and
	Clerodendru						are made to sit in the hot	amino acids, fixed oils and
28	<i>m</i>	Lamiace	Kuthap	MN	Shrub	Leave	decoction of the leaves	fats; antimicrobial,
	colebrookianu	ae.	(MN)			S	for 10 to 15 minutes. It will	antioxidant, anthelmintic,
	<i>m</i> Walp.						reduce irritation (Singh et	anti-inflammatory.
							al., 2014).	(Prashith&Sudharshan, 2018;
								Payum et al., 2020).

29	Clerodendrum infortunatum L.	Lamiace ae	Bhektita (AS)	AS	Shrub	Root	Root of <i>Clerodendrum</i> <i>infortunatum</i> (Local name Bhekita) along with stem of <i>Solanum tarvum</i> (Local name Bhetkuri), root of <i>Leucas aspera</i> (Local name Doron), fruit of <i>Piper nigram</i> (Local name-Jaluk), rhizome of <i>Lasia spinosa</i> (Local name Chengmora) and head of <i>Lumbricus</i> <i>terrestries</i> are powdered and taken two spoonful twice daily in empty stomach for three days (Das, 2017;).	Limonene, phytol, catechol, hexadecanoic acid, squalene, dodecanoic acid, vitamin E, hydroxymethylfurfural, stigmasterol, phenolics and phenolic acid derivatives. Inflammatory activity (Das, 2017; Dey et al., 2015).
30	<i>Clerodendrum viscosum</i> Vent.	Verbana ceae	Vetmali (AS)	AS	Shrub	Leaf	45-50 grams of fresh leaves are crushed, filtered, mixed with ½ glass of water and a pinch of salt, taken orally 1 cup thrice daily before lunch continuously for three days(Devi et al., 2018).	Flavonoids. viz apigenin, acacetin, quercetin, scutellarin, hispidulin-7-0- glucuronide and cabruvin, terpenoids such as clerodin, phenolic compounds such as fumeric acid, stearic acid and caffeic acid; antimicrobial, analgesic, anti-inflammatory, wound healing, hepatoprotection, antioxidant (Devi et al., 2018; Nandi & Lyndem, 2016).

31	<i>Coptis teeta</i> Wall.	Ranuncu laceae	Mishmit eeta, Manbai, Ayaro/ Aro (AP)	AP	Herb	Root	The root extract with bear liver juice is taken to cure piles problem (Ghosh et. al., 2014).	Alkaloids such as berberine, palmatine, jatrorrhizine, coptisine, columbamine, and epiberberine and various secondary metabolites, lignans, phenylpropanoids, flavonoids, phenolic acids, saccharides and steroids; antimalarial, antiinflamatory (Ghoshet al., 2014; Bajpay et al., 2019).
32	Cordyline terminalis (L.) Kunth	Agavace ae	Horisank ar (AS)	AS	Shrub	Stem bark	10gm of bark of <i>Cordyline</i> <i>terminalis</i> and <i>Kalanchoe</i> <i>pinnata</i> are crushed finely, liquid extract is to take 2 teasponfuls trice daily continuously for three days (Devi et al., 2018).	Polyphenol; Antipyretic, analgesic, antioxidant, antibacterial activities (Devi et al., 2018; Reddy et al, 2016).
33	Curculigo orchioides Gaertn.	Hypoxid aceae	-	SK	Herb	Rhizo me	Infusion of rhizome taken twice daily (Pradhan and Badola, 2008).	Flavones, glycosides, steroids, saponins, triterpenoids and other secondary metabolites; Antimicrobial activity (Susindran & Ramesh, 2014).
34	Curcuma caesia Roxb.	Zingiber aceae	KaloHar di, Halaydo (SK, Nepali)	SK	Perenn ial herb	Rhizo me	Rhizome is used in preparation of the medicine (Mandal et al. 2013).	Carbohydrates, proteins, starch, amino acids, steroids glycosides, flavonoids, alkaloids, tannins, phenols, and resing; treating tumours, piles, bruises etc. (Mandal et al., 2013).

35	Curcuma zedoaria (Christ.) Rosc.	Zingiber aceae	Aidizing (Lalram) (MZ)	MZ	Herb	Rhizo me	Cold infusion taken internally (Lalramnghinglova, 2016)	Terpenoids, specially sesquiterpenoids; antiulcer, hepatoprotective (Navarro, 2002)
36	Cycas pectinata Griff.	Cycadac eae	Yendang (MN)	MN	Tree	Femal e cones	Boiled extract of the female cone with honey is prescribed against piles (Singh et al., 2014)	Alkaloids, glycosides, terpenoids, steroids, flavonoids, reducing sugar and tannin (Singh et al., 2014; Bhowmik &Datt, 2014).
37	Cynodon dactylen Linn	Poaceae	Dub, Dubari (AS), Tingthou (MN)	AS, MN	Herb	Root, whole plant	The fresh juice extract of the whole plant along with honey is prescribed orally against uterine bleedings and piles (Singh et al., 2014; Chopra, 2002)	Flavanoids, alkaloids, glycosides, terpenoides, triterpenoids steroids, saponins, tannins, resins, phytosterols, reducing sugars, carbohydrates, proteins, volatile oils and fixed oils; antimicrobial, antioxidant, anti-inflammatory, analgesic antipyretic (Singh et al., 2014; Chopra, 2002; Snafi, 2016).
38	Desmodium triquertrum L.	Papiliona ceae	Ulucha (AS)	AS	Shrub	Leaf	Leaf extract of Desmodiumtriquertrum is mixed with fruit powder of Emblica officinalis and Terminalia bellirica with 50ml of honey or jaggery and to be taken after meal (Devi et al., 2018)	Flavonoids, alkaloids, steroids, terpenoids, phenylpropanoids, pterocarpans, coumarins and volatile oil; anti-leishmanial, anti-inflammatory (Vedpal et al., 2016; Devi et al., 2018).

Recent Advances in Folk Medicine Research in North East India

39	Dioscorea alata L.	Dioscore aceae		SK	Herb	Whole plant	Whole plant is used (Pradhan and Badola, 2008)	Phenolic compounds, flavonoids, coumarins, quinines and other polyphenols, nitrogen compounds (alkaloids and amines), vitamins, terpenoids; antimicrobial, laxative and vermifuge, antioxidant, anti- diarrhea, (Das. et al., 2014; Saklani et al., 2013).
40	Dioscorea transversa R.Br.	Dioscore aceae	Pencil yam, Pokmaso (NG)	NG	Vine	Seed	Seeds and tuber are used in piles (Zhasa et al., 2015).	Flavonoids, alkaloids, terpenoids, cardiac glycoside, steroids and saponins; antispasmodic, aphrodisiac, purgative, anti-helminthic, deflatulent, rejuvenating, antioxidant, antiinflammatory, anti-phlogistic and antibacterial activity (Chinthaet al., 2018).
41	Diplazium polypodioides Blume	Athyriac eae	-	TR	Herb	Leave s	Whole plant is used (Debberma et al., 2017).	Antioxidant (Debberma et al., 2017; Baskaran, 2018).
42	<i>Eclipta alba</i> (L.) Hassk.	Asterace ae	Kehraji (AS)	AS	Herb	Whole plant	50 ml Juice of <i>Eclipta</i> alba (Local name Kehraji) and <i>Mimosa Pudica</i> (Local name Lajukibon) taken daily until cure (Das, 2017).	Alkaloids, flavonoids, saponins, tannins, glycosides, terpenoids, reducing sugars, anthraquinones, and cardiacglycoside); analgesic, antimicrobial (Das, 2017; Hussain et. al., 2011).

43	Eclipta prostata L.	Asterace ae	Kehraj (AS)	AS	Herb	Leaf and Stem	Whole plant is used (Borah and Saikia, 2020).	Carbohydrates, Aminoacids, Alkaloids, Tannis, Phenolic compounds, Terpenoids, Steroids, Flavanoids Cardiac glycosides, Saponins and Anthraquinone glycosides; Antiulceractivity (Borah & Saikia, 2020; Herapathdeniya et al., 2020).
44	Elsholtzia blanda (Benth.) Benth. Syn. Perilla elata D. Don	Lamiace ae	Kanghu man (MN)	MN	Small shrub	Inflore scence	Extract of the inflorescence is used (Singh et al., 2014).	Antibiotic, antiinflamatory, (Singh et al., 2014).
45	Emblica officinalis Gaertn.	Euphorbi aceae	Aamlokh i (AS)	AS	Tree	Fruit	Leaf extract of <i>Desmodium triquertrum</i> is mixed with fruit powder of <i>Emblica officinalis</i> and <i>Terminalia bellirica</i> with 50ml of honey or jaggery and to be taken after meal (Devi et al., 2018).	Higher amount of polyphenols like gallic acid, ellagic acid, different tannins, minerals, vitamins, amino acids, fixed oils, and flavonoids like rutin and quercetin; used in the treatment of inflammation, lifestyle diseases, parasitic and other infectious disorders. (Variya et al. 2016; Devi et al., 2018).

46	Garcinia pedunculata Roxb.	Clusiace ae	Bortheke ra (AS)	AS	Shrub	fruit	Fruit is crushed with dried head of <i>Amphipnous</i> <i>cuchia</i> and nine granules are prepared. One granule is taken orally three times a day before meal (Acharyya et al., 2004.)	Hydroxylcitric acid, benzophenones, garcinol, pedunculol, and isogarcinol, pedunculol, garcinol, cambogin; antioxidant activity, used in in gastrointestinal disorders, diarrhea(Acharyya et al., 2004; Santo et al., 2020).
47	Gloriosa superba L.	Liliaceae	Agnisikh a or Ulat- sondal (AS)	AS	Perenn ial herb	Rhizo me	Root decoctionGlory lily is mixed with 10 gm of ginger and to be given three tea spoonful three times in a day (Devi et al., 2018).	Colchicines and Gloriosine, salicylic acid, sterols, tannins and superbine; antioxidant, antibacterial, antimicrobial, anthelmintic, purgative, cholagogue, anthelmintic, astringent and germicidal properties (Devi et al., 2018; Ashokkumar, 2015).
48	Glycosmis arborea (Roxb.) DC., Syn. G. pentaphylla Corr.	Rutaceae	Chauldh ua (AS)	AS	Shrub	Bark	50 grams of stem bark of <i>Glycosmis arborea</i> grinded along with ten fruits of <i>Piper nigrum</i> and ten fruits of <i>Piper longum</i> to prepare a paste. Paste is mixed with 1 litre of water and boil to make the volume about half litre. Half cup of this juice is to be taken for 10-12 days twice daily (Devi et al.,	Glybomines, carbazole, quinazoline, furoquinoline, quinolone, and acridone; Antitumor (Devi et al., 2018; Ito et al. 2004).

2018). Tarnnis, phenols, flavinods, Thlan-Crushed juice of bark, saponins, reducing sugar and vawng fruits and a decoction of anthraquinones; astringent, Gmelina Verbena Bark. 49 MZ Tree (MZ). fruit the roots is taken analgesic, antipyretic, antiarborea L. ceae Gomari (Laldinsanga et al. 2018). inflammatory (Laldinsanga et (AS) al., 2018; Lawal et al., 2016). Labdane-type diterpenes, sesquiterpenes, diarylheptanoids, phenolics, fatty acids and steroids; Hedychium Takhellei Decoction of the rhizomes antioxidant, antibacterial. Perenn coronarium Zingiber Rhizo ial antifungal, larvicidal, 50 angouba (MN) is taken (Singh et al., Koenig aceae mes anthelminthic, analgesic, anti-(MN) 2014). herb External Retz. inflammatory, hepatoprotective activities (Singh et al., 2014; Chan and Wong, 2015). Iridoids, flavonoids, anthraquinones, phenolics and Sarpajiva their derivatives, volatile oils: Hedyotis Rubiacea Applied locally (Das, 51 AS Herb Root antioxidant. antidiffusa Willd. (AS) 2017). е inflammatory (Das, 2017; Chen et al. 2016). Essential oil. flavonoids and other polyphenols, fatty acids Houttuvnia Saururac Mosondo Whole Whole plant is used and alkaloids; antitumor, AS Herb 52 cordata i (AS) (Borah and Saikia, 2020) antimicrobial, antiplant eae Thunb inflammatory and antioxidative (Chen et al.,

								2016).
53	Hydrocotyle rotundifolia Roxb.	Araliace ae	Saru Manimu ni (AS)	AS	Herb	leaves	Applied locally (Das, 2017).	Phenolics, flavonoids, sterol, alkaloid and tannins; antimirobial (Das, 2017; Sood&yadav, 2014).
54	<i>Hypericum</i> <i>japonicum</i> Thunb.	Hyperica ceae	Asoy bon (AS)	AS	Herb	Whole plant	The plant along with Lasia spinosa (Local name Chengmora), head of Lumbricus Terrestries (Local name - Kesu), bud of Ricinus communis and extract of Oecophylla smaragdina (Local name- Amroliporua) allowed to prepare decocotion and taken 30 ml twice daily for 5-7 days (Das, 2017;).	Flavonoids, phloroglucinols and xanthones; hepatoprotective, anti-tumor, antibacterial, antioxidant activities (Das, 2017; Liu et al. 2014).
55	Indigofera prostrata Willd.	Fabaceae	Sekhupth ur (MZ)	MZ	Perenn ial herb	Seed	Boiled seeds are taken orally in piles and fistula (Shankar, 2013.).	
56	Iresine herbstii Hook.	Amarant haceae	Bishohor i (AS)	AS	Herb	Leaf	One kg leaves of <i>Iresine</i> <i>herbstii</i> , ½ kg dried flowers of <i>Nelumbo</i> <i>nucifera</i> , 3 litres water and 25 gm black salt is boiled till the volume reaches about 2 litres, filtered to get a clean juice. One cup of this juice is to take	Dimethoxy-6,7- (methylenedioxy)-isoflavone; acylated betacyanins, iresinin I, C15 -epimer iresinin II, amino acids, steroids, tri- terpenoids, alkaloids and coumarins; wound healing, low antioxidant activity, astringent, spasmolytic, anti-

							thrice daily before food continuously for three days (Devi et al., 2018).	inflammatory(Dipankar et al. 2011; Devi et al., 2018).
57	Jasminum multiflorum (Burm.f.) Andrews	Oleaceae	Kundo (MN)		Scand ent shrub	Flowe rs	Boiled Extract of the flowers is prescribed orally (Singh et al., 2014).	Secoiridoids, 10-hydroxy- oleoside derivatives, 7- methyl oleosidederivatives, secoiridoid lactones, jasmolactone A, B, Cand D; laxative, alexipharmic, depurative and digestive. (Singh et al., 2014; Singh, 2016).
58	Jatropha curcus L.	Euphorbi aceae	Bongali era (AS), awa- kege (MN)	AS, MN	Shrub	Leave s and twigs, seed	Mentioned plant parts are used after processing (Hazarika et al., 2012.).	Palmi c acid, stearic acid, arachidic acid, oleic acid, and linoleic acid, n tannin, saponin, steroids, tannins, glycosides, alkaloids and flavonoids; antioxidant, anti- inflammatory (Hazarika et al., 2012; Najda et al., 2013).
59	<i>Kalanchoe</i> pinnata (Lam.) Pers.	Crassula ceae	Pategoja (AS)	AS	Succul ent herb	Leaf	10gm of bark of <i>Cordyline</i> <i>terminalis</i> and <i>Kalanchoe</i> <i>pinnata</i> are crushed finely, liquid extract is to take 2 teasponfuls trice daily continuously for three days (Devi et al., 2018).	Alkaloids, triterpenes, glycosides, flavonoids, steroids, bufadienolides, lipids and organic acids; analgesic, antimicrobial, antiinflammatory, antitumorous, antiulcerous, antibacterial, antifungal, gastroprotective, muscle relaxant, sedative (Pattewar,

								2012; Devi et al., 2018).
60	Lantana camara Linn.	Verbena ceae	Thirei /Nongba nlei (MN)	MN	Shrub	Leave s/shoo t tips	Fresh Extract of the leaves or shoot tip is mixed with honey and taken orally. It is given one yaum (5 to 6 teaspoonfuls) two to three times a day for 4 to 7 days. Also, the patient is advised to sit in the hot decoction of the leaves in a wide tub (Singh et al., 2014).	Triterpenes like lantadenes A, B, C, and D, alkaloids, flavonoids, saponins, tannins, germacrene A, B and D and chief compounds are valencene and γ - gurjunene; antibacterial, antioxidant, antipyretic, antimicrobial, wound healing (Singh et al. , 2014; Ved et al. 2018).
61	<i>Lasia spinosa</i> (L.) Thwaites	Araceae	Chengm ora (AS), Zawngza ng (MZ)	AS, MZ	Herb	Rhizo me, root, leaves	Taken orally with other ingredients (AS), Decoction of root and leaves taken internally (MZ) (Das, 2017; Lalramnghinglova, 2016).	Alkaloids, carbohydrates, saponins, glycosides, tannins, phenolic compounds and flavonoids; anti-helminthic, anti-bacterial, anti- inflammatory, anti-oxidant, anti-tumor (Lalramnghinglova, 2016; Kankanamge & Amarathunga, 2017).
62	<i>Leucaena leucocephala</i> (Lamk.) de Wit	Mimosac eae	Chingon gleiango uba (MN)	MN	Shrub	Leave s	Decoction of leaves is used (Singh et al., 2014)	2(H)-benzofuranone-5,6,7,7a- tetrahydro-4,4,7a-trimethyl, pentadecanoic acid-14- methyl-methyl ester, and 6,10,14- trimethyl-2- pentadecanone a ketone (Singh et al., 2014; Salem eta al., 2011).

Triterpenoids, oleanolic acid, ursolic acid and b-sitosterol. Taken Orally with other nicotine, sterols, glucoside, Leucas Lamiace ingredients (Das, 2017; diterpenes, phenolic Doron AS 63 Herb Root aspera (AS) Borah P. and Saikia M. compounds; antifungal, ae (Willd.) Link antioxidant, antimicrobial 2020) (Das. 2017: Borah and Saikia. 2020). Rottlerin, citric acid, mallotoxin ,kamalin, Oleic, lauric, myristic , palmitic acid, stearic acid, crotoxigenin, rhamnoside, Mallotus Yuduk-Euphorbi Bark is used (Doley et al. coroghcignin, octa cosanol, phillippinensis changne AP Tree Bark 64 homorottlerin, tannins, citric, aceae 2014) (AP) Muell.-Arg. oxalic acid: antioxidant.antibacterial, anti-fungal, antimicrobial, heptoprotctive activities (Sharma & Varma, 2011; Doley et al., 2014). Ripe fruit (25 gm), juice Carbohydrates, proteins, of Zingiber amino acids, lipids, fatty, and officinaleRosc. rhizome organic acids), micronutrients (25 gm) and curd (25 gm) (vitamins and minerals), and Aam phytochemicals (phenolic, Mangifera Anacardi (AS), AS. Fruit. are mixed and taken orally 65 Tree TR indica Linn. Bark twice daily before meal. polyphenol, pigments, and Ammgac aceae Juice prepared from bark volatile constituents), omegah (TR) is taken with sugar to treat 6 fatty acid; antioxidant and bleeding piles (Acharyya organoleptic activity et al. 2004; Guha and (Acharyya et al., 2004; Guha

							Chakma, 2015).	& Chakma, 2015;
								Maldonado-Celis, 2019).
66	<i>Melia azedarach</i> Blanco	Meliacea e	Seizrak (MN)	MN	Tree	Leaf	For internal piles 20 g of the leaf crushed with little common salt and the poultice was slightly inserted inside the anus (Thokchom et al., 2015.).	Benzyl 3-O-β-D- glucopyranosyl-7- hydroxybenzoate, spathulenol, 1,7,8-trihydroxy-2- naphtaldehyde, quercetin, astragalin and 2-methoxy-4- (2-propenyl)phenyl β-D- glucoside; antibacterial, antifungal and antioxidant (Zeng et al., 2019).
67	Mesua ferrea L.	Clusiace ae	Herhse (MZ)	MZ	Tree	Flowe r	Infusion of flowers taken internally (Lalramnghinglova, 2016).	Alkaloids, glycosides, reducing sugar, tannins, phenolics, coumarins, sterols, xanthones, volatile oil, triterpenoids, resins, and saponins, α-copaene and germacrene D, β-amyrin, and β-sitosterol, mesuanic acid, mesuferrols, mesuaxanthones, mesuaferrins, mesuaferrones, mesuarin, mesuol; anti- inflammatory, anti- hemorrhoid, antiulcer, antioxidant, antibacterial (Lalramnghinglova, 2016; Kshirsagar& Patil, 2020).

68	Mimosa pudica Linn.	Mimosac eae	Lajukibo n (AS), Kangpha lekaithab i (MN), Hlonuar (MZ), Lajjalu (AP)	MN, MZ, AP, AS	Herb	Whole plant, leaf and root	51 ml Juice of <i>Eclipta</i> <i>alba</i> (Local name Kehraji) and <i>Mimosa Pudica</i> (Local name Lajukibon) taken daily until cure (AS). The whole plant is mixed with the leaves of <i>Eucalyptus globulus</i> Labill. (Local name-Nasik) and boiled for a long time and the decoction is used in bleeding piles (MN). Root and leaf decoction is taken directly (MZ) (Das, 2017; Subhose et al. 2005; Samy et al. 2008; Singh et al., 2014; Rai P. K. and Lalramnghinglova; Shankar and Rawat, 2008.)	Tannins, steroids, flavonoids, triterpenes, and glycosylflavones; antioxidant, antibacterial, antifungal, anti- inflammatory, hepatoprotective, antidiarrheal (Das, 2017; Subhose et al., 2005; Samy et al., 2008; Singh et al., 2014; Rai &Lalramnghinglova Shankar & Rawat, 2008; Muhammad et al. 2016).
69	Mimusops elengi L.	Sapotace ae	Bakul (AS)	AS	Tree	Flowe r	Bakul flower, fruit of Piper nigrum (Local name Jaluk), leaves of <i>Hydrocotylerotundifolia</i> (Local name - SaruManimuni) and root Hedyotisdiffusa (Local name Sarpajiva) crushed together, make a paste and applied locally on anus	Taraxerone, taraxerol, betulinic acid and spinasterol, sodium salt of betulinic acid and urosolic acid, Fatty acid esters of alpha-spinasterol, triterpenoids, alpha cadinol, tau muurolol, hexadecanoic acid, diisobutyl phthalate, octadecadienoic acid;

							(Das, 2017;).	analgesic, antibiotic, anti- inflammatory, antimicrobial, antoxidant, antipyretic, gingival bleeding, gastic ulcer, hypotensive activity (Kadam et al. 2012; Das, 2017).
70	Momordica charantia L.	Cucurbit aceae	Kolacita (MG)	MG	Climb er	Leaf	Juice is used (Roy et al. 2016)	Momordicolide, monordicophenoide, dihydrophaseic acid 3-O-beta- D-glucopyranoside, blumenol (Roy et al., 2016).
71	<i>Moringa</i> oleifera Lam.	Moringa ceae	Sojina (AS)	AS	Tree	Leaf	Leaf decoction is applied twice daily over the effected area for fortnight in alternate days (Kalita & Phukan, 2009).	Flavonoids, glucosides, and glucosinolates; antioxidant, anti-inflammatory (Kalita&Phukan, 2009; Zahirah et al., 2018).
72	<i>Myrica esculenta</i> BuchHam. Ex. D. Don	Myricace ae	Keifang (MZ)	MZ	Tree	Stem bark	Decoction of stem bark taken internally (Lalramnghinglova, 2016; Laldinsanga et al. 2018.)	Steroids, reducing sugars, tannins, glycosides, saponins and volatile oils; antioxidant, antibacterial, anti-helmintic, anti-inflammatory, antimicrobial (Lalramnghinglova, 2016; Laldinsanga et al., 2018; Kabra et al., 2019).
73	Nardostachys jatamansi (D.	Valerian aceae	Atamans i	SK	Herb	Root	Dried root powder is used (Mandal et al., 2013)	Sesquiterpene, jatamansone, nardostachone; stimulant,

	Don) DC.		(Nepali), Pangtey (Bhutia), Spango (Lepch)					antispasmodic, tonic, laxative, antiepileptic, hepatoprotective, antimicrobial, antifungal, anticonvulsant (Mandal et al., 2013; Sahu et al., 2016).
74	Nelumbo nucifera Gaertn.	Nympha eaceae	Padum, Kamal (AS)	AS	Aquati c	Rhizo me, flower	One kg leaves of Iresineherbstii, ½ kg dried flowers of <i>Nelumbo</i> <i>nucifera</i> , 3 litres water and 25 gm black salt is boiled till the volume reaches about 2 litres, filtered to get a clean juice. One cup of this juice is to take thrice daily before food continuously for three days (Chopra, 2002; Devi et al., 2018).	Alkaloids, flavonoids, asteroidal triterpenoid; anti- inflammatory, astringent, emollient (Chopra, 2002; Paudel&Panth, 2015; Devi et al., 2018).
75	Nicotiana plumbaginifol ia Viv.	Solanace ae	Meitei hidak mana (MN)	MN	Annua l herb	Leave s	A mixture of the dried leaves along with those of <i>Azadirachtaindica</i> A. Juss. (Local name-Nim) (MN) are roasted together in a closed container. The steam or smoke coming out through a small hole is allowed to come in contact with the anus of persons suffering from piles	Tannins, anthocyanins, aurones, hydroxycoumarins, flavanoids, flavones; antimicrobial and antioxidant (Singh et al., 2014; Ajaib et al., 2016).

(Singh et al., 2014). Seluk, Anti-diabetic and anti-Powder from dried root Rangabh Rhizo Nymphaea inflammatory, et (AS). Aquati stock is to given twice a Nympha mes. AS 76 rubra Roxb. hepatoprotective (Hazarika et Tharoan day (Hazarika et al. 2012; caceae с root al., 2012; Devi et al., 2018; Ex. Andrews gangba stock Devi et al., 2018) Cheng et al., 2012). (AS) Terpenoids, alkaloids, flavonoids, tannins, saponin Fresh 5 -10 young shoots glycosides and ascorbic acid; Naosekle Ocimumbasili Lamiace were taken Orally as salad hepatoprotective, antitoxic, 77 MN Shrub Shoot till cured (Thokchom et anti-inflammatory, cum L. i (MN) ae antibacterial & antifungal. al., 2015) (Khair-ul-Bariyah et al., 2012). Archang kawm (MZ), Samba Decoction of the bark and (MN), Lipids, fats, waxes, fruit is used (Mandal et Totola MZ. Glycosides, Terpenoids and Oroxvlumindi Bignonia Tall Bark. al., 2013; Singh et al., cum (Linn.) (Nepali), MN, Phenols, Alkaloids: 78 2014; Lalramnghinglova, ceae tree fruit Vent Phaagok SK Antimicrobial (Radhika et al. 2016; Laldinsanga et al. oong 2011). 2018). (Lepcho) , Paksam (Bhutia) SK)

79	Pedilanthustit hymaloides, Syn. Euphorbia tithymaloides	Euphorbi aceae	Atobulo (AP)	AS, AP	Shrub	Extern al parts	Applied locally (Shankar et al., 2012)	Triterpenes, steroids, saponins, tannin and coumarins; antihypertensive, antibacterial and antifungal (Shankar et al., 2012; Matisui et al., 2017).
80	Piper longum L.	Piperace ae	Pipoli (AS), Uchithi (MN)	AS, MN	Climb er	Fruits, stem, root	50 grams of stem bark of <i>Glycosmis arborea</i> grinded along with ten fruits of <i>Piper nigrum</i> and ten fruits of <i>Piper longum</i> to prepare a paste. Paste is mixed with 1 litre of water and boil to make the volume about half litre. Half cup of this juice is to be taken for 10-12 days twice daily (Hazarika et al. 2012; Devi et al., 2018)	Piperine, piperlongumine, sylvatin, sesamin, diaeudesminpiperlonguminine , pipermonaline, and piperundecalidine; antipyretic, analgesic, anti-inflammatory, antioxidant , hepatoprotective (Hazarika et al., 2012; Devi et al., 2018; Gani et al., 2019.)
81	Piper nigrum L.	Piperace ae	Jaluk (AS)	AS	Climb er	Fruit	50 grams of stem bark of <i>Glycosmis arborea</i> grinded along with ten fruits of <i>Piper nigrum</i> and ten fruits of <i>Piper longum</i> to prepare a paste. Paste is mixed with 1 litre of water and boil to make the volume about half litre. Half cup of this juice is to be taken for 10-12 days	Alkaloids, steroids, tannins, phenol compounds, flavonoids, steroids, reisns, and fatty acids; hepatoprotective, carminative, antimicrobial, stomachic, digestive (Ganesh et al., 2014).

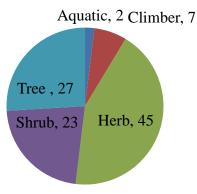
							twice daily. Fruit of <i>Piper</i> nigrum is burnt along with rhizome of <i>Allium sepa</i> , stem of <i>Tinosporacordifolia</i> and Externaludate of <i>Cinnamomuncamphora</i> , ash is mixed with camphor and coconut oil and applied locally (Devi et al., 2018; Das, 2017).	
82	Picrorhiza scrophulariifl ora Pennell	Scrophul ariaceae		SK	Perenn ial herb	Rhizo me	Decoction of powder of rhizome is taken Orally 2- 3 times daily (Pradhan and Badola, 2008.).	Cucurbitacin glycoside, Picroside, Iridoid glycoside, Phenolic glycoside etc.; healing, antioxidant and antiulcer activity (Pradhan &Badola, 2008).
83	Plantago erosa L.	Plantagin aceae	Krah shit (MG)	MG	Herb		Whole plant is used (Singh et al., 2016).	Tannins, diterpenes, triterpenes and steroids; anti- inflammatory, astringent, antimicrobial, demulcent (Barua et al., 2011; Singh et al., 2016).

84	Plumbago zeylanica Linn.	Plumbag inaceae	Boga agyachit (AS), Ceylon leadwort (NG)	AS, NG	Herb	Root, seed	Roots and seeds are used for the treatment of piles. Paste of dried root powder mixed with vinegar and applied externalternally (Zhasa et al., 2015; Devi et al., 2018).	Naphthoquinones flavonoids, alkaloids, glycosides, saponins, steroids, tannins, triterpenoids, coumarins, carbohydrates, phenolic compounds, fixed oils, fats and proteins; antimicrobial, hepatoprotective, antiulcer, antifungal and wound healing. (Zhasa et al., 2015; Devi et al., 2018; Shukla et al., 2021.).
85	Psidium guajava L.	Myrtacea e	Guyam (TR)	TR	Tree	Leave s	Tender shoots are taken directly either by chewing or paste in digestive disorders (Debberma et al., 2017).	Flavonoids, mainly quercetin derivatives; analgesic, anti- inflammatory, antimicrobial, hepatoprotective, anti- diarrheic (Debberma et al. 2017; Metwally, 2010).
86	Punica granatum L.	Punicace ae	Dalim (AS)	AP	Tree	Root	Root is used (Doley et al., 2014).	Phenols, flavonoids, Rutin, luteolin, gallic acid, and ellagic acid; antibacterial (Doley et al., 2014; Trabelsi et al., 2020).

87	Raphanus sativus Linn.	Brassica ceae	Mula (AS)	AS	Herb	Root	The paste of root is applied topically at night and the slice of root is applied topically in the morning (Chopra, 2002; Acharyya et al., 2004).	Anthocyanin, isothiocyanates, Flavonoids, polyphenols, terpenes and derivatives, fat and fatty related compounds, glucosinolates and breakdown products, and hydrocarbons; antimicrobial and antioxidant (Chopra, 2002; Acharyya et al., 2004; Gamba et al., 2021).
88	<i>Rheum nobile</i> Hook. f. & Thomson	Polygona ceae	Tchuka (Lepcha) (SK)	SK	Herb	Rhizo me	Rhizomes are used (Mandal et al., 2013).	Anthraquinone, anthrone, chromone, flavonoids, quercetin, lignan, phenol, sterol, stilbenes; antimicrobial, anti inflammatory, astringent, carminative, depurative, purgative, tonic (Mandal et al., 2013; Gupta et al., 2017).
89	Ricinus communis L.	Euphorbi aceae	Miggim (AP), Kege (MN)	AP, MN	Shrub	Whole plant, seed,	350 g of the leaf boiled in 2 litres of water in a closed vessel and the steam liberated was externalposed to anus (Goswami et al. 2009; 19, Perme et al., 2015; Thokchom et al. 2015; Perme et al. 2015.)	Flavonoids, glycosides, alkaloids, steroids, terpenoids; anti-inflammatory, central analgesic, antitumor, antiasthmatic activity (Singh, 2015).

90	Sida rhombifolia L.	Malvace ae	Arrow- leaf sida (NG)	NG	Herb		Whole plant used (Zhasa et al., 2015).	Alkaloids and flavoinds; antioxidant, antimicrobial, anti-inflammatory, hepatoprotective (Sundaraganapathy et al. 2013; Zhasa et al., 2015).
91	<i>Solanum</i> <i>khasianum</i> C.B. Clarke	Solanace ae	Akholon gkok (NG)	NG	Shrub	Fruit	Juice of ripped and peeled fruits is taken (Zhasa et al., 2015).	-
92	Solanum nigrum L.	Solanace ae	Pokmou (AS), Anhling (MZ)	AS, MZ	Herb	Fruit, whole plant	Fruits boiled in water taken internally. 30 ml of plant juice for adults and 15ml for children is prescribed to take preferably in empty stomach. This is given once in the morning and once minimum half an hour before meal (Lalramnghinglova, 2016; Devi et al., 2018.)	Alkaloids, flavonoids, Phenolic, deterpines and saponin; laxative, improve appetite used to cure chronic enlargement of liver, piles, dysentery and fever (Pandey & Arnold, 2017).
93	Solanum tarvum Sw.	Solanace ae	Bhetkuri (AS)	AS	Shrub	Stem	Taken orally with other ingredients (Das, 2017).	Steroids, steroid saponins, steroid alkaloids, and phenols; antimicrobial, anti- tumour, anti-bacterial, antiinflammatory, anti- ulcerogenic, anti-platelet aggregation, antioxidant, analgesic, anti-inflammatory, (Yousafa et al., 2013; Das,

								2017).
94	Stereosrermum personatum (Hassk.) De. Chatt.	Bignonia ceae	Zihnghal (MZ)	MZ	Tree	Leave s, bark, root, flower	Decoction of the leaves, bark, roots and flowers are taken (Laldinsanga et al. 2018).	Steroids, carbohydrates, triterpenoids, coumarines, phenolic compounds, flavonoids, saponins, anthroquinones, proteins and lipid; anti-inflammatory, antitumor, antibacterial (Kumar &Sanshi, 2016; Laldinsanga et al., 2018).
95	Swertia chirayita (Roxb. Ex. Fleming) Karst.	Gentiana ceae	Chirata (AS), Chiretta (MN)	AS, MN	Herb	Stem, root and leaves	Stem, root and leaves are used as different moods of administrations (Hazarika et al. 2012).	Xanthones and their derivatives, lignans, alkaloids, flavonoids, terpenoids, iridoids, secoiridoids, chiratin, ophelicacid, palmitic acid, oleic acid, and stearic acid; anti inflammation, digestive, anthelmintic, hepatoprotective, antimicrobial, anti- inflammatory, antidiarrheal (Hazarika et al. 2012; Kumar & Van Staden, 2016).
96	Terminalia chebula Retz.	Combret aceae	Manahi (MN)	MN	Large decidu ous tree	Fruits	The fruit is crushed with the rhizomes of Zingiber officinaleRosc.; bark of Albiziamyriophylla Benth. (Local name-Yangli) and leaves of Mentha arvensis Linn. (Local name-	Gallic acid, ellagic acid, tannic acid, ethyl gallate, chebulic acid, chebulagic acid, corilagin, mannitol, ascorbic acid; antioxidant, laxative (Singh et al.,2014; Chang &


							Nungshihidak) using a little water. Sugar or honey is added to the extract and is prescribed for 4 to 6 days, one yaum (equivalent to 5 or 6 teaspoonful) in piles (Singh et al., 2014).	Lin, 2012).
97	Terminalia bellirica (Gaertn.) Roxb.	Combret aceae	Bhoira/ Bhomora (AS), Thingva ndawt/ Tuikuk- reraw/ char- vantai (MZ)	AS, MZ	Tree	Fruit	Leaf Extract of Desmodiumtriquertrum is mixed with fruit powder of Emblica officinalis and Terminalia bellirica with 50ml of honey or jaggery and to be taken after meal. Decoction of plum of fruit taken internally (Devi et al., 2018; Laldinsanga et al. 2018)	Alkaloid, flavanoid, glycoside, phenol, steroid, terpenoid, lignan, tannin; antioxidant, antidiarrheal, anti-helminthic antimicrobial activity (Devi et al., 2018; Laldinsanga et al. 2018; Hazra, 2019).
98	<i>Tinospora</i> sinensis (Lour.) Merr.	Menisper maceae	Lengkot budu (MG)	MG	Climb er	Tuber	Decoction (Roy et al. 2018).	Tinosineside, Tinocordifolioside, steroids, glycosides, carbohydrates, mucilage and oxalic acids, glycosides, saponins, tannins and phenols, flavonoids and alkaloids; antioxidant, anti- inflammatory, antimicrobial, anthelmintic, anti ulcer (Hegde & Jayaraj, 2016; Roy

								et al., 2018).
99	<i>Tinospora</i> cordifolia (Willd.) Miers	Menisper mac eae	Gilloi/A marlata (AS)	AS	Climb er	Stem	Fruit of <i>Piper nigrum</i> is burnt along with rhizome of <i>Allium sepa</i> , stem of <i>Tinosporacordifolia</i> and externaludate of <i>Cinnamomum camphora</i> , ash is mixed with camphor and coconut oil and applied locally (Das, 2017).	Phenols, flavanoids, alkaloids, saponins, cardiac glycosides, steroids, carbohydrate and proteins; antispasmodic, anti- inflammatory, anti-spasmodic, anti-inflammatory, anti- oxidant, antipyretic, hepatoprotective (Pradhan et al. 2013; Das, 2017).
100	Vitex trifolia L.	Lamiace ae	Urikshibi (MN)	MN	Shrub	Leave s	The boiled extract of the leaves mixed with honey and taken orally (Singh et al., 2014).	Alkaloids, flavonoids, phenol, saponin, steroids and tannins; antimicrobial, anti- inflammation (Parkhe & Bharti, 2019).
101	Xylosma longifolia Clos	Flacourti aceae	Nongleis hang (MN)	MN	Tall tree	Leave s	The decoction of the leaves alone or mixed with the leaves of <i>Azadirachta</i> <i>indica</i> A. Juss. and taken (Singh et al., 2014).	Alkaloids, flavonoids, phenols, tannins, terpenoids and saponins; antispasmodic, anti-oxidant, antifungal (Bhattacharyya et al., 2020).
102	Zingiber officinale Roscoe	Zingiber aceae	Ada (AS)	AS	Perenn ial herb	Rhizo me	Root decoction of Glory lily is mixed with 10 gm of ginger and to be given three tea spoonful three times in a day (Devi et al., 2018).	Monoterpenoids, sesquiterpenoids, gingerols, gingerols, shogaols, 3- dihydroshogaols, paradols, dihydroparadols; anti- tumorigenic, anti-

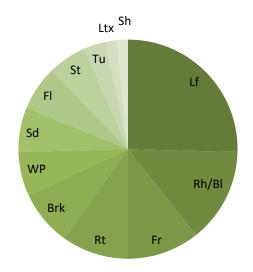
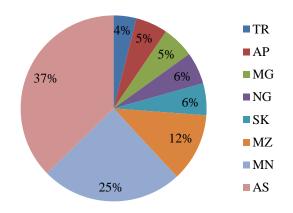

								inflammatory (Ali et al. 2008; Devi et al., 2018).
103	Zingiber purpureum Rosc.	Zingiber aceae	Tekhaoy aikhu (MN)	MN	Herb	Rhizo mes	The soup obtained by boiling the rhizome along with crab is prescribed in bleeding piles. (Singh et al., 2014)	Terpenoids, flavonoids, alkaloids, steroids, benzenoids, Sabinene and terpinen-4-ol; Antimicrobial activity, anti-inflammatory activity (Singh et al., 2015).

Fig 6.1. Distribution of different families of plants used in the traditional medicine of hemorrhoids in NE India.

Fig 6.2. Different plants habits used in the traditional medicine of hemorrhoids in NE India.



(Tu-Tuber, Ltx-Latex, Sh-Shoot, Lf-Leaf, Rh/Bl- Rhizome/Bulb, Fr-Fruit, Rt-Root, Brk-Bark, Wp-Whole plant, Sd-Seed, Fl- Flower, St- Stem)

Fig 6.3. Different plant parts used in the treatment of hemorrhoids by traditional healer.

Plant's parts, mode of preparation, and route of administration:

Out of various plant parts used as medicine (Fig.6.3), usage of leaf has shown highest percentage of 25% followed by rhizome and bulb (14%), fruit (11%), root (10%), bark (8%). Flower (7%), whole plant (6%), seed (6%), stem (6%), tuber (3%), latex (2%) and shoot (2%).

(AS-Assam, AP- Arunachal Pradesh, MN-Manipur, MZ- Mizoram, MG- Meghalaya, NG-Nagaland, TR-Tripura, SK-Sikkim)

Fig 6.4. Use of herbal medicines for piles in different states of North East India.

Among the eight states of north east India, comparatively more plant based herbal treatments are reported and documented from Assam (37%), Manipur (25%) and Mizoram (12%) (Fig. 6.4). There might be wide use of herbal treatment for piles among native people in other states also, but more scientific documentation needs to be reported. Among the plants used in the treatment for piles *Acarynthus aspera*, *Mimosa pudica* and *Oroxylum indicum* are the most popular and extensively used in most of the states viz. Assam, Arunachal Pradesh, Mizoram, Meghalay, Manipur, Nagaland and Sikkim. *Aegle marmelos, Asparagus racemosus, Averrhoa carambola, Bauhinia variegate, Cynodon dactylon, Jatropha curcus, Lasia spinosa, Mangifera indica, Pedilanthus tithymaloides, Piper longum, Plumbago zeylanica, Ricinus communis, Solanum nigrum, Swertia chirayita* and *Terminalia bellirica* are the other popular medicinal plants used in the treatment of piles in north east Indian states.

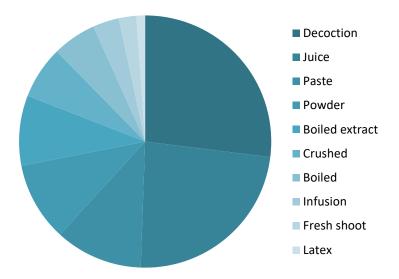


Fig 6.5: Different types of mode of preparation of the herbal medicine for the treatment of hemorrhoids.

Fig 6.6: Different modes of administration of the herbal dose in the treatment of hemorrhoids.

The mostly used forms of preparation of medicine are decoction (27%), which is followed by juice (24%), paste (11%), powder (10%) and boiled (9%) (Fig. 6.5). The herbal medicines are either applied externally (27%) or taken orally (73%) (Fig. 6.6). Oral administration is more frequent than the external application. Oral applications are taken in the form of juice, decoction, boiled or boiled plant part, paste or infusion. Plants parts are made paste and used externally. Sometimes plant parts are burnt together with other ingredients and applied the ash locally on anus. Also plant parts are crushed, roasted and smoke is allowed to apply locally. Steam of boiled plant parts are also exposed to anus in the treatment of hemorrhoids.

Phytochemicals and pharmacognostic evidence value of the common plants used in the treatment of hemorrhoid:

Hemorrhoid mostly occurs due to long standing complaint of digestion, constipation and irregular food habit. Therefore, most of theingredients used in the oral medicine are having remedial properties for gastrointestinal problems like Hydrocotyle rotundifolia, Piper nigrum, Piper longum, Allium sepa (Borah et al., 2006). Hedyotis diffusa, Tinospora cordifolia, Clerodendrum infortunatum have anticancer, antiinflammatory, hepatoprotective, digestive properties and used in the treatment of Jaundice, skin disease, anaemia, worms, chronic diarrhea, dysentery, bone fracture, pain, asthma, skin disease etc. (Niu et al., 2013; Mishra et al., 1969; Das, 2017). Tinospora cordifolia, Mimosops elangi, Ricinus communis, Hypericum peforatum, Centella asiatica exhibits wound healing properties (Das, 2017; Süntar et al. 2010; Rufei et al., 2015; Sribandit, 2008). Physallis minima and Aegele marmelos exhibits antibacterial antiinflammatory, antipyretic and analgesic properties (Arul et al., 2005; Süntar et al., 2010). Some plant species are used singly and certain species are used in combination with others plants or animals or substances. The root of Acarynthus aspera contains triterpenoid saponins and has the properties of astringent, diuretic and antispasmodic (Nguyen & Doan, 1989). The juice of the plant is used in the treatment of boils, diarrhoea, dysentery, haemorrhoids, rheumatic pains, itches and skin eruptions (Manandhar, 2002). Mimosa pudica exhibits antibacterial, antivenom, antifertility, anticonvulsant, antidepressant, aphrodisiac, and various other pharmacognostic activities and has been traditionally used for ages in the treatment of urogenital disorders, piles, dysentery, sinus, and also applied on wounds (Ahmed et al., 2012). The plant is reported to contain alkaloids, non-protein amino acid (mimosine), flavonoids C-glycosides, sterols, terpenoids, tannins, and fatty acids (Genest et al., 2008). Oroxylum indicum posses anti-inflammatory, anthelmintic, antihepatotoxic, anticancer, immunomodulator, gastroprotective properties and is an

active ingredient of several Ayurvedic formulations like Chyawanprash and Dashmoolarishth etc. (Lawania et al., 2010).

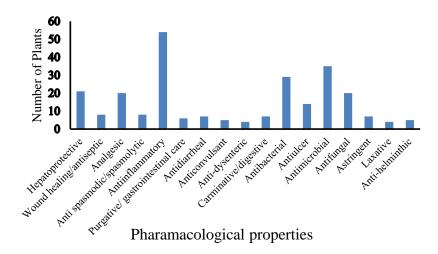


Fig 6.7. Common pharamacological properties present in the plants used as traditional medicine for hemorrhoids.

It is evident that almost all of the plants used in traditionally in the treatment of hemorrhoids have some common particular pharmacological properties such as Hepatoprotective, Wound healing/antiseptic, Analgesic, Anti spasmodic/spasmolytic, Antiinflammatory, Purgative/ gastrointestinal care, Antidiarrheal, Anticonvulsant, Anti-dysenteric, Carminative/digestive, Antibacterial, Antiulcer, Antimicrobial, Antifungal, Astringent, Laxative and Antihelminthic or larvicidal (Fig. 6.7). These medicinal properties provide considerable cure and healing of the patient suffering from hemorrhoids by reducing the pain, making the fecal motion comfortable, improving digestion and protecting from any infection or ulcer. Though, the folk healers are not aware of proper quantitative or qualitative phytochemical analysis of the plant material, but the selection of the effective herbal cure for the disease hereby implies that the traditional knowledge system of curing any ailment must have a strong understanding of both the disease and the remedies. Presence of abundant potent Antimicrobial, Antioxidant, anti inflammatory, hepatoprotective, blood clot promoting phyto chemicals such as alkaloid, flavanoid, terpenoids, tannin and steroids also justifies the use of investigated plant species are effective remedies for treatment of piles (Chung et al., 1998; Cör et al., 2018; Sharmin & Syeda, 2018; Panya & Gadhavi, 2015). Presence of a wide range of potent medicinally effective phytochemical molecules in the plants used by the folk healers also supports the rich heritage of traditional knowledge in medicine used by different communities of North East India.

Conclusion:

Medicinal and aromatic plants have been extensively used by the native people of north east India for the treatment of piles or hemorrhoids. Local rural people are strongly dependent on the locally available plants for preparing herbal preparations to be used in the treatment. But indigenous traditional knowledge of medicinal plants, their uses and herbal prescriptions are transmitted orally for centuries from generation after generation. Eventually, due to the lack of proper documentation, the part of information is becoming extinct. To save the indigenous knowledge of medicinal plants of north east India there is a need of increasing awareness among the people. Plant parts of herbs, shrubs and trees belonging to Zingiberaceae, Euphorbiaceae, Lamiaceae and Liliaceae are most commonly used in every state of north eastern states of India for the treatment of piles or hemorrhoids. Traditional healers mostly used rhizomes, roots, fruits and leaves of various plants for preparation of herbal drugs. Acarynthus aspera, Mimosa pudica and Oroxylum indicum are found to be the most commonly used medicinal plants for curing hemorrhoids. It has also been noticed that most of the plants used in the treatments of hemorrhoid has anti spasmodic, antimicrobial, laxative, astringent, gastroprotective, anti inflamatory and wound healing properties. They are rich in alkaloid, flavanoid and their derivaties, terpenoids, tannin, glycosides, essential oil, saponins, phenolic compounds and steroid content. Unfortunately, still there is no any particular medicine for the complete cure of this ailment. Although, several medicinal treatment methods including Ayurveda, Homeopathy or Allopathic treatments claims it, but reoccurrence of the ailment after a considerable period of treatment is very common. Therefore, more emphasis on further pharmacognostic study, phytochemical investigation and other advanced medicinal studies of the common plants used in the treatment of piles in traditional system of healing has a great scope. It would help in formulating the

best medicine for the complete cure and less pathetic treatment of hemorrhoid in future.

Refference:

- Acharyya, B. K. & Sharma, H. K. 2004. Folklore medicinal plants of Mahmora area, Sivasagar district, Assam. *Indian Journal of Traditional Knowledge*, 3(4): 365-372.
- Ahmed, A. M. A. Sharmen, F., Mannan, A. & Rahman, A. 2015. Phytochemical, analgesic, antibacterial, and cytotoxic effects of *Alpinia nigra* (Gaertn.) Burtt leaf extract, *Journal of Traditional and Complementary Medicine*, 5(4): 248-252. doi.org/10.1016/j.jtcme.
- Ahmad, H., Sehgal, S., Mishra, A. & Gupta, R. 2012. *Mimosa pudica* L. (Laajvanti): An overview. *Pharmacogn Reviews*, 6(12): 115–124. doi: 10.4103/0973-7847.99945.
- Ajaib, M., Fatima, S., Khan, K.M., Perveen, S. & Shah, S. 2016. Nicotiana plumbaginifolia: A Rich Antimicrobial and Antioxidant Source. Journal of the Chemical Society of Pakistan, 38(1): 143-149.
- Ali, E. S. 2013. The Pharmacological Importance of *Bauhinia variegata*. A Review. *International Journal of Pharma Sciences and Research*, 4(12): 160:164.
- Ali, B. H., Blunden, G., Tanira, M. O. & Nemmar, A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (*Zingiber officinale* Roscoe): A review of recent research. *Food and Chemical Toxicology*, 46 (2): 409-420, ISSN 0278-6915, https://doi.org/10.1016/j.fct.2007.09.085.
- Al-Mamun, M. A., Husna, J., Khatun, M. Hasan, R., Kamruzzaman, M., Hoque, K.M., Reza, M.A. & Ferdousi, Z. 2016. Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of *Amaranthus* in Bangladesh. *BMC Complement Alternative Medicine*, 16: 157. <u>https://doi.org/10.1186/s12906-016-1130-0</u>.
- Alcorn, J.B. 1981. Some factors influencing botanical resources perception among the Huastec: Suggestion for ethnobotanical enquiry. *Journal of Ethnobiology*, 1:221-230.

- Arul, V., Miyazaki, S. & Dhananjayan, R. 2005. Studies on the anti-inflammatory, antipyretic and analgesic properties of the leaves of *Aegle marmelos*. Corr. *Journal of Ethnopharmacology*, 96(1–2): 159-163.
- Ashokkumar, K. 2015. *Gloriosa superba* (L.): A Brief Review of its Phytochemical Properties and Pharmacology. *International Journal of Pharmacognosy and Phytochemical Research*, 7(6): 1190-1193.
- Bagheri, G., Ayatollahi, S. A., Ramírez-Alarcón, K., Salehi, B., Mohammadi, R., Rahmani, A., Martorell, M., Sharifi-Rad, J., Sheibani, M. & Amarowicz, R. 2020. Phytochemical screening of *Alstoniavenenata* leaf and bark extracts and their antimicrobial activities. *Molecular and Cellular Biology*. 66(4):224-231. PMID: 32583782.
- Bailey, H.R. 2004. Innovations for age-old problem: hemorrhoids in the female patient. Female Patient. 29:17-23.
- Bajpay, A., Nainwal, R. C. & Singh, D. 2019. Coptis teeta: A potential endemic and endangered medicinal plant of Eastern Himalayas. Journal of Pharmacognosy and Phytochemistry . 8(4): 245-248.
- Barua, C. C., Buragohain, B., Roy J. D., Talukdar, A., Barua, A. G., Borah, P. & Lahon, L.C. 2011. Evaluation of analgesic activity of hydroethnol extract of *Plantago erosa* ex Roxb. *Pharmacologyonline*. 2: 86-95.
- Baskaran, X. R., Geo Vigila, A. V., Zhang, S. Z., Feng, S. X. & Liao, W. B. 2018. A review of the use of pteridophytes for treating human ailments. *Journal of Zhejiang University*. Science. B, 19(2): 85–119. https://doi.org/10.1631/jzus.B1600344
- Berkow, R. 1992. In: The Merck Manual of Diagnosis and Therapy. 16th ed. Rahway, NJ: Merck. Pp. 855-856.
- Bernáth, É., Németh, L., Craker, E. & Gardner Z.E. 2005. In: Acta Horticulturae. Pp: 675. ISHS.
- Bharat, G. 2007. Evaluation of pharmacognostic and antihemorrhoidal properties of Mimusops elengi Linn. Ph. D. Thesis, Veer Narmad South Gujarat University, Surat. India.
- Bharat, G. 2014. Botanicals an alternative treatment approach for hemorrhoids a review. *Indian Journal of Pharmaceutics*, 5 (1):37-42.

- Bharati, A. K. & Sharma, B.L. 2010. Some ethnoveterinary plant records for Sikkim Himalaya. *Indian Journal of Traditional Knowledge*. 9: 344-346.
- Bhattacharyya, R., Boruah, J. S., Medhi, K. K. & Borkataki, S. 2020. Phytochemical analysis of leaves of *Xylosma longifolia* Clos.: a plant of ethnomedicinal importance. *International Journal of Pharmaceutical Sciences and Research*,11(5): 2065-2074. doi: 10.13040/IJPSR.0975-8232.11(5).2065-74.
- Bhowmik, S. & Datt, B. K. 2014. Phytochemical and ethnomedicinal study of *Cycas* pectinate Buchanon-Hamilton [Cycadaceae] a RET plant of India. In: S. Panda & C. Ghosh (eds.) Diversity and Conservation of Plants and Traditional *Knowledge*. Pp. 507-512. M/s Bishen Singh Mahendra Pal Singh, Dehra Dun.
- Borah, P. K., Gogoi, P., Phukan, A. C. & Mahanta, J. 2006. Traditional medicine in the treatment of gastrointestinal diseases in Upper Assam. *Indian Journal of Traditional Knowledge*, 5(4): 510-512.
- Borah, P. & Saikia, M. 2020. Standardization and quality assessment of traditional polyherbal formulation for the treatment of hemorrhoids (piles). *International journal of pharmaceutical sciences and research*, 11(5): 2181-2192.
- Brisinda, G. 2000. How to treat haemorrhoids, Prevention is best; haemorrhoidectomy needs skilled operators. *British medical journal*, 9: 582-583.
- Chan, E.W.C. & Wong S.K. 2015. Phytochemistry and pharmacology of ornamental gingers, *Hedychium coronarium* and *Alpinia purpurata*: a review. *Journal ofIntegreted Medicine*, 13(6): 368–379.
- Chang, C. L. & Lin, C. S.2012. Phytochemical Composition, Antioxidant Activity, and Neuroprotective Effect of *Terminalia chebula* Retzius Extracts. *Evidence-Based Complementary and Alternative Medicine*, Pp. 1–7. doi:10.1155/2012/125247
- Chen, R., He, J., Tong, X., Tang, L. & Liu, M. 2016. The *Hedyotisdiffusa*Willd. (Rubiaceae): A Review on Phytochemistry, Pharmacology, Quality Control and Pharmacokinetics. *Molecules*, 30, 21(6):710. doi: 10.3390/molecules21060710.
- Cheng, J. H., Lee, S. Y., Lien, Y. Y., Lee, M. S. & Sheu, S. C. 2012. Immunomodulating activity of Nymphaea rubraRoxb. extracts: activation of rat dendritic cells and improvement of the T(H)1 immune response. International journal of molecular sciences, 13(9):10722–10735. https://doi.org/10.3390/ijms130910722
- Chintha, P., Selvakumar, R., Krishnakumar, T., Sajad, U., Nabi, N. & Sajeev, M. S. 2018. Pharmacology and Phytochemistry of underexploited tuber crops: A review. *Journal of Pharmacognosy and Phytochemistry*. 7(5): 1007-1019.

- Chopra, R.N., Nayar, S. L. & Chopra, I. C. 2002. In: Glossary of Indian medicinal plants. NISCIR, CSIR, Delhi.
- Chung, K. T., Wong, T. Y., Wei, C.I., Huang, Y.W. & Lin, Y. 1998. Tannins and human health: a review. *Critical Reviews in Food Science and Nutrition*, 38(6):421-64. doi: 10.1080/10408699891274273. PMID: 9759559.
- Cör, D., Knez, Ž. & KnezHrnčič, M. 2018. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase effect of *Ganoderma Lucidum* Terpenoids and Polysaccharides: A Review. *Molecules*, 223(3):649. doi: 10.3390/molecules23030649.
- Das, A., Chaudhuri, D., Ghate, N.B., Chatterjee, A. & Mandal, N. 2014. Phytochemical analysis, antioxidant and anticancer potential of leaf extracts from edible greater yam, *Dioscorea alata* L., from north-east India. *International Journal of Phytopharmacology*, 5(2): 109-119.
- Das N. 2017. Traditional medicinal practice by tribal people for thetreatment of piles. *International Journal of Ayurvedic and Herbal Medicine*, 7(4): 2851–28555.
- Debbarma, M., Pala, N. A., Kumar, M. & Bussmann, R. W. 2017. Traditional knowledge of medicinal plants in tribes of Tripura in Northeast, India. *African Journal of Traditional, Complementary and Alternative Medicines*, 14 (4): 156-168.
- Dennison, A. R., Whiston, R. J., Rooney, S. & Morris, D. L. 1989. The management of hemorrhoids. *The American Journal of Gastroenterology*. 84:475-481.
- Devi, N., Begum, K. & Nath, N. 2018. Ethno-botanical knowledge to cure piles and fistula as practiced in Kamrup (rural) district of Assam. World Journal of Pharmaceutical Research, 7(19): 717-725.
- Dey, P., Dutta, S. & Chaudhuri, T. K. 2015. Comparative phytochemical profiling of *ClerodendruminfortunatumL*. using GC-MS Method Coupled with Multivariate Statistical Approaches. *Metabolomics*, 5: 147. doi:10.4172/2153-0769.1000147.
- Dey, Y. N, Ota, S., Srikanth, N., Jamal, M. & Wanjari, M. 2012. A phytopharmacological review on an important medicinal plant -*Amorphophallus paeoniifolius*. Ayu. 33(1):27-32. doi: 10.4103/0974-8520.100303. PMID: 23049180; PMCID: PMC3456858.
- Dipankar, C., Murugan, S. & Uma, D. P. 2011. Review on medicinal and pharmacological properties of *Iresine herbstii*, *Chrozophora rottleri* and *Ecbolium linneanum*. *African journal of traditional, complementary, and alternative medicine*. 8(5Suppl): 124–129. https://doi.org/10.4314/ajtcam.v8i5S.6.

- Doley, B., Gajurel, P. R., Rethy, P. & Buragohain, R. 2014. Uses of trees as medicine by the ethnic communities of Arunachal Pradesh, India. *Journal of Medicinal Plant Research*, 8(24): 857-863.
- Dutta, M. L. & Nath, S. C. 1998. Ethno-medico Botany of the Deories of Assam India, *Fitoterapia*, 69(2): 147-154.
- El-Saber Batiha, G., Magdy Beshbishy, A., G Wasef, L., Elewa, Y., A Al-Sagan, A., Abd El-Hack, M. E., Taha, A. E., M Abd-Elhakim, Y. & Prasad. D. H. 2020. Chemical Constituents and Pharmacological Activities of Garlic (*Allium* sativum L.): A Review. Nutrients, 12(3): 872. <u>https://doi.org/10.3390/nu12030872</u>.
- Emurotu, J.E, Onojah, P. K & Musa, A.S. 2017. Proximate and phytochemical screening of the fruit and leaves extract of Bael (*Aegle marmelos*). *IOSR Journal of Applied Chemistry*. 10(9) Ver. II :22-28.
- Fadiji, A. E. 2019. Phytochemical screening and antibacterial potentials of the garlic (*Allium sativum*) extracts against clinical isolates. *Journal of Basic Pharmacology and Toxicology*, 3(1):14-18.
- Fitria, V., Harun, N., Gartika, L., RobiKaharto, N., Hidayat, R., Khoerul, A. & Nandini, L. 2019.Phytochemical Screening and Test of Mucolytic Activity of Nira Stem Sente (*AllocasiaMacrorrhizos*) by in Vitro. *Journal of Physics: Conference Series*. 1179 (1), article id. 012164.
- Gadhavi, H. A. & Pandya, H. 2017. Phytochemical Screening of Antimicrobials from *Allium cepa*. *International Journal of Science and Research*, 6(7):1499-1501.
- Gami, B., Pathak, S. & Parabia, M. 2012. Ethnobotanical, phytochemical and pharmacological review of *Mimusopselengi* Linn. Asian Pacific Journal of Tropical Biomedicine. 2(9): 743-748.
- Genest, S., Kerr, C., Shah, A., Rahman, M. M., Saif-E-Naser, G. M., Nigam, P., et al. 2008. Comparative bioactivity of two *Mimosa* species. *Latin American and Caribbean Bulletin of Medicinal and Aromatic Plants*. 7:38–43.
- Gani, H. M.O., Hoq, O. & Tamanna, T. 2019. Ethnomedicinal, phytochemical and pharmacological properties of *Piper longum* (Linn). *Asian Journal of Medical and Biological Research*, 5 (1): 1-7. doi: 10.3329/ajmbr.v5i1.41038.
- Ganesh, P., Kumar, R. S. & Saranraj, P. 2014. Phytochemical analysis and antibacterial activity of Pepper (*Piper nigrum* L.) against some human pathogens. *Central European Journal of Experimental Biology*, 3 (2):36-41.
- Gamba, M., Asllanaj, E., Raguindin, P. F., Glisic, M., Franco, O. H., Minder, B., Bussler W., Metzger, B., Kern, H. & Muka, T. 2021. Nutritional and

phytochemical characterization of radish (*Raphanus sativus*): A systematic review. *Trends in Food Science & Technology*, 113: 205-218. https://doi.org/10.1016/j.tifs.2021.04.045.

Ghosh, G., Ghosh, D. C., Melkania, U. & Majumdar, U. 2014. Traditional medicinal plants used by the Adi, Idu and Khamba tribes of Dehang-Debang Biosphere Reserve in Arunachal Pradesh.

International Journal of Agriculture Environment and Biotechnology, 7(1): 165-171.

- Goswami, P., Soki, D., Jaishi, A., Das, M. & Sharma, H.N. 2009. Traditional Health care practices among the Tagin tribe of Arunachal Pradesh.*Indian J of Traditional Knowledge*, 8(1): 127-130.
- Gray, N. E., Magana, A. A., Lak, P., Wright, K. M, Quinn, J., Stevens, J. F., Maier, C. S. &Soumyanath A. 2018. *Centellaasiatica* Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. *Phytochem Review*. 17(1): 161–194. doi:10.1007/s11101-017-9528-y.
- Guha, A. & Chakma, D. 2015. Traditional Usage of Ethno-Medicinal Plants among theChakma Community of Tripura, India. *Global Journal of Pharmacology*, 9 (4): 377-384.
- Gupta, R. K., Bharati, L., Shakya, K. S., Regmi, B. M., Bajracharya, G. B. & Jha, R. N. 2017. In vitro and in vivo pharmacological activities of the extracts of *Rheum nobile* Hook. F. & Thomson rhizomes. *Indian Journal of Natural Products and Resources*, 8(3): 230–239.
- Hazarika, R., Abujam, S. A. & Neog, B.2012. Ethno Medicinal Studies of Common Plants of Assam and Manipur.*International Journal of Pharmaceutical & Biological Archives*, 3(4): 809-815.
- Hazra, K. 2019. Phytochemical investigation of *Terminalia bellirica* fruit inside. *Asian Journal of Pharmaceutical and Clinical Research*, 12(8): 191-194.
- Hegde, S. &Jayaraj, M. 2016. A Review of the Medicinal Properties, Phytochemical andBiological Active Compounds of *Tinosporasinensis* (Lour.) Merr. *Journal* of *Biologically Active Products from Nature*. 6(2):84-94. DOI: 10.1080/22311866.2016.1185968.
- Herapathdeniya, S.K.M.K., Samarakoon, S.M.S. &Jayasiri, A.P.A. 2020. Phytochemical screening of different extracts of *Ecliptaprostrata* (Bringaraja). *Indian Journal of Ancient Medicine and Yoga* 13 (3): 119:124.
- Hussain I., Khan N., Ullah R., Shanzeb, Ahmed S., Khan F. A. &Yaz S. 2011. Phytochemical, physiochemical and anti-fungal activity of *Eclipta alba*. *African Journal of Pharmacy and Pharmacology*, 5(19): 2150-2155.

- Ito, C., Itoigawa, M., Sato, A., Hasan, C. M., Rashid, M.A., Tokuda, H., Mukainaka, T., Nishino, H. & Furukawa, H. 2004. Chemical constituents of *Glycosmis arborea*: three new carbazole alkaloids and their biological activity. *Journal of Natural Products*, 67(9):1488-91. doi: 10.1021/np0400611. PMID: 15387647.
- Jain, S. K. Ethnobotany. 1986. Interdisciplinary Science Review. Vol 11(3). Pp. 285.
- Jhade, D., Ahirwar, D., Jain, R., Sharma, N. & Gupta, S. 2011. Pharmacognostic standardization, physico and phytochemical evaluation of *Amaranthus spinosus*linn. Root. *Journal of Young Pharmacists*, 3(3): 221-225. doi: 10.4103/0975-1483.83770.
- Kadam, P.V., Yadav, K. N., Deoda, R. S., Shivatare, R. S.& Patil M. J. 2012. *Mimusopselengi*: A Review on Ethnobotany, Phytochemical and Pharmacological Profile. *Journal of Pharmacognosy and Phytochemistry*, 1(3): 64-74.
- Kalita, D. & Phukan, B. 2009. Folk medicines used by the Moran of Brahmaputra valley, Tinsukia district, Assam, India. *Natural product radiance*, 8(1):73-76.
- Kankanamge, S. U. & Amarathunga, A. A. M. D. 2017. Phytochemical and ethnopharmacological properties of *Lasia spinosa* (kohila): a review. *World Journal* of *Pharmaceutical Research*, 6(13): 1-9.
- Kabra, A., Sharma, R., Singla, S., Kabra, R., Baghel, U. S. 2019. Pharmacognostic characterization of *Myrica esculenta* leaves. *Journal of Ayurveda and Integrative Medicine*, 10(1): 18-24. doi.org/10.1016/j.jaim.2017.07.012.
- Kayang, H., Kharbuli, B., Myrboh, B. & Syiem, D. 2005. Medicinal Plants of Khasi Hills of Meghalaya, India. Proc. WOCMAP III. Vol: Bioprospecting and Ethnopharmacology. Eds. J. Bernath, E. Nemeth, L. E. Craker and Z. E. Gardner. Acta Horticulturae 675, International Society for Horticultural Science (ISHS), pp 75 – 80. (ISSN: 0567-7572).
- Kongsai, M., Saikia, S.P. & Kayang, H. 2011. Ethano medicinal plants used by different tribes of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 10(3): 541-546.
- Khair-ul-Bariyah, S., Ahmed, D. & Ikram, M. 2012. Ocimum basilicum: A Review on Phytochemical and Pharmacological Studies. Paistan Journal of Chemistry, 2(2): 78-85.
- Khaliq, H. A. 2016. Pharmacognostic, physicochemical, phytochemical and pharmacological studies on *Careya arborea* Roxb.: A review. *The Journal of Phytopharmacology*, 5(1): 27-34.
- Kshirsagar, P. R. & Patil, S. M. 2020. Phytochemistry and Pharmacology of *Mesua* ferrea L. In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in

Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. Pg. 223-256. doi.org/10.1007/978-3-030-30182-8_16.

- Kumar, S., Malhotra, R. & Kumar, D. 2010. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. *Pharmacognosy* reviews, 4(7): 58–61. doi.org/10.4103/0973-7847.65327.
- Kumar, K. S J. &Sanshi, A. 2016. Utilization of the pods of Stereospermumtetragonum for the characterization of phytoconstituents. World Journal of Pharmaceutical Research, 5(11): 1292-1299.
- Kumar, V. & Van Staden J. 2016. A Review of Swertiachirayita (Gentianaceae) as a Traditional Medicinal Plant. Frontiers in Pharmacology, Vol 6: 308. doi.10.3389/fphar.2015.00308.
- Lalramnghinglova, H. 2016.Documentation of Medicinal Plants based on Traditional Practices in the Indo-Burma Hotspots Region of Mizoram, North East India. *Emergent Life Sciences Research*, 2(1):10-45.
- Laldinsanga, Sarma, H., Jahan, T., Goswami, A. K. & Sharma, H. K. 2019. *Current Trends in Pharmaceutical Research*, 6 (1). ISSN: 2319-4820 © Dibrugarh University.
- Lawal, A.T., Adeoye, M.D., Abdulazeez, A.T., Azeez, L., Yakubu, A.S, Mciver, F.A & Oladimeji A.O. 2016. Phytochemical, Proximate and Mineral Composition of *Gmelina arborea* Fruits (White Teek). *Fountain Journal of Natural and Applied Sciences*, 5(1): 16 – 25.
- Lawania, R. D., Prasad, R., Mishra, A. & Gupta, R. 2010. Pharmacognostic and Phytochemical Studies of Bark of *Oroxylumindicum*. *Pharmacognosy Journal*, 2(9):297-303.
- Li, Q.Y., Liang, H., Wang, B. & Zhao, Y.Y. 2009. Chemical constituents of Momordica charantia L. Yao XueXue Bao, 44(9):1014-8. Chinese.
- Liu, L.S., Liu, M. H. & He, J. Y. 2014. *Hypericum japonicum*Thunb. ex Murray: Phytochemistry, Pharmacology, Quality Control and Pharmacokinetics of an Important Herbal Medicine. *Molecules*, 19: 10733-10754. doi:10.3390/molecules190810733.
- Londonkar, R., Reddy, C.V.& Kumar, A. K. 2011. Potential antibacterial and antifungal
- activity of Achyranthes aspera. L. Recent Research in Science and Technology, 3(4): 53-57.
- Madoff, R. D. &Fleshman, J. W. 2004. American Gastroenterological Association technical review on the diagnosis and treatment of hemorrhoids. *Gastroenterol*, 126:1463–1473.

- Maity, D., Pradhan, N. & Chauhan A. S. 2004. Folk uses of some medicinal plants from North Sikkim. *Indian Journal of Traditional Knowledge*, 3(1):66-71.
- Maldonado-Celis, M.E., Yahia, E.M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B. & Guerrero Ospina, J.C. 2019. Chemical Composition of Mango (*Mangiferaindica* L.) Fruit: Nutritional and Phytochemical Compounds. *Frontiers in Plant Science*, 10:1073. doi: 10.3389/fpls.2019.01073.
- Manandhar, N. P. 2002. Plants and People of Nepal Timber Press. Oregon. ISBN 0-88192-527-6.
- Mandal, D., Panda, A. K.& Rana, M. 2013. Medicinal Plants Used in Folk Medicinal Practice Available in Rich Biodiversity of Sikkim. *Environment & Ecology*. 31 (3A): 1445—1449.
- Mao A. A. & Hynniewta T. M. 2000. Floristic Diversity of North East India. Journal of the Assam Science Society, 41(4): 255-266.
- Margarita, J. E., Antonio, V. H. H. & Carolina, M. 2018. Wax lipids in fresh and charred anatomical parts of the *Celtisaustralis* tree: Insights on paleofire interpretation. *Organic Geochemistry*, 122: 147-160.
- Matisui, É.D., Perrone, L., Araújo, F.A., Mende, s A.L., Santos, D. &Lucena J.D. 2017. *Pedilanthus tithymaloides* (L.) Poyt: phytochemical prospection and antimicrobial activity. *Scientia Amazonia*, 6(3): 53-57.
- Misra, B. &Nighantu B. P.1969. Hindi commentary by K. C. Chunekar. Chowkhamba Vidya Bhavan, Varanasi. Vol 1. pp 292.
- Metwally, A. M., Omar, A. A., Harraz, F. M. & El Sohafy, S. M. 2010. Phytochemical investigation and antimicrobial activity of *Psidium guajava* L. leaves. *Pharmacognosy magazine*, 6(23): 212–218. <u>doi.org/10.4103/0973-1296.66939</u>.
- Moayyedkazemi, A., Sharifian, M., Galehdar, N. &Mohammadipour, F. 2020. Hemorrhoids: new insights into surgical and non-surgical treatments with emphasis on medicinal herbs. *Journal of Critical Reviews*, 7(14):1531-1539.
- Muhammad, G., Hussain, M. A., Jantan, I. & Bukhari, S. N. A. 2016. *Mimosa pudica* L., A High-Value Medicinal Plant as a Source of Bioactives for Pharmaceuticals. Comprehensive reviews in food science and food safety. 15: 303-315. <u>doi.org/10.1111/1541-4337.12184</u>
- Najda, A., Ali, Almehemdi, F.&Zaba, A. F. 2013. Chemical composition and nutritional value of *Jatropha curcas* L. leaves. *Journal of Genetic and Environmental Resources Conservation*, 1(3):221-226.

- Nandi, S. &Lyndem, L. M. 2016. Clerodendrumviscosum: traditional uses, pharmacological activities and phytochemical constituents. Natural Product Research, 30(5):497-506.doi: 10.1080/14786419.2015.1025229.
- Narayana, R. K., Reddy, S. M., Chaluvadi, M. R.& Krishna, D. R. 2001. Bioflavanoids:
- classification, pharmacological, biochemical effects and therapeutic potentials. *Indian* Journal of
- Pharmacology. 33: 2-16.
- Navarro Dde, F., de Souza, M. M., Neto, R. A., Golin, V., Niero, R., Yunes, R. A., Delle Monache, F. &Cechinel Filho, V. 2002. Phytochemical analysis and analgesic properties of *Curcuma zedoaria* grown in Brazil. *Phytomedicine*,9(5):427-32. doi: 10.1078/09447110260571670. PMID: 12222663
- Nguyen, V. D. & Doan, T. N. Medicinal Plants in Vietnam. In: World Health Organisation Year. 1989. ISBN 92 9061 101 4.
- Niu, Y. & Meng, Q. X. 2013. Chemical and preclinical studies on *Hedyotisdiffusa* with anticancer potential. *Journal of Asian Natural Products Research*,15(5):550-65.
- Pandey, R. &Arnold, R. 2017. Quantitative phytochemical analysis of Solanum nigrum plant extract. World journal of pharmaceutical and medical research. 3(6): 232-234.
- Parkhe, G. &Bharti, D. 2019. Phytochemical investigation and determination of total Phenols and Flavonoid concentration in leaves extract of *Vitex trifolia* Linn. *Journal of Drug Delivery and Therapeutics*, 9(4-A):705-707.
- Patra, A. & Mitra, A. K. 1981. Constituents of Acorus calamus: structure of acoramone. Carbon-13 NMR spectra of cis-and trans-asarone. Journal of Natural Products, 44 (6): 668-669.
- Pattewar, S. V. 2012. *Kalanchoe pinnata:* Phytochemical and pharmacological profile. *International Journal of Phytopharmacy*, 2 (1): 1-8.
- Paudel, K. R. & Panth, N. 2015. Phytochemical Profile and Biological Activity of Nelumbo nucifera. Evidence-Based Complementary and Alternative Medicine, vol. 2015, Article ID 789124, 16 pages. doi.org/10.1155/2015/789124
- Payum, T., Tahong, T. T.& Taro, K. 2020. Pharmacognostic study of *Clerodendrumcolebrookianum*Walp. plant used for medicinal food by Adi tribe of Arunachal Pradesh, India. *Archives of Agriculture and Environmental Science*, 5(3): 363-367.

- Perme, N., Choudhury, S. N., Choudhury, R., Natung, T. & De B. 2015. Medicinal Plants in Traditional Use at Arunachal Pradesh, India. *International Journal of Phytopharmacy*, 5 (5): 86-98.
- Puspangadan, P. & Atal, C. K. 1984. Ethnomedico-botanical investigation in Kerala I. Some primitive tribals of Western Ghats and their herbal medicine. *Journal of Ethnopharmacology*, 11: 59–77.
- Pradhan, B. K. &Badola, H.K. 2008. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim.*IndianJournal of Ethnobiology and Ethnomedicine*. 4: 22. doi.org/10.1186/1746-4269-4-22.
- Pradhan, D., Ojha, V. & Pandey, A.K. 2013. Phytochemical analysis of *Tinosporacordifolia* (willd.) Miers ex Hook. F. &Thoms stem of varied thickness. *International Journal of Pharmaceutical Sciences and Research*. 4(8):3051-3056.
- Prashith, K. T. R. &Sudharshan S. J. 2018. Ethnobotanical uses, phytochemistry and biological activities of *ClerodendrumpaniculatumL*. (Lamiaceae): A comprehensive review. *Journal of Drug Delivery and Therapeutics*, 8(5-s):28-34.
- Radhika, L. G., Meena, C. V., Peter, S., Rajesh, K. S. & Rosamma, M. P. 2011. Phytochemical and antimicrobial study of *Oroxylumindicum*. Ancient science of life, 30(4): 114–120.
- Raja R. R.&Kailasam, K. V. 2015. Abutilon indicum L (Malvaceae)-an overview. Pharmacognosy Journal. 7(6):330-332.
- Rai, P. K. &Lalramnghinglova, H. 2010. Lesser known ethnomedicinal plants of Mizoram, North East India: An Indo-Burma hotspot region. *Journal of Medicinal Plants Research*, 4(13): 1301-1307.
- Ranemma, M. & Reddy, K. S. 2017. Phytochemical Investigation Study of *Curcuma Caesia*Roxb Different Geographical Regions (Delhi and Orissa) of India. *IOSR Journal of Biotechnology and Biochemistry*, 3(1): 23-26.
- Rao, R.R. 1981. Ethnobotany of Meghalaya-Medicinal plants used by Khasi and Garo tribes in Meghalaya. *Economic Botany*.34:4-9.
- Ratdiya, V. & Aher, A. 2020. Asparagus Racemosus: A Review on Pharmacognostic characters, Phytochemistry and Pharmacological activities. Current Trends in Pharmacy and Pharmaceutical Chemistry, 2(3): 18-23.
- Ratra, P.S.&Misra, K.C. 1970. Seasonal variation in chemical composition of *A. aspera*
- and A. bidentata. Indian Forester, 96: 372-375.

- Reddy, B.C, Noor, A., Sabareesh, V. & Vijayalakshmi, M. A. 2016. Preliminary screening of potential flavonoid-subclasses in *Myristicafragrans* and *Cordyline terminalis* by LC-ESI-MS. *Journal of Pharmacognosy and Phytochem*istry. 5(6):437-450.
- Roy, D. K., Talukdar, A. D., Choudhury, M. D., Sinha, B. K., Ningthoujam, S. S., Nath, D. & Choudhury, P. R. 2016.Ethnomedicinal plant used by the Garo Tribe of South Garo Hills, Meghalaya, India. In: Medicinal plants and its therapeutic uses. Ed. Birla Kshetrimayum. OMICS Group eBooks. Pp. 37-49.doi.org/10.4172/978-1-63278-074-4-075.
- Rufei, Y., Isah, Y. &Isyaka, M.S. 2015. Pilot Survey: The Use of Wood Soot (Amorphous Carbon) as Alternative Management for Postpartum Haemorrhage. *Journal of Chemical, Biological and Physical Sciences*, 5(4B): 4162-4171.
- Sah, J. N. &Varshne, V. K. 2013. Chemical constituents of Picrorhiza genus: a review. American Journal of Essential Oils and Natural Products, 1 (2): 22-37.
- Sahoo, S., Ghosh, G., Das, D. & Nayak, S. 2013. Phytochemical investigation and in vitro antioxidant activity of an indigenous medicinal plant *Alpinia nigra* B. L. Burtt.*Asian Pacific Journal of Tropical Biomedicine*, 3:871–6.
- Salem, A., Salem, M., Gonzalez-Ronquillo, M., Camacho, L. M. & Cipriano, M. 2011. Major chemical constituents of *Leucaena leucocephala* and *Salix babylonica* leaf extracts. *Journal of Tropical Agriculture*, 49: 95-98.
- Sahu, R., Dhongade, H. J., Pandey, A., Sahu, P., Sahu, V., Patel, D. & Kashyap, P. 2016. Medicinal Properties of Nardostachysjatamansi (A Review). Oriental Journal of Chemistry. 32(2).
- Saklani, S., Chandra, S. & Mishra, A. P. 2013. Nutritional Profile, Antinutritional Profile and Phytochemical Screening of Garhwal Himalaya Medicinal PlantDioscoreaalataTuber. International Journal of Pharmaceutical Sciences Review and Research. 23(2):42-46.
- Samy, P. R., Iushparaj, P.N. &Gopalakrishnakone, P.A. 2008. Compilation of bioactive compounds from Ayurveda. *Bioinformation*. 3(3): 100–110.
- Santo, B. L.S.E., Santana, L. F., Junior, W. H. K, Araújo, F. O., Bogo, D., Freitas, K. C., Guimarães, R. C. A., Hiane, P. A., Pott, A., Filiú, W. F. O., Asato, M. A., Figueiredo, P. O. &Bastos, P. R. H. O. 2020. Medicinal potential of *Garcinia* species and their compounds. *Molecules*, 25: 4513. doi:10.3390/molecules25194513.
- Sharma, A., Bachheti, A., Sharma, P., Bachheti, R. K., Husen, A. 2020. Phytochemistry, pharmacological activities, nanoparticle fabrication,

commercial products and waste utilization of *Carica papaya* L.: A comprehensive review. *Current Research in Biotechnology*, 2: 145-160.

- Sharma, P. V. 2001. DravyagunaVigjnan, Chaukhamba Bharti Academy, Varanasi. Vol ii, Pp. 69-70.
- Sharma, M., Sharma, C.L. & Marak, P.N. 2014. Indigenous uses of medicinal plants in North Garo Hills, Meghalaya, NE India. *Research Journal of Recent Sciences*,3(ISC-2013):137-146.
- Shang, J.H., Cai, X.H., Zhao, Y.L., Feng, T. & Luo, X.D. 2010. Pharmacological evaluation of *Alstoniascholaris*: anti-tussive, anti-asthmatic and expectorant activities. *Journal of Ethnopharmacology*. 129(3):293-8. doi: 10.1016/j.jep.2010.03.029.
- Shankar, R., Lavekar, G. S., Deb, S. &Sharma, B. K. 2012. Traditional healing practice and folk medicines used by Mishing community of North East India. *Journal of Ayurveda and Integrated Medicine*. 3(3):124-9. doi: 10.4103/0975-9476.100171.
- Shankar, R. & Rawat, M. S. 2008. Medicinal plants used in traditional medicine in Lohit and Dibang valley districts of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*. 7(2):288-295.
- Shankar, R. 2013. Medicinal Plants Used in Traditional Medicine in Aizawl and Mamit Districts of Mizoram. *Journal of Biology and Life Science*. 4(2): 95-102.
- Sharma, J. & Varma, R. 2011. A Review on Endangered plant of *Mallotusphilippensis* (Lam.) M.Arg. *Pharmacologyonline*, 3: 1256-1265.
- Sharmin, T. &Syeda, N. M. 2018. Screening of biological activities of Acacia farnesiana (Guyababla), a medicinal plant of Bangladesh. European Journal of Biomedical and Pharmaceutical Sciences. Vol. 5(6):74-78.
- Shukla, B., Saxena, S., Usmani, S. et al. 2021. Phytochemistry and pharmacological studies of *Plumbago zeylanica* L.: a medicinal plant review. *ClinicalPhytosciences*, 7(34). https://doi.org/10.1186/s40816-021-00271-7.
- Silvaa, K. B., Pinheirob, C. T. S., Soaresb, C. R. M., Souzab, M. A., Matos-Rochab, T. J., Fonsecab, S. A., Pavaob, J. M. S. J., Costab, J. G., Piresb, L. L. S. & Santos, A. F. 2021. Phytochemical characterization, antioxidant potential and antimicrobial activity of *Averrhoa carambola* L. (Oxalidaceae) against multiresistant pathogens. *Brazilian Journal of Biology*, 81(3): 509-515.
- Singh, C., Manglembi, N., Swapana, N. &Chanu, S. 2015. Ethnobotany, Phytochemistry and Pharmacology of *Zingiber cassumunar*Roxb. (Zingiberaceae). *Journal of Pharmacognosy and Phytochemistry*, 4: 1-6.

- Singh, D. 2016. *Jasminum multiflorum* (Burm. f.) Andr.: Botany, Chemistry and Pharmacology. *Asian Journal of Chemistry*, 28(12):2575-2578.
- Snafi, E. A. A. 2016. Chemical constituents and pharmacological effects of Cynodondactylon- A Review. IOSR Journal of Pharmacy, 6(7) 2: 17-31.
- Sood, K. &Yadav, R. N. S. 2014. Phytochemical screening and antimicrobial activity of four members of family apiaceae. *International Journal of Phytomedicine*, 6 (2): 232-236.
- Singh, N.P., Chauhan, A. S. & Mondal, M.S. 2000. Ranunculaceae Asteraceae In. Flora of Manipur Vol. I. Botanical Survey of India, Calcutta 2000.
- Singh, R. &Geetanjali. 2015. Phytochemical and Pharmacological Investigations of *Ricinus communis* Linn.*Algerian Journal of Natural Products*, 3(1): 120-129.
- Singh, S. B, Tripathi, S. K. & Mishra, B. P. 2016. Ethno-Medicinal Plants Used by the South WestKhasi Hills District Community of Meghalaya, India. In: Medicinal plants and its therapeutic uses. Ed. Birla Kshetrimayum. OMICS Group eBooks. Pp. 50-59.
- Singh, T. T., Sharma, M. H., Devi, A. R. & Sharma, H. R. 2014. Plants used in the treatment of piles by the scheduled caste community of Andro village in Imphal East District, Manipur (India). *Journal of Plant Sciences*, 2(3): 113-119.
- Sribandit, W., Wiwatwitaya, D., Suksard, S. &Offenberg J. 2008. The importance of weaver ant (*OecophyllasmaragdinaFabricius*) harvest to a local community in Northeastern Thailand, *Asian Myrmecology*, 2: 129 - 138.
- Srinivasan, R., Ravali, B., Suvarchala, P., Honey, A., Tejaswini, A.&Neeraja. P. 2011. Leucas aspera - medicinal plant: a review. International Journal of Pharma and Biosciences, 2(1):153-159.
- Srivastava, S.K., Agrawal, B., Kumar, A. & Pandey, A. 2020. Phytochemicals of *Azadirachtaindica* source of active medicinal constituent used for cure of various diseases: A Review. *Journal of Scientific Research*. 64(1): 385:390.
- Subhose, V. &Narian, A.2005. Basic principles of pharmaceutical science in Ayurvěda. Bulletin of the Indian Institute of History of Medicine. Hyderbad. Pp. 35: 83.
- Sundaraganapathy, R., Niraimathi, V., Thangadurai, A., Jambulingam, M., Narasimhan, B. &Deep, A. 2013. Phytochemical studies and pharmacological screening of *Sidarhombifolia* Linn. *Hygeia: journal for drugs and medicines*, 5 (1):19-22.

- Süntar, I. P., Akkol, E. K., Yılmazer, D., Baykal, T., Kırmızıbekmez, H., Alper, M. &Yeşilada, E. 2010. Investigations on the in vivo wound healing potential of *Hypericum perforatum* L. *Journal of Ethnopharmacology*, 127 (2): 468–77.
- Susindran, P. & Ramesh, N. 2014. Phytochemical screening and antimicrobial activity of *Curculigoorchioides*Gaertn rhizome, an endangered medicinal herb. *International Journal of Current Research*, 6(10): 9104-9107.
- Swarnkar, R., Singh, D., Choudhary, A., Anand, S., Rathore, A. &Jediya, H. K. 2019. Pharmacological Properties of *Aegle marmelos*: A Review. *International Journal of Current Microbiology and Applied Sciences*, 8(5): 1600-1608.
- Talreja, T., Goswami, A. &Sharma, T. 2016. Preliminary phytochemical analysis of Achyranthes aspera and Cissusquadrangularis. Journal of Pharmacognosy and Phytochemistry, 5(5):362-365.
- Tang, X., Xu C., Yagiz, Y., Simonne, A., Marshall, M. R. 2018. Phytochemical profiles, and antimicrobial and antioxidant activities of greater galangal [*Alpinia galanga* (Linn.) Swartz.] flowers. *Food Chemistry*. 255:300-308. doi: 10.1016/j.foodchem.2018.02.027.
- The world health report 2001 Mental Health: New Understanding, New Hope. <u>http://www.who.int/whr/2001/en/</u>. (Accessed on 10-02-2021)
- Thokchom, S., Ningombam, D. S., Chanchal, Ch. & Singh B. H.2015. Folk-Medicare System of Chakpa community of Andro Village of Manipur in Northeast India. *American Journal of Ethnomedicine*.2(4):239-265.
- Thomson W. H. 1975. The nature of haemorrhoids. *British Journal of Surgery*, 62:542-552.
- Trabelsi, A., Kaibi, M. A., Abbassi, A., Horchani, A., Chekir-Ghedira, L., Ghedira, K. 2020. Phytochemical Study and Antibacterial and Antibiotic Modulation Activity of *Punicagranatum* (Pomegranate) Leaves. *Scientifica*. vol. 2020, Article ID 8271203, 7 pages. https://doi.org/10.1155/2020/8271203.
- Variya, B.C., Bakrania, A. K. & Patel, S.S. 2016. *Emblica officinalis* (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. *Pharmacological Research*. 111:180-200. doi: 10.1016/j.phrs.2016.06.013.
- Ved, A., Arsi, T., Prakash, O. & Gupta, A.2018. A review on phytochemistry and pharmacological activity of *Lantana camara* Linn. *International journal of pharmaceutical sciences and research*. 9(1): 37-43.
- Vedpal, Dhanabal, S. P., Dhamodaran, P., Chaitnya, M. V. N. L., Duraiswamy, B., Jayaram, U. & Srivastava, N. 2016. Ethnopharmacological and Phytochemical profile of three potent Desmodium species: *Desmodiumgangeticum* (L.) DC,

Desmodiumtriflorum Linn and Desmodium triquetrum Linn. Journal of Chemical and Pharmaceutical Research, 8(7): 91-97.

- Verma, S. C., Vashishth, E., Singh, R., Kumari, A., Meena, A. K., PantP., Bhuyan G. C. &Padhi, M. M. 2013. A Review on Parts of *Albizialebbeck* (L.) Benth. used as Ayurvedic Drugs. *Research Journal of Pharmacy and Technology*, 6(11):1235-1241.
- Yarnell, E. 2000. Naturopathic Gastroenterology, Wenatchee W. A. Healing Mountain Publishing.
- Yousafa, Z., Wanga, Y.& Baydounc E. 2013. Phytochemistry and Pharmacological Studies on Solanum torvum Swartz. Journal of Applied Pharmaceutical Science, 3 (4): 152-160.
- Zahirah, A. R. N., Khairana, H., Endang, K. 2018. Moringa Genus: A Review of Phytochemistry and Pharmacology. *Frontiers in Pharmacology*, 9:108.
- Zeng, J., Ma, R.J., Wang, L., Zhang, S.N., Song, H.Z., Yang, Y. & Tan, Q.G. 2019. Chemical constituents from the leaves of *Melia azedarach*. *Natural Product Research*, 33(19): 2860-2863. doi: 10.1080/14786419.2018.1501690.
- Zhasa, N.N., Hazarika, P. & Tripathi, Y.C. 2015. Indigenous Knowledge on Utilization of plant Biodiversity for Treatment and Cure of diseases of Human beings in Nagaland, India: A case study. *International Research Journal of Biological Sciences*, 4(4): 89-106.
- Zheng, S. Z., Lv, J. S., Shen, T., Liu, H.Y. & Shen, X.W. 2001. New C-methylated flavones from *Elsholtzia blanda*. *Indian Journal of Chemistry*, 40B:232–234.

Chapter 7

Ethnodermatological practices among the ethnic groups in North East India: a review

Daimalu Baro Department of Botany, Tinsukia College, Assam Corresponding E-mail: daimalupbaro@gmail.com

Abstract

Skin diseases are one of the key problems through out the world. There are more than a thousand conditions that may affect the skin but most skin diseases are highly dominated by bacterial and superficial fungal infections; however, the pattern of skin diseases varies from place to another and influenced by various factors like environment, economy, literacy, racial and social customs. Throughout the present study we have recorded a total of 102 species used for the treatment of skin diseses including their pharmacological activests and chemical constituents.

Keywords: Skin diseases, tradtional Practices, Northeast region

Introduction

North East India comprising the states of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura and Sikkim. The northeastern part of India is well-known to be the world's most culturally diverse region; the region covers an area of ca. 262060 sq. km and steadily inhabited by more than 200 tribes. Some of the most popular tribes are the Adi tribe, Nishi Tribe, Bhutia tribe, Garo tribe, Kuki tribe etc. Nevertheless, the Northeast region is home to many ethics' community, it signifies a unique social and environmental context for Ethnobotanical studies, merely because of their rich cultural/ethnic/religious existences, the area is as well recognized as hotspot of biodiversity and the region shares the international border with Myanmar, Bangladesh, Bhutan, Nepal, South Tibet and China. From the immemorial period these ethnic tribe use the plants and animals in their daily livelihood in their different sociocultural aspect. Each ethnic community of the region has different and very specific knowledge in their Traditional medicine practices, their food habitat and in different sociocultural features. Geographical boundary and the different vegetation type of the region is also a certain effect of forming of varied culture diversity between the ethnic tribes. Assam is situated in the center and all hill states (except Sikkim) are situated around it. The literature survey reveals a number of documentation and Ethnobotanical studies viz. edible plants, floral diversity, medicinal plant use for skin diseases, respiratory diseases, jaundice, on different tribes of northeast India. Though there is no systematic review on dermatological study in northeast India, the present study was taken to fill up the on ethno pharmacological researches.

Skin disorders:

Skin diseases are one of the major problems through out the world. It is the study of both normal and abnormal skin and associated structures such as hair, nails, and oral and genital mucous membranes (Chiang & Verbov, 2009). These diseases are highly dominated by bacterial and superficial fungal infections. There are more than a thousand conditions that may affect the skin but most skin diseases are highly dominated by bacterial and superficial fungal infections, neverthelessthe pattern of skin diseases varies from place to another and influenced by various factors like environment, economy, literacy, racial and social customs. The common type of skin diseases can the categorizedinto ninetypesviz., Rashes, Viral infections, Bacterial infections, Fungal infections, Parasitic infections, Pigmentation disorders, Tumors and cancers and Trauma (Tabassum & Hamdani, 2014).

Methods

Ethnopharmacological data sources and collection

Systematic literature searches relevant to the field of ethnobotany were carried out and the available information on various plants traditionally used for oral and dental health care was collected from different bibliographical databases via electronic search (using Pubmed, SciFinder, Scopus, Scirus, ScienceDirect, Google Scholar and Web of Science) and a library search for articles published in peerreviewed journals and also locally available books. The phytochemicals and pharmacological activities, which are considered as helpful for the treatment of oral and dental health care are reported in this review include: Antioxidant, Anti-bacterial, Anti-inflammatory and antimicrobial activity.

Systematization of plant names and chemical structures

For the systematization of plant names and to check the status of plants gathered in this review, thedatabase: The Plant list (http://www.theplantlist.org/2020) was used. Only the accepted names and family of plantsspecies highlighted in this database were retained to be listed in this review.

Results and Discussion

The present study recorded a total of 102 species under 58 families and 104 genuses, under this families 57 families with 119 species belongs to Angiosperm and 1 family with one species belongs to Pteridophyte. The habit of the species comprises about 17 species herbs, 57 species shrubs, 31 species trees, 6 species climbers and 8 species were vine. Through the secondary information the presented study noted total 15 parts of palnts were used for the medicine preparation or direct use for the treatment of `skin diseases, between them 42% of leaves parts were used for the treatment of dermatological diseases and also recorded a total -29 types of skin diseases along with their treatment and medicinal preparation through tradional method (Table 7.1, Fig. 7.1, 7.2). During present study the authors furthermore go away through the literature survey to appraisal scientifically and chronicled the Pharmacological activities of the species were viz, antimicrobial, anti viral, anti fungalactivites and including their Phytochemical Constituent viz, alkaloids, phenols, volatiles etc.,

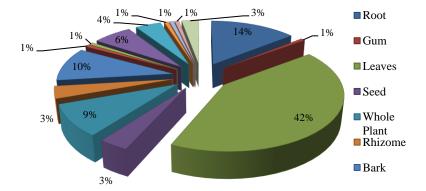


Fig. 7.1. Different parts of palnts used for the treatment of skin diseases.

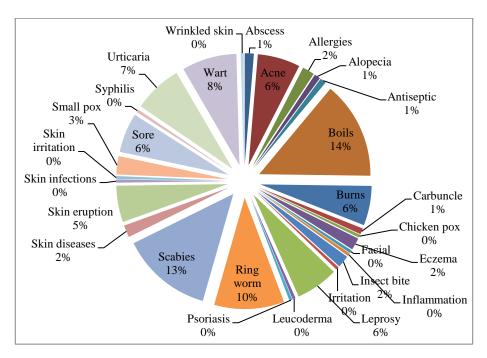


Fig. 7.2. Different types of Plants species used for the treatment of ethnodermatolgy.

Table 7.1. Diversity of medicinal plants traditionally used in ethnodermatological practices among the ethnic groups in North East India with pharmacological effect/Phytochemical constituent with reference.

SI No	Species with family	Part use	Diseas e	Mode of uses with reference	Pharmacological effect/ Phytochemical Constituent with reference
1.	Abrus precatorius L. (Leguminosae)	Roots	Leucod erma	Root paste is smeared to the affected part in the form of thick paste. (Buragohain & Konwar,	Alkaloids, Flavonoids, Steroids, Tannins, Terpenoids (Nassir et al., 2017). Anti-viral effect (Premanand & Ganesh, 2010)

				2007)	
				2007)	Antioxidant activity
					(Nassir et al., 2017).
2.	<i>Acacia farnesiana</i> (L.) Willd (Mimosaceae)	Gum	Skin burns	The extracte d gum is add ed with egg and then smeared (Saikia et al., 2006)	Albumin, gallic acid, glutelins, kaempferol, quercetin, methyl gallate, myricetin, diosmetin, ellagic acid, β -sitosterol, ferulic and caffeic acids. (Pugaetal.,2018) Antioxidant, Antimicrobial and Cytotoxicity Activities. (Ramli et al. 2011)
3.	<i>Acalypha indica</i> Linn (Euphorbiaceae)	Leaf	Scabies , ringwo rm, urticari a	Extraction of Leaf juice is applied on the infected portion. (Devi, 2017)	al., 2011) Anthraquinones, Alkaloids, Catachols, Flavonoids, Phenolic compounds, Saponins, Steroids, Tannins, Triterpenoids. (Saha& Ahmed, 2011) Analgesic Activity, Anti-inflammatory Activity, Anti-inflammatory Activity, Antihelmintic Activity, Anti bacterial, Anti fungal activity, Antitubercular Activity, Antioxidant Activity, Neuro- protective and Neuro-Therapy Activity and Anti-venom Activity. (Saha& Ahmed, 2011)
4.	Achyranthus aspera L. (Amaranthaceae)	Seed & leaf	Carbun cle, Boils,	Seed paste is added with little amount	Tannins, phlobatannins, terpenoids,

Image: space of the stand		1				
5. Aconitum nagarum Stapf (Ranunculaceae) Whole plant Ringw orm Extraction of entire plant is applied. (Devi, 2017) Alkaloids, antibacterial activi (Sinam et al., 2012) 4 Alkaloids, antibacterial activi (Sinam et al., 2012) 5 Alkaloids, antibacterial activi (Sinam et al., 2012)				eruptio n, acne, insect bite, ringwo rm,	paste to the affected part. (Buragohain and Konwar, 2007) Decoction or infusion of leafs is applied against infection	Baraiketal., 2014) Anti-oxidant Activity (Priya et al.,2010; Antiparasitic Activity (A. A. Zahir et al. 2009) Anti-allergic Activity (Datir et al.
Aconitum nagarum Stapf (Ranunculaceae)Whole plantRingw ormExtraction of entire plant is applied. (Devi, 2017)Alkaloids, antibacterial activi (Sinam et al., 2012)Image: Aconitum nagarum (Ranunculaceae)Whole plantRingw ormExtraction of entire plant is applied. (Devi, 2017)Alkaloids, antibacterial activi (Sinam et al., 2012)Image: Aconitum nagarum (Ranunculaceae)Image: Aconitum nagarum plantAlkaloids, flavonoids, gums lectins, mucilage						2007)
Alkaloids, flavonoids, gums lectins, mucilage	5.	Stapf		-	Extraction of entire plant is applied.	Alkaloids, antibacterial activity (Sinam et al., 2012)
6.Acorus calamus Linn. (Araceae)Rhizom eRhizom eRhizome paste is applied for skin disease sRhizome paste is applied for the treatments of skin diseases. (Pradhan and attivity (Varde e al. 1989) Antibacterial activity (Bhuvaneswarieta 2006) Antioxidative/prot	6.	calamus Linn.	-	disease	Rhizome paste is applied for the treatments of skin diseases. (Pradhan & Badola,	flavonoids, gums, lectins, mucilage, phenols, quinone, saponins, sugars, tannins, and triterpenes (steroids). (Ahmad & Aqil, 2006; Aqil et al., 2006; Bains etal., 2005; Parab&Mengi, 2002; Chitetal., 2001) Anti-inflammatory and immunomodulatory activity (Varde et al., 1988; Vohra et al., 1989) Antibacterial activity (Bhuvaneswarietal., 2006) Antioxidative/protec tive effect (Palani et
Acronychia Extraction of Robinetin, chalcon						

				applied	stigmasterol
				against the	glucosides,
				infected area.	oleanolic acid,
				(Devi, 2017)	echinocystic acid,
					and sapogenins.
					(Adedapo et al.,
					2009; Shaiq et al.,
					2009; Enuo
					&Shishan., 2007;
					Mesbah et al., 2002;
					Yeoh et al., 1984;
					Chandra & Saxena.
					1982; Yadev et al.,
					1967)
					Anti-inflammatory,
					analgesic,
					antioxidant,
					cytotoxic, anti-
					diarrheal, acute
					toxicity,
					antibacterial,
					antifungal, and
					blood pressure-
					reducing activities.
					(Ara et al., 2013;
					Ara et al., 2013,
					2010a,2010b;
					Adedapo et al.,
					2009; Mayuren et
					al., 2009; Rodrigo et
					al., 2007;
					Jayasinghe et al.,
					2006; Olajide et al.,
				Cruchad	2004)
				Crushed	Chlorogenic acid,
				leaves is add with black	coumaric
	1 a a l a m l				acids, flavonoids,
0	Aegle marmelos	Lagree	Absces	pepperand	phenolic compounds
8.	Correa ex Roxb.	Leaves	s	made paste is	and phenolic acids;
	(Rutacea)			smeared on	Anti-inflammatory
				the boils	activity, antioxidant'
				(Saikia et al.,	(Mujeeb et al.,
				2006)	2017)
				Extract	Alkaloids,
	Ageratum		Ringw	leaves is	flavonoid, tannins,
9.	conyzoides Linn.	Leaves	orm	applied	saponins,
	(Asteraceae)			against the	glycosides, resins,
				infected area.	phenols,

-			1		
				(Devi, 2017)	asphytochemicalswh ileproteins, carbohydrate (Amadi et al., 2012) Antiflammatory, anti-bacterial and anti-fungal properties. (Okwu et al., 2003; Sofowora, 1982)
10.	Ageratum houstonianum Mill. (Asteraceae)	Leaves	Scabies	Extract leaves is applied against the infected area. (Devi, 2017)	Flavonoids, triterpenoids, steroids, pyrrolizidine alkaloids and benzofuran derivatives (Quijano etal., 1987) Antimicrobial, cytotoxicity. (Doaa et al., 2019)
11.	Albizia odoratissima · (L.f.) Benth. (Mimosaceae)	Bark	Lepros y	Extract bark and leaf is applied against the infected surface. (Devi, 2017)	Gycosides flavonoids Tannins, Phenolic compound, Phyto steroids Saponins (Jayasiri et al., 2015) Antioxidant and antimicrobial activities (Banothu et al., 2017)
12.	<i>Allium sativum</i> L. (Amaryllidaceae)	Bulb	Ringw orm, Scabies , Absces s	Bulb are crushed and applied directly on the infected skin (Saikia et al., 2006)	Alkaloids (7.2 %), tannin (4.8 %), saponin (4.3 %) and flavonoids (2.18 %). (Ali & Ibrahim, 2019) Antimicrobial, antifungal, antiparasitic, antiviral, anti- allergenic, antispasmodic, antihyperglycemic, anti-inflammatory and immunomodulatory

					properties (Rabi
					&Bishayee, 2009)
13.	Aloe barbadensisMill. (Aloaceae)	Leaves	Skin burns	Leaves are crushed and pasted on the burnt places (Saikia et al., 2006)	Phenols, flavonoids, flavonols, proanthocyanidins, tannins, alkaloids and saponins; antioxidant activities (Wintola&Afolayan, 2011)
14.	<i>Alpinia galanga</i> Willd. (Zingiberaceae)	Rhizom e	Ringw orm, scabies ,	Powder made from rhizomes applied against on the infected skin (Devi, 2017)	Flavonoids, terpenoids, saponins, phenolic acids and essential oils (Chudiwal, et al., 2010) Antimicrobial activity, antioxidant activity. (Tang et al., 2018)
15.	<i>Amaranthus</i> <i>spinosus</i> Linn (Amaranthaceae)	Shoot leaf	Boils, burn	Crushed shoot leaf is pasted on the infected skin (Devi, 2017)	Flavonoids, Tannins, Saponins, alkaloids, proteins, and glycosides; Antioxidant, Antimicrobial activity (Amabye, 2015)
16.	Anotis foetida Dalz. (Rubiaceae)	Root	Boils	Root is made paste and applied on the affected skin. (Devi, 2017)	Not reported
17.	<i>Aquilaria agallocha</i> Roxb (Thymelaceae)	Wood oil	Skin disease s, Lepros y	Extracted of oil from wood is used in skin infection (Konwar et al., 2020, Saikia et al., 2006)	furanoid monoterpenoids, methyl esters of higher fatty acids, fatty acids, ketones, aldehydes and alcohols (Talukdar, 2014) Antioxidant, a ntidiabetic, analgesic, antipyretic, anti- inflammatory,

					antihistaminic,
					laxative,
					anticancerous (Alam et al.,2015)
					Alkaloids & Terpenoids;
					× ·
					Cytotoxic (Chang et al., 2003); Phenolics
				Latex is	and aromatic acids
	Argemone			applied in	(Bhardwaj et al.,
18.	mexicanaLinn.	Latex	Scabies	skin	(Bhaidwaj et al., 2012)
10.	(Papaveraceae)	Latex	Scables	infection	Anti-stress and
	(I apaveraceae)			area. (Devi,	antiallergic (Bhalke
				2017)	et al., 2009)
					Anti-inflammatory
					(Sukumar et al.,
					(Bukulilai et al., 1984)
					Alkaloids, Oil, fats,
					glycosides,
				Crushed	flavonoids, tannins
				leaves are	and phenolic (Jeet et
10	Argyreia nervosa		Boils,	Poultice on	al., 2012);
19.	(Burm.f.) Boj.	Leaves	acne	the infected	Antimicrobial
	(Convolvulaceae)			skin. (Devi,	activity, Antiviral
				2017)	activity, Antiulcer
				,	activity (Rao et al.,
					2003)
					Alkaloids,
				Extract of	Flavonoids,
				leaves are	Tannins, Terpenoids
	Artemisia nilagirica			applied	(Santilna et al.,
20.	(Clarke) Pamp.	Leaves	Scabies	against	2014)
20.	(Asteraceae)	Leaves	Scalles	infection	Antioxidant activity
	(Asiciaciac)			portion.	(Santilna et al.,
				(Devi, 2017)	2014), Antibacterial
				(2011, 2017)	activity (Rao et al.,
					2006)
					Sesquiterpene
					lactones,
				Extract of	coumarins, flavones
	A			leaves are	and acetylenes
21	Artemisia	T	G 1 '	applied	(Silva, 2004)
21.	<i>parviflora</i> Roxb.	Leaves	Scabies	against	Antifungal activity
	(Asteraceae)			infection	(Mehrotra et al.,
				portion.	1993), antiprotozoal
				(Devi, 2017)	activity, antihelminthic
L			I		activity, anti-viral,

					respiratory effects, cardiovascular effects (Dhar et al.,
22.	<i>Artocarpus lakoocha</i> Roxb. (Moraceae)	Bark/fr uit/latex	Acne, skin eruptio n, boils, antisep tic boils	The powdery substances made from bark, fruit and latex is applied against skin infection surfaces. (Devi, 2017)	1973) Phenols, flavonoids, tannins; Antioxidant, antimicrobial, antioxidative activities, fungicidal activity (Bhattacharya et al., 2019)
23.	<i>Azadirachtaindica</i> A. Juss (Meliaceae)	Leaves	Boils , small- pox Ringw orm, acne, urticari a	Leaves are made paste and Poultice on the infected skin. Decoction of leaves are applied against affected surfaces. (Devi, 2017)	Phenolic compounds, terpeniods, alkaloids and glycosides, antioxidant capacity. (Mohammad et al., 2013) Antiviral, antibacterial, antifungal, anti- inflammatory, antip yretic, antiseptic and antiparalitic uses (Britto &Sheeba, 2011)
24.	Bambusa arundinacea (Retz.) Willd.	Shoot	Ring worm, alopeci a	Decoction of bamboo shoots are applied against affected surfaces. (Devi, 2017)	Flavone glycosides, phenolic acids, coumarin lactones, anthraquinones and amino acids. (Nayak and Rout, 2005) Anti-inflammatory and antiulcer activity, Antibacterial activity, Protective effects, antifertility activity, Insecticidal activity. (Soni et al., 2013)
25.	Barleria cristata L. (Alba) (Acanthaceae)	Aerial Parts	Skin infectio ns	Aerial parts of plant is crushed and boiled in	Carbohydrates, aminoacids, steroids, saponins, flavonoids, proteins,

				water and the decoction is used against skin infections. (Sajem & Gosai, 2006)	tannins, terpenoids and phenolic compounds (Narmadha& Devaki, 2012) Anti-bacterial activity, anti- diabetic activity, anti-inflammatory activity (Belmaghraoui et
					al., 2018; Singh et al., 2012; Chander et al., 2010)
26.	Barringtonia acutangula · (L.) Gaertn (Lecythidacea)	Stem bark	Syphili s, leprosy	Stem bark is used for the cures (Konwar et al., 2020)	Carbohydrates, saponins, amino acids, flavanoids, phenols, tannins steroids, triterpenoids (Charles et al., 2001). Anti-oxidant and anti-inflammatory activitiy (Inampudi et al., 2014)
27.	<i>Basella alba</i> Linn. (Basellaceae)	Leaf	Boils/ Burn	Leaf extract is applied against boils and burning skin. (Devi,2017)	Vitamins- A, C, thaimine, riboflavin, niacin, and betacyanin, oxalic acid ,flavonoid like acacetin, 4,7- dihydroxy kempferol and 4'- methoxyisovitexin and also phenolic acids (Daniel, 2006; Eliana et al., 2007) Anti-proliferative and anti-angiogenic activity (Kumar et al., 2018)
28.	<i>Basella rubra</i> L. (Basellaceae)	Leaves	Skin burns	Crushed leaves are mixed with cheese and then applied	Anti-proliferative and anti-angiogenic activity (Kumar et al., 2018) Anti-bacterial, anti-

				(Saikia et al., 2006)	hyperglycemic, anti- inflammatory, cytotoxic and anti- proliferative activity (Priya et al. 2015).
29.	<i>Bauhinia acuminata</i> Linn. (Caesalpiniaceae)	Bark and leaves	Lepros y	Paste of bark and leaves are applied against skin infections area. (Devi, 2017).	Phenolic compounds, saponins, flavonoids, oils, and fats, alkaloids, anthocyanoside, steroids, anthraquinone, terpenoids. (Krishna et al., 2015). Anti oxidant activity, Antidiabetic activity, Antibacterial activity (Ray et al., 2017; Phansri et al., 2011)
30.	<i>Bauhinia purpurea</i> Linn. (Caesalpiniaceae)	Bark	Lepros y	Extract of barks are applied against affected area. (Devi, 2017)	Phenolic compounds, tannins, flavonoids, phytosterols saponins, glycosides (Pahwa et al., 2010) Antinociceptive and anti-inflammatory (Zakaria et al., 2009)
31.	<i>Bauhinia variegata</i> Linn (Caesalpiniaceae)	Bark and root	Lepros y	Extract of bark and roots are applied against affected area. (Devi, 2017)	Flavones, flavanol glycosides and tannin, chemoprotective antitumor activity, anti-inflammatory, anti-diabetic, antioxidant. (Sudheerkumar et al., 2015)
32.	Blumea hieracifolia (D. Don) DC (Asteraceae)	Leaves	Scabies	Decoction of leafs is used against affected skin.	Not reported

				(Davi: 2017)	
				(Devi, 2017)	
33.	<i>Brassica juncea</i> (L.) Czern. (Brassicaceae)	Seed oil	Scabies	The extracted oil is mixed with liquor of Cynodondact ylon, Curcuma longa and then by adding water the mixture is heated and applied on the infected portion. (Saikia et al., 2006)	Tannin, terpenoid, saponin, flavonoid, alkaloid, phenols and cardiac glycoside. (Ogidi et al., 2019) Antioxidant, anti- diabetic, hyperglycemic, hypoglycemic (Dubie et al., 2013)
34.	<i>Buddleja asiatica</i> Lour (Buddlejaceae)	Leaves	Scabies , wart, acne	Extract of leaves are applied against affected area. (Devi, 2017)	Flavonoids (Fathy et al., 2006), steroids, iridoid glucosides, phenylpropanoids, triterpene, Saponin, fl avonoids, Mannitol, sucrose. (El-Domiaty etal.,2009) Antibacterial, antifungal, antispasmodic (Ali et al., 2011)
35.	<i>Buddleja paniculata</i> Wall. (Buddlejaceae)	Root	Skin eruptio n, sore	Extract of roots are applied against affected area. (Devi, 2017)	Not reported
36.	Calotropis procera (Willd.) R.Br. (Asclepiadaceae)	Root & Latex	Ringw orm Lepros y	Juice Extract from root and latex is applied against infected skin. (Devi, 2017)	Terpenoids, flavonoids, saponins, steroids and cardiac glycosides; antibacterial, antioxidant and analgesic effect (Uddin et al., 2012)
37.	Canariumbengalens	Resin	Urticar	Extract resin	Phenols,

	<i>e</i> Roxb (Burseraceae)		ia	is used against Urticaria.	flavone glycosides, cytotoxicproperty (Le et al. 2012).
38.	<i>Capparis tenera</i> Dalz. (Capparidaceae)	Leaves	Acne, scabies	(Devi, 2017) Decoction of leaf is applied against Acne and Scabies.	Not reported
39.	<i>Cassia fistula Linn.</i> (Caesalpiniaceae)	Root & Bark	Ringw orm	(Devi, 2017) Decoction of root and bark is used against infected portion of skin. (Devi, 2017)	Tannins, flavonoids and glycosides (Verma, 2016) Antimicrobial activity, Anti- Fungal Activity, Antioxidant activity, anti-inflammatory, Anti-fertility, Antipyretic activity (Sivanesan&Kuppan nanGobianand, 2010; Duraipandiyan&Ign acimuthu, 2007; Ilavarasan et al., 2005; Yadav & Jain, 1999; Bhakta et.al., 1998)
40.	<i>Celastrus</i> <i>paniculatus</i> Willd. (Celastraceae)	Seed	Skin irritatio n, allergy.	Seed paste is applied for the treatment of Skin irritation, allergy. (Pradhan & Badola,20 08)	Alkaloids, sterols, celapanine, celapagine, celapagine, celastrine stearic acid (Debnath et al.,2012) Anti-fungal activity, anti-arthritic activity, Anti- malarial activity (Vonshak et al., 2003)
41.	Cinnamomum tamala (Buch Ham.) Nees. &Eberm. (Lauraceae)	Leaves	Scabies	Leaves are rubbed on the body surface of the scabies affected	Polyphenoles, flavonoids, tannins, alkaloids and saponins (Dandapat et al., 2014) Antimicrobial

				surface. (Pradhan	Activity (Hassan et al., 2016),
				& Badola,20 08)	
42.	<i>Commelinabenghal</i> <i>ensis</i> Linn (Commelinaceae)	Entire Plants	Lepros y, boils, burn	Decoction of entire plants is used against infected area of skin. (Devi, 2017)	Oils and fats, alkaloids, lactones, courmarins, triterpenoids, steroids, resins, reducing agents, phenols and tannins, amino acids, quinones, flavonoids, astringents, saponins. (Cuellar et al., 2010) Anti-Inflammatory Activity, Analgesic Activity (Hossain et al., 2014), Anti- microbial Properties (Kunle & Egharevba, 2009)
43.	<i>Coriandrum</i> <i>sativum</i> Linn. (Apiacea)	Leaves	Acne	Crushed of leaves made paste and then applied on the infected skin. (Devi, 2017)	Essential oil, tannins, and terpenoids, reducing sugars, alkaloids, phenolics, flavonoids, fatty acids, sterols and glycosides. (Chauhan et al., 2012; Sreelatha&Inbavalli, 2012; Pandey et al., 2011) Antidepressant effect, Antibacterial, antifungal, anthelmintic and insecticidal effects, Anxiolytic effect. (Sudha et al., 2011; Oudah and Ali, 2010; Harsha SN and Anilakumar, 1539)

44.	<i>Croton caudatus</i> Geisel. (Euphorbiaceae)	Leaves	Skin eruptio n	Extract od leaves and roots are used against skin eruption. (Devi, 2017)	Alkaloids, terpenoids, steroids and their glycosides, cardiac glycosides, phenols, coumarins, flavonoids. (Farnsworth ,1996; Kokate,1994) Antinociceptive, anti-inflammatory and antipyretic effect. (Neeharika et al., 2012)
45.	<i>Curculigoorchioide</i> sGaertn. (Amaryllidaceae)	Rhizom e	Acne, urticari a	The powdery substances made from rhizome are applied on infected skin. (Devi, 2017).	Antioxidant properties (Venukumar&Latha nm, 2002; Wu et al., 2005), anti- inflammatory and hepatoprotective activities (Rao & Mishra, 1996a, 1996b). Tricontane, linoleic, linolenic, arachidic, oleic, and palmitic acids, curculigol, cycloartenol, sitosterol and stigmasterol (Chatterjee & Pakrashi, 2001)
46.	<i>Curcuma longa</i> L. (Zingiberaceae)	Rhizom e	Small pox, chicke n pox, scabies , facial, boils	Rhizome paste is applied on the infected skin. (Devi, 2017).	Phenolic diketone, curcumin (Ravindran et al., 2007) Antimicrobial Effects, Hepatoprotective Effects, Antioxidant Effects (Dujic et al., 2009; Park et al., 2000; Bernard et al., 1982).
47.	<i>Curcuma zedoaria</i> Roxb. (Zingiberaceae)	Rhizom e	Skin disease s	Fresh rhizome paste is applied to	Epicurzerene, curdione, and 5- isopropylidene-3, 8- dimethyl-1(5H)-

				cure skin disorders. (Pradhan & Badola, 2008).	azulenone (9.2%) (Lai et al., 2004) Anti-inflammatory activity, Antimicrobial and antifungal activity, Anticancer, Antiallergic activity, Antiulcer activity.
48.	<i>Datura metel</i> Linn. (Solanaceae)	Leaf	Ringw orm, boils, wart	Decoction of Leaf is applied against the infected portion. (Devi, 2017).	(Wilson et al., 2005; Seo et al., 2005). Alkaloids, tannins, phlorotannins, cardiac glycosides, carbohydrates, flavonoids, amino acids, and phenolic compounds (Ratan et al., 2011). Antibacterial, Anti- fungal, Hypoglycemic, Anti-hyper glycemic (Okwu and Igara,
49.	Datura stramonium Linn. (Solanaceae)	Leaf	Boils	Leaf paste is applied against boils. (Devi, 2017)	2009). Glycosides, saponins, flavonoids, alkaloids, phenol, phlobatanins, Hyoscine and hyoscyamine. (Afshaetal. 2016; Sundarmoorthy et al., 2014) Anticancer, Antimicrobial, Antioxidant, Antifungal Effect. (Afsha et al., 2016)
50.	<i>Emblica officinalis</i> Gaertn (Euphorbiaceae)	Fruit	Scabies , Wrinkl ed skin	The extracted juice is mixed with sugar and then taken orally The paste	Alkaloids phyllantine, amlic acid, chebulagic acid, chebulic acid, linolenic acidtannin (Khan, 2009). Hypolipidemic activity,

				1.6	
				made from	antibacterial
				fruit is	activity, antioxidant
				applied on	activity& antifungal
				theskin	activity.
				(Saikia et al.,	(Santoshkumar et
				2006)	al., 2013; Hossain et
					al., 2012).
				Paste of	
				crushed bark	
	Entada			or Juice is	
	pursaethasubsp. sin		Skin	smeared to	
51.	ohimalensis Grierso	Bark	disease	cure skin	Not Reported
011	n & D. G. Long,	Durn	s	diseases.	riorreponea
	(Mimosaceae)		3	(Pradhan	
	(withosaceae)			& Badola,	
				2008)	Valatila aila
					Volatile oils,
				Crushed of	aliphatic and
					aromatic compound
	Eryngium foetidum	** 71 1	D'	whole plant	(et al., 2017)
52.	Linn.	Whole	Ringw	is used	Anti-oxidant,
	(Apiaceae)	plants	orm	against	Antimicrobial, anti-
				ringworm.	proliferative
				(Devi, 2017)	activities
					(Chandrika et al,
					2016)
				Leaf paste is	Coumarin, β-
	Eupatorium			use d for the	sitosterol, β-
53.	birmanicum DC	Leaf	Acne,	treatment of	sitosterol-D-
55.	(Asteraceae)	Lear	burn	acne and	glucoside,
	(Asteraceae)			burn. (Devi,	Antifungal activity.
				2017)	(Devi et al., 2007)
					Steroids, triterpenes,
1					alkaloids,
1					flavonoids, tannins,
					diterpenes,
				T C' · ·	saponins, glycosides
1				Leaf juice is	Lactones, diterpenes
	Eupatorium		Wart	used for the	(Patel et al., 2011)
54.	odoratum Linn.	Leaf	and	treatment of	Antioxidant
1	(Asteraceae)	Loui	sore	wart and	Properties, Anti-
	(Tisteraceae)		5010	sore. (Devi,	Oxidant Activity,
				2017)	Anti-Inflammatory
					Activity, Hemostatic
					Activity (Afolobi et al
					(Afolabi et al.,
55	El.	Lef	W74	Looflatari	2007).
55.	Euphorbia	Leaf	Wart	Leaf latex is	Diterpenes,

	antiquorum Linn. (Euphorbiaceae)		Boils	applied to reduce Skin eruption.	Triterpenes, Flavonoids (Noemi et al., 2004).
56.	<i>Euphorbia neriifolia</i> Linn. (Euphorbiaceae)	Latex	Skin eruptio n	(Devi, 2017) Latex juice is applied to reduce Skin eruption. (Devi, 2017)	Alkaloids, flavonoids, glycosides, phenols, saponins, tannins, terpenoids. (Bigoniya & Rana, 2010; Sharma & Pracheta, 2013; Bigoniya & Rana, 2017) Antioxidant, Antimicrobial, Anti- inflammatory/anti- thrombotic, Cytotoxicity. (Bigoniya& Rana, 2017; Bigoniya& Rana, 2010; Bigoniya & Rana, 2009).
57.	<i>Euphorbia thymifolia</i> Linn. (Euphorbiaceae)	Leaf	ringwo rm	Crushed of leaf is used for the treatment of Urticaria and ringworm. (Devi, 2017)	Alkaloids, Cinnamic acid derivatives, Phenolics (Khare, 2007) (Lee et al., 1990) Antibacterial, Anti- inflammatory, Antioxidant, Antimicrobial, Antifungal (Nagaraju et al., 2012; Prasad & Bisht, 2011; Mon et al., 2008; Khare, 2007).
58.	<i>Ficus glomerata</i> Roxb. (Moraceae)	Latex	Boils, skin eruptio n, leprosy	Paste of latex is used to cure boils and decoction of Fruit/ root/ bark is applied against Skin	Alkaloids, anthraquinone, cardiac glycoside, Coumarin, flavonoids, steroids, phenol, saponin, tannins; antidiuretic, hypolipidemic, antcholinesterase

				eruption, leprosy.(Dev i 2017)	and anthelmintic. (Deep et al., 2020)
59.	<i>Ficus hispida</i> Linn. (Moraceae)	Leaf & bark	Ringw orm	Decoction of Leaf and bark is applied against ringworm. (Devi, 2017)	Alkaloids, sterols, phenols, flavonoids, glycosides, saponins, terpenes, lupeol acetate, β- amyrine acetate, β- sitosterol. (Ghosh et al., 2004) Anti-inflammatory, antipyretic, antidiarrheal activity. (Sivaraman & Muralidharan, 2010).
60.	<i>Ficus palmata</i> Forks. (Moraceae)	Latex	Boils	Latex juice is applied to reduce Boils. (Devi, 2017)	Furanocoumarin derivatives, vanillic acid and psoralenoside methy l ether; Antiulcer activity, Antioxidant activity (Alqasoumi et al., 2014).
61.	<i>Ficus religiosa</i> Linn. (Moraceae)	Bark	Boils, scabies	Decoction of bark is applied against infected skin portion. (Devi, 2017)	Flavonoid, linoleic acid, phenolic, Phytosterols, tannins (Swami & Bisht, 1996) Antibacterial activity, Antioxidant activity, hypoglycemic activity (Bushra &Muhraf, 2009; Valsaraj et al., 1997; Ambike& Rao, 1967).
62.	Ficus semicordata F. Ham (Moraceae)	Latex	Boils	Latex is applied to reduce boils. (Devi, 2017; Pradhan & Badola, 2008).	Alkaloids Flavonoids Tannin, Glycoside Phenolic compound, Steroid, Saponin (Shashi et al., 2019); Anti- oxidant, anti- bacterial activity. (Rao et al., 2011,

					2012).
63.	<i>Foeniculum vulgare</i> Mill. (Apiaceae)	Whole plant	Scabies	The plant is crushed along with <i>Coriandrum</i> <i>sativum</i> and mixed with ghee and sugar and orally taken. (Saikia et al., 2006).	Cardiac glycosides, flavonoids sterols, Saponins, triterpenes, coumarins and volatile oils (WHO, 2001; Tanira et al., 1996). Gastrointestinal effects, Antimicrobial effect, Antiinflammatory and analgesic effects (Tognolini et al., 2007, Elizabeth et al., 2014, Salami et al., 2016).
64.	<i>Fumaria vaillantii</i> Loisel. (Papaveraceae)	Whole plant	Boils	Paste of whole plant is used to reduce boils. (Devi, 2017)	Anthelmintic, antipyretic, antidiarrhoeal (Hordgen et al., 2003; Gilani et al., 2005; Khattak et al., 1985) Alkaloids, flavone, biculline, cryptopine, fumariline, fumaritine, perfumine, paprarine, fumaric acid (Kurma & Mishra,1997)
65.	<i>Garuga pinnata</i> Roxb. (Burseraceae)	Leaves	Ringw orm	Leaves are crushed and directly applied on the skin (Saikia et al., 2006)	Alkaloids, Terpenoids, saponin, tannin, glycosides, phenolic compounds; Anti microbial activity (Ramaraju& Emmanuel,2013)
66.	<i>Glycosmis</i> <i>pentaphylla</i> (Retz.) Correa (Rutaceae)	Leaves	Urticar ia, scabies	Extract of leaves are applied on the affected	Alkaloids, coumarins, flavonoids & terpenoids.

				skin. (Devi,2017)	(Rahmani et al.,
				(Devi,2017)	1998; Chakravarty et al., 1996; Ono et
					al., 1995; Tian et al.,
					1995)
					Antibacterial
					activity, Antifungal
					activity, Antioxidant
					activity,
					Hepatoprotective
					activity (Abbas et
					al., 2011; Amran et
					al., 2011; Nayak et
					al., 2011; Jeeshna et
					al., 2009).
					Flavonoids,
					saponins, terpenoids
				Extract of	and cardiac
	Gmelina arborea			leaves are	glycosides (Chugh
67.	Roxb.	Leaves	Boils	applied to	et al., 2012).
	(Verbenaceae)			cure Boils	Antioxidant Anti-
	· · · · ·			(Devi, 2017)	diabetic activity,
					Anti-bacterial
					activity (Ghareeb et
				Extract of	al., 2014). Flavonoids, phenol
	Goniothalamus		Ringw	leaves are	and tannins;
	sesquipedalis		orm,	applied	Antibacterial
68.	Hook.f & Thorn.	Leaves	scabies	against	activity (Konsam et
	(Annonaceae)		, wart,	affected skin.	al., 2015)
	(boils	(Devi, 2017)	,,
				Paste of	Sinapic, ferulic, p-
				Flower/ seed	hydroxybenzoic
	Gossypium	Flower	Scabies	are applied	acids, quercetin, and
69.	arboreum Linn.	& Seed	, sore	against	rutin; Antioxidant
	(Malvaceae)	u suu	, 5010	Scabies,	activity
				sore. (Devi,	(Kazeem et al.,
				2017).	2013)
					Flavonoids,
				Deve (alkaloids, and
			Contine	Decoctions	steroids; Anti-
	Gynocardiaodorata		Scabies	of fruits are applied on	inflammatory,
70.	R.Br	Fruit	, wart, urticari	the affected	analgesic and antipyretic effects
	(Flacourtiaceae)		a	skin. (Devi,	Flavonoids,
			а	2017)	quercetin.
				2017)	(Rupeshkumar et al.,
					2014; Khan et al.,
			I		2017, Kilali et al.,

					2013, Shrish et al, 2014).
71.	<i>Hedychium</i> <i>spicatum</i> Ham. (Zingiberaceae)	Root	Small pox, burn	Crush of root stock is used for the treatment of Small pox and burn. (Devi, 2017)	Saponins, Labdane diterpenes; Nootropic effects, memory restorative activity, Anti- inflammatory activity, Anticancer, cytotoxic properties (Shete & Bodhankar, 2010; Reddy et al., 2009, 2009; Srimal et al., 1984)
72.	Heliotropium indicum Linn. (Boraginaceae)	Leaves	Boils, insect bite	Leaf paste is applied on the affected skin to reduce Boils and insect bite. (Devi, 2017)	Volatile oil, Indicine-N-oxide, esters, terpenes; antitumor and antileukemic activities (Machan et al., 2006; Yasukawa et al., 2002; Kupchan et al., 1976).
73.	<i>Hemidesmus</i> <i>indicus</i> (L) R. Br. (Asclepiadaceae)	Root & Leaves	Skin eruptio n, Sore	Decoction of root Stalk leaf is used for the treatment of Skin eruption Sore. (Devi,2017)	Alkaloids, steroids, terpenoids, flavonoids, saponins, phenolic compounds, lignin; antiinflammatory, antipyretic, antinociceptive, antioxidant, antithrombotic, (Saravanan & Nalini, 2007a)
74.	Hiptagebenghalensi s Linn. (Kurz)(Malpighiace ae)	Leaves	Sore, acne, urticari a, scabies	Leaf paste is applied against affected skin to reduce Sore, acne, urticaria and scabies.	Triterpenes and steroid compounds; Anti-inflammatory effects (Hsu et al., 2015)
75.	Hodgsoniamacroca rpa (Blume) Cogn. (Cucurbitaceae)	Flower/ fruit /Leaf	Eczem a, acne, sore	Decoction/Pa ste of Flower/fruit	Saponin & cytotoxicity. (Rizwana et al.,

			Wart	/Leaf is used	2010)
				for the treatment of Eczema, acne, sore	,
				and wart.	
-				(Devi, 2017)	Alkaloids, tannins,
76.	<i>Impatiens</i> <i>balsamina</i> Linn. (Balsaminacea)	Leaves	Ringw orm	Leaf juice is applied against ringworm. (Devi, 2017)	phlobatannins, saponins, carbohydrates, sterols and terpenoids, antioxidant activity (Kumaresan et al., 2019), Antibacterial and antifungal. (John et al., 2013).
77.	<i>Jasminum multiflorum.</i> (Burm. f.) Andrews. (Oleacea)	Leaves	Sore	Paste of leaf is used to reduce sore. (Devi, 2017)	Alkaloids, coumarins, flavonoids, tannins, terpenoids, glycosides, anthocyanins, phlobatinins, essential oil and saponins. (Dubey et al., 2016; Patil et al., 2012) Antioxidant effect, Insecticidal effect, antimicrobial effect, (Dubey et al., 2016; Raveen et al., 2015; Rama &Ampati, 2013)
78.	Jasminum nervosum Lour. (Oleaceae)	Root	Ringw orm	Extract of root is applied to reduce ringworm. (Devi, 2017)	Caffeoyl phenylpropanoid glycosides, monoterpenoid glycoside, poliumoside; Antioxidant activities, cytotoxic activities (Guo et al., 2014); Anti-inflammatory activity, Anti-tumor

					activity (Calixto et al., 2003).
79.	Jasminum subhumil e W.W.Sm. (Oleaceae)	Root	Ringw orm	Extract of root is applied to reduce ringworm. (Devi, 2017)	Not Reported
80.	<i>Jatropha curcas</i> Linn.(Euphorbiacea e)	Latex & Seed	Sore and wart	Juice extract from Latex and Seed is used for the treatment of Sore and wart. (Devi,2017)	Terpenes, cyclic peptides alkaloids, lignans & flavonoids (Devappa et al., 2010a; Khafagy et al. 1977) Antioxidant activity, Antidiarrhoeal activity, Anti- infammatory activity (Igbinosa et al., 2011; El Diwani et al., 2009).
81.	<i>Justicia adhatoda</i> L. (Acanthaceae)	Leaf	Absces ses Scabies , wart, urticari a	Leaf paste mixed with sugar and paste to the affected area.(Burago hain and Konwar, 2007) Leaf power is applied to the affected area. (Devi, 2017)	Alkaloids, cardiac glycosides, tannins, steroids saponins; anti-microbial, antifungal, antioxidant and heomolytic activity (Aziz et al., 2017)
82.	<i>Lagenariasiceraria</i> (Mol.) Standl. (Cucurbitaceae)	Leaf	Acne, alopeci a	Juice of leaf and is applied to cure Acne and alopecia. (Devi, 2017)	Flavonoids, Volatile, Triterpenes. (Chatterjee et al., 2009; Chen et al., 2008) Antimicrobial activity, antistress and adaptogenic property (Lakshmi & Sudhakar, 2009; Goji et al., 2006)

83.	<i>Lawsoniainermis</i> L (Lythraceae)	Leaf	Wrinkl ed skin	The extracted leaves is applied directly on the skin (Saikia et al., 2006)	Napthoquinone, isoplumbagin, triterpenoids, Hennadiol, aliphatics (3-methyl nonacosan-1- ol) (Dev, 2006) Antiviral Activity, anticancer Activity (Chaib et al., 2015; Hussain, 2010)
84.	<i>Leucas aspera</i> Spreng. (Lamiaceae)	Leaf	Skin eruptio ns, insect- bites, scabies , eczema , psorias is	Leaf Juice is applied to reduce Skin eruptions/ insect- bites/scabies/ eczema/ psoriasis. (Devi, 2017)	Oleanolic acid, ursolic acid and 3- sitosterol (Chaudhury & Ghosh, 1969) Antinociceptive, antioxidant and cytotoxic activities (Rahman et al., 2007)
85.	Lindernia crustacea (L.) F. Muell. (Scrophulariaceae)	Whole plants	Boils, urticari a, ringwo rm, sore	Whole plants is made Poultice and applied against Boils/ urticaria/ring worm/sore.(Devi, 2017)	Diterpene, anthraquinones, phenylpropanoid glycosides, flavonoids, lignan glycoside, cinnamic acid derivatives, anti-EBV activity. (Tsai et al., 2020)
86.	<i>Ludwigia</i> clavelliana Gomez de la Maza & Molinet (Euphorbiaceae)	Whole plants	Burn, urticari a	Whole plant made is Poultice and applied to cure skin burn/urticaria . (Devi, 2017)	Not Reported
87.	<i>Lycopodium</i> <i>cernuum</i> Linn. (Lycopodiaceae)	Whole plants	Skin eruptio n	Whole plant made is Poultice and applied to cure skin eruption. (Devi, 2017)	Not Reported
88.	Lycopodium clavatum Linn.	Whole plants	Skin eruptio	Whole plant made is	Anti-inflammatory, antioxidant, and

	(I voorodiagoo)		r	Poultice and	antimicrobial
	(Lycopodiaceae)		n	Poultice and applied to cure skin eruption. (Devi, 2017)	antimicrobial actions (Orhan et al., 2007) Alkaloids and triterpenoids (Wang et al., 2012)
89.	<i>Lyonia ovalifolia</i> (Wall.) Drude. (Ericaceae)	Young leaf/ bud/ flower	Skin allergy	Juice made from Young leaf/ bud/ flower is used to reduce skin allergy. (Devi, 2017)	Phenols, flavonoids, glycosides, tannins, xanthoprotein, quinone, emodin, saponins and resin (Karki et al., 2021) Antibacterial activity (Negi et al., 2012)
90.	<i>Mallotus</i> <i>philippinensis</i> MuellArg. (Euphorbiaceae)	Fruit & Leaf	Scabies , ringwo rm and Boils	Powdery substances made from Fruit and Leaf is used for the treatment of Scabies, ringworm and Boils. (Devi, 2017)	Flavonoids, steroids, terpenoids, tannins and saponins (Moorthy et al., 2007) Antioxidative potentiality and antibacterial activity (Sharma et al., 2017)
91.	<i>Manihot esculenta</i> Crantz. (Euphorbiaceae)	Leafs	Wart, sore, eczema , scabies	Extract of leafs is applied against Wart, sore, eczema, scabies. (Devi, 2017)	Alkaloids, flavonoids, tannins, steroids, triterpenoids; antioxidant and cytotoxicity (Chinnadurai et al., 2019)
92.	<i>Melanorrhoea</i> <i>usitata</i> Wall. (Anacardiacea e)	Bark	Skin allergy, leprosy	Extract of Bark is used to cure Skin allergy/lepro sy.(Devi, 2017)	Not reported.
93.	Melastomamalabath ricum Linn. (Melastomaceae)	Bark/le af/ root	Skin eruptio n, antisep tic	Extract of Bark/leaf/ root is used for the treatment of Skin eruption/anti	Kaempferol-3- O - β - D-xyloside, quercetin-3- O - α -L- rhamnosyl-(1 \rightarrow 2)- β -D-galactoside, flavan-3-ol, 4'- methylpeonidin-7-

					0.0 D -1 '1
				septic. (Devi, 2017).	O - β -D-glucoside, anthocyanins, and tannins (Lin, 2005) Antioxidant Activity; antiviral Activity (Susanti et al., 2007)
94.	<i>Melia azedarach</i> L. (Meliaceae)	Leaves	Carbun cle	The leaves boiled water is used to wash theinfected place and then crushed leaves ismixed with ghee and then applied on the infected skin (Saikia et al., 2006)	Flavonoids, terpenoids, steroids, acids and anthraquinones, and melianol meliacin, meliacarpin, meliartenin vanillin (Sen & Batra, 2015) Antimalarial activity, antiprotozoa l activity, antiprotozoa l activity(Lee et al., 2007; Moursi et al., 1984)
95.	<i>Melothria</i> <i>heterophylla</i> (Lour.) Cogn. (Cucurbitaceae)	Leaf	Burn, acne, wart	Extract of leaf is used for the treatment of Burn, acne and wart. (Devi, 2017)	Antitumor and Antioxidant Activity (Mondal et al., 2013)
96.	<i>Meyna spinosa</i> Roxb. (Rubiaceae)	Fruit	boils	Extract of fruit is used to reduce boils. (Devi, 2017).	Carbohydrates, aminoacids and peptides phytosterols carotenoids, polyphenols alkaloids; Antibacterial activity (Bhaumik et al., 2015).
97.	<i>Microcos paniculata</i> Linn. (Tiliaceae)	Bark, Leaf & fruit	Small pox, eczema , urticari a	Extract of Bark, leaf and fruit is used for the treatment of Small pox, eczema and urticaria. (Devi, 2017)	Flavonoids, Saponins, Triterpenoids, antinociceptive and antidiarrheal Activities (Moushome et al., 2016)

98.	<i>Mikania micrantha</i> Kunth. (Asteraceae)	Leaf	Ringw orm, boils, wart	Leaf paste is applied against Ringworm, boils, and wart. (Devi, 2017)	Coumarins and derivatives, sesquiterpenes, sesquiterpenes lactones, diterpenes, phytosterols/terpeno ids and flavonoids. (Gasparetto et al., 2010). Antimicrobial activity, and cytotoxic activity (Saikia et al., 2020)
99.	<i>Millettia pachycarpa</i> Benth. (Fabaceae)	Root	Scabies , urticari a	Decoction of root is used for the treatment of Scabies, urticaria. (Devi, 2017)	Isoflavonoids, triterpenoid, Flavonoids (JH et al., 1999, Singhal et al., 1980, Hui et al., 1973) Anticholinesterase activities, Antiestrogenic activity (Huang et al., 2012; Okamoto et al., 2006)
100.	<i>Mimosa pudica</i> Linn. (Mimosaceae)	Root	boils	Root paste is smeared externally to cure boils. (Pradhan & Badola, 2008)	Terpenoids, flavonoids, glycosides, alkaloids, quinines, phenols, tannins, saponins, and coumarins (Gandhiraja et al., 2009) Antifungal activity, Antivenom activity, Antihepatotoxic and antioxidant potential (Nazeema&Brindha, 2009; Mahanta & Mukherjee, 2001)
101.	<i>Mirabilis jalapa</i> Linn. (Nyctaginaceae)	Leaf	Boils	Leaf paste is applied for the treatment of boils. (Devi, 2017).	Triterpenes and flavonoids (Siddiqui et al, 1990); Anti- microbial activity, anti-oxidant activity (Oladunmoye 2012; Dimayuja et al

					1998)
102.	<i>Murdania nudiflora</i> (Linn.) Brenan (Commelinaceae)	Whole Plant	Burn, urticari a, sore	Extract of whole plants to cure skin burns, urticaria, and sore. (Devi, 2017).	Alkaloides, Flavanoides, Tannins, Saponins, analgesicactivity (Patwari et al., 2014)
103.	<i>Mussaenda frondosa</i> Linn. (Rubiaceae)	Root	Lepros y	Extract of root is applied against Leprosy disease .(Devi, 2017)	Alkaloids, tannins and phenolic compound, carbohydrate, steroids, and flavonoids; Diuretic activity (Sreelakshmi et al., 2015)
104.	<i>Nerium oleander</i> Linn. (Apocynaceae)	Root	Boils Wart, insect- bites Wart	Root paste is applied to reduce boils and extract of leaf and root bark is used for the treatment of wart. (Devi, 2017)	Glycosides, neriin and, alkaloid (Jayabalan & Rjaranthinam, 1995) Anticancer activity, Anti-inflammatory activity (Nagourne et al., 2001; Judith et al., 2001).
105.	<i>Nicotiana tabaeccum</i> Viv. Vaihlo. (Solanaceae)	Whole	skin infectio ns	Entire plant is crushed and applied to the infected area 3 times a day. (Sajem & Gosai, 2006).	Not reported
106.	Ocimum sanctum L. (Lamiaceae)		Urticar ia Ringw orm	The extracted juice is mixed with <i>Curcuma</i> <i>longa</i> and orally taken. The paste made from <i>Ocimum</i> <i>sanctum</i> and <i>Curcuma</i>	Flavonoids, phenolic compounds, volatile oil (Yanpallewar et al., 2004; Gupta et al.,2002; Shah & Qadry, 1988) Antimicrobial activity, Antioxidant activity (Madhuri et al., 2010; Geeta et al., 2001)

			longa is added with Salt and rubbedonthe infected skin. (Saikia et al., 2006).	
107.	<i>Opuntia dillenii</i> (KerGawl) Haw Cactaceae	Boils, burn	Poultice of Phylloclade is applied against boils and burns. (Devi, 2017)	Inflammatory, antifungal, anticancer (Katanic et al., 2019; Kumaar et al., 2013; Park et al. 2001)
108.	<i>Pandanus</i> <i>odoratissimus</i> Linn. (Pandanaceae)	Lepros y, small pox, scabies	Leaf paste is used to cure Leprosy/ small pox/scabies. (Devi, 2017)	Alkaloids, flavanoids, glycosides, , steroids, terpenoids, saponins and tannins; Anti-inflammatory, anti-convulsant (Adkar et al., 2014; Panda et al., 2008).
109.	Parkia roxburghii G. Don. (Mimosaceae)	Wart	Extract of Bark/ leaf is used for the treatment of wart. (Devi, 2017)	Diabetes, α- Glucosidase, α- Amylase, Anti- hyperglycemic (Sheikh et al., 2016)
110.	Pavetta indica Linn. (Rubiaceae)	Boils	Leaf/root Poultice is used against to reduce boils. (Devi, 2017)	Anti-malarial activity, antimicrobial activity (Gupta et al., 2013; Sandra et al., 2009)
111.	Phlogacanthus thyrsiflorus Nees (Acanthaceae)	Small pox, scabies	Inflorescence Paste is used to reduce Small pox/ scabies. (Devi, 2017)	Analgesic, anti- inflammatory, and anti-oxidant activities (Das et al., 2015)
112.	Phyla nodiflora (Linn.) Greene (Verbenaceae)	Boils	Leaf Poultice is applied to reduce boils. (Devi, 2017)	Anti-inflammatory, analgesic, antipyretic, antiatherosclerotic, antidandruff, antibacterial, hepatoprotective,

				antiurolithiatic, antimicrobial, and antioxidant abilities (Janki et al., 2011; Dodoala et al., 2010)
113.	Phyllanthus urinaria Linn. (Euphorbiaceae)	Lepros y, burn	Leaf juice is applied against Leprosy/ burn. (Devi, 2017)	Polyphenols, phenylpropanoid Anti-oxidative activities, anti- diabetic effects (Gunawan-Puteri et al., 2012; HY et al., 2011; Chularojmontri et al., 2005)
114.	Pieris ovalifolia (Wall.) D. Don (Ericaceae)	Inflam mation, irritatio n and allergie s.	Leaves crushed or mixed with water and then rubbed on the body to reduce. (Pradhan & Badola, 2008)	Not reported
115.	Plantagoerosa Wall ex Roxb. (Plantaginaceae)	Boils	Roast of seed and leaves are used for the treatment of boils. (Devi, 2017)	Antiviral and Immunoenhancing effect, Antitumoral effect (Oto et al., 2011, Ozaslan et al., 2007)
116.	<i>Plumbago indica</i> Linn. (Plumbaginaceae)	Wart, leprosy	Paste of root is applied against wart and leprosy. (Devi, 2017)	Alkaloids, flavonoids, steroids; Antimicrobial activity, antibiotics (Bisignano et al., 1996)
117.	<i>Plumbago zeylanica</i> Linn. (Plumbaginaceae)	Wart, boils	Decoction of root is used to reduce wart and boils. (Devi, 2017)	Alkaloids, phenols and flavonoids; Antidiarroheal activities; antiallergic, insecticidal, antidiabetic, hepatoprotective, hypolipidaemic (Aquil et al., 2006;

					Dai et al., 2004; Olagunju et al., 1999; Kubo et al., 1983).
118.	Plumeria acuminata W. T. Aiton (Apocynaceae)	Root bark/lat ex	Sore, Urticar ia.	Decoction of Juice of root bark/latex is applied against sore and Urticaria. (Devi, 2017)	Anti-inflammatory activity (Thirumagal &. Geetha, 2019)
119.	<i>Polygonum</i> <i>chinense</i> Linn. (Polygonaceae)	Leaf	Acne, wart	Leaf paste is applied against Acne and wart. (Devi, 2017)	Terpenoids, alkaloids, flavonoids, tannins, steroids and glycosides; Antimicrobial, antioxidant and cytotoxic activities in vitro (Ezhilan et al., 2012; Srividya et al., 2012; Thuan et al, 2012; Tsai et al., 1998)
120.	Polygonum hydropiper Linn. (Polygonaceae)	Leafs& Root	Boils, sore	Extract of leaf/root is applied against Boils/sore. (Devi, 2017)	Flavonoids, superoxide anion, & xanthine oxidase; Antifungal Activity, antioxidant Activity (Haraguchi et al., 1992)

Conclusion: The information of medicinal plants by the people of northeast India signifies a well diverse with its culture and tradition. In the present study we have recorded a total of 102 species under 58 families used by the people of Northeast India for the treatment of dermatological disorders and ascosmetics. Some of the plants were found to have more then twice uses in different skin diseases. However, additional extensive ethnobotanical documentation and ethnopharmacological study is needed to study within the reigion which may lead to the discovery of plants and compounds for skin diseases.

References

- Dhar, M.L., Dhar, M.M., Dhawan, B.N., Mehrotra, B.N., Srimal, R.C. & Tandon, J.S.1973. Screening of Indian Plants for Biological Activity: Part IV. Indian Journal of Experimental Biology, 11: 43-54.
- Tognolini, M., Ballabeni, V., Bertoni, S., Bruni, R., Impicciatore, M. & Barocelli, E., 2007. Protective effect of *Foeniculum vulgare* essential oil and anethole in an experimental model of thrombosis. *Pharmacological research*, 56(3): .254-260.
- Afsha, P., Vijula, K., Avinash, K.V., Ravishankar, M. & Leeladhar, D.V. 2016. Medicinal values of Datura: A synoptic review. *International Journal of Green Pharmacy*, 10(2): 77-81.
- Akinmoladun, A. C., Ibukun, E. O. & Dan-Ologe I. A. 2007. Phytochemical constituents and antioxidant properties of extracts from the leaves of *Chromolaena odorata*. Scientific Research and Essay. 2 (6):191-194
- Alam, J., Mujahid, M. & Badruddeen, 2015. An insight of pharmacognostic study and phytopharmacology of *Aquilaria agallocha*. *Journal* of *Applied Pharmaceutical Science*, 5: 173–181.
- Ali, F., Ali, I., Khan, H. U., Khan, A.-u. & Gilani, A. H. 2011. Studies on Buddlejaasiatica antibacterial, antifungal, antispasmodic and Ca++ antagonist activities. African Journal of Biotechnology, 10(39): 7679-7683
- Alqasoumi, S. I., Basudan, O. A., Al-Rehaily, A. J., Abdel-Kader, M. S. 2014. Phytochemical and pharmacological study of *Ficus palmata* growing in Saudi Arabia. *Saudi Pharmaceutical Journal*, 22(5): 460-471
- Amran, H., Farhana, R., Shapna, S., Mohammad, R.R., Shams-Ud-Doha, K.M., Rumana, M. & Apurba, S.A. 2011. Antimicrobial, antioxidant and cytotoxic effects of methanolic extracts of leaves and stems of *Glycosmis pentaphylla* (Retz.) Correa. *Journal of Applied Pharmaceutical Science*, 08: 137-140.
- Belmaghraoui, W., Manni, A., Harir, M., Filali-Maltouf, A., Fatni, O. K. E. & Hajjaji, S. E. 2018. Phenolic compounds quantification, antioxidant and antibacterial activities of different parts of *Urticadioica* and *Chenopodium murale*. *Research Journal of Pharmacy and Technology*, 11(12):5490-6.
- Bernard, G.T., Esteban, P. & Christopher, J.S. 1982. Turmerones: Isolation from turmeric and their structure determination. *Chemical Communications*, 6: 363.

- Bhakta, T., Mukherjee, P., Saha, K., Pal, M., & Saha, B.P. 1998. Studies on Antitussive Activity of Cassia fistula (Leguminosae) Leaf Extract. *Journal of pharmaceutical Biology*, 36: 140-43.
- Bhalke, R.D., Mandole, Y.P., Mali, N.B. 2009. Phytochemical investigation and effect of various extracts of *Argemone mexicana* (Papaveraceae) leaves on clonidine and haloperidol-induced catalepsy in mice. *Journal* of *Pharmacy Research*. 2(4):765-7.
- Bhardwaj, M., Duhan, J.S., Kumar, A., Surekha. 2012. Antimicrobial potential of Argemone mexicana: an in vitro study. *Asian Journal of Microbiology, Biotechnology & Environmental Sciences Paper*, 14:353-57.
- Bhattacharya, E., Dutta, R., Chakraborty, S., Mandal, B. S. 2019. Phytochemical profiling of Artocarpus lakoocha Roxb. leaf methanol extract and its antioxidant, antimicrobial and antioxidative activities. Asian Pacific Journal of Tropical Biomedicine, 9:484-92.
- Britto, A.J. & Sheeba, D.H. 2011. *Azadiracta indica* Juss– a potential antimicrobial agent. International Journal of Applied Biological and Pharmaceutical Technology, 4550-4557
- Bushra, S., Muhraf, F.A., 2009. Effect of extraction solvent/Technique on the antioxidant activity of selected medicinal plant extracts. *Molecules*. 14: 2168– 2180.
- Calixto, J.B., Otuki, M.F., Santos, A.R., 2003. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor jB (NF-jB). *Planta Medica*, 69: 973–983.
- Chakravarty, A.K., Das, B., Masuda, K.R., Ageta H. Tetracyclic triterpenoids from *Glycosmis arborea. Phytochemistry.* 42: 1996; 1109-1113
- Chander, H., Parveen, K., Dheeraj, R. et al. 2010. Evaluation of analgesic and antiinflammatory activity of bark of *Neolamackia cadamba* in rodents. *Research Journal of Pharmacy and Technology*, 3(4): 1178-84.
- Chandrika, R., Jagath, V., Saraswathi, K. J. T. 2016. In vitro antioxidant and antiproliferative activities in *Eryngium foetidum* L. *International Journal* of *Pharma Research and Health Sciences*, 4: 1110–1116.
- Chatterjee, A., Pakrashi, S.C. 2001. *The Treatise on Indian Medicinal Plants*, Vol. 6. New Delhi, CSIR, pp. 132–133.
- Chauhan, K.P. K., Jaryal, M., Kumari, K. & Singh, M. 2012. Phytochemical and in vitro antioxidantpotential of aqueous leaf extractsof *Brassica juncea* and *Coriandrum sativum*. International Journal of Pharmaceutical Sciences and Research, 3(8): 2862-2865.
- Chugh, C.A., Mehta, S. & Dua, H., 2012. Phytochemical Screening and Evaluation of Biological Activities of Some Medicinal Plants of Phagwara, Punjab, Asian *Journal of Chemistry*. 24: 5903.
- Cuellar, C., Armando, O. & Dennis, O. 2010.Preliminary phytochemical and antimicrobial evaluation of the fresh and dried whole plant extracts from Commelina *benghalensis*. *Revista colombiana* de *ciencia animal* (Recia), 2(1): 104-116

- Dandapat, S., Kumar, M., Sinha, M.P. 2014. Therapeutic efficacy of *Cinnamomum tamala* (Buch.-Ham.) and *Aegle marmelos* (L.) leaf. *Balneo Research Journal* 5: 113-122.
- Daniel, M. 2006. *Medicinal plants: chemistry and properties*. Science Publishers, New Hampshire, USA. p.198.
- Debnath, M., Biswas, M., Nishteswar, K. 2012. Evaluation of Analgesic Activity of Different Leaf Extracts of *Celastrus paniculatus* wild. *Journal of Advanced Pharmacy* Education & *Research*, 2(2): 68-73.
- Deep, P., Mishra, A. & Verma, N. 2020. Pharmacognostic studies and monographic development of *Ficus glomerata* Roxb. from the great gangetic plain. *International Journal of Pharmaceutical Sciences and Research*. 11(2): 971-77.
- Devappa, R.K., Makkar, H.P.S. & Becker, K. 2010. Jatropha toxicity a review. Journal of Toxicology and Environmental Health, 13: 476-507
- Devi, L.R., Singh, T. S. & Laitonjam, W. S. 2007. Antifungal and phytochemical studies of *Eupatorium birmanicum* DC. *Indian Journal of Chemistry*. 46B:1868-1872
- Dhar, M.L., Dhar, M.M., Dhawan, B.N., Mehrotra, B.N., Srimal, R.C. & Tandon, J.S. Diwani, G. E., Rafie, S. E., Hawash, S. 2009. Antioxidant activity of extracts obtained from residues of nodes leaves stem and root of Egyptian Jatropha curcas. African Journal of Pharmacy and Pharmacology, 3: 521-530
- Dubey, P., Tiwari, A., Gupta, S.K. & Watal, G. 2016. Phytochemical and biochemical studies of *Jasminum officinal*eleaves. *International Journal of Pharmaceutical Sciences and Research*, 7(6): 2632-2640.
- Dubie, J., Stancik, A., Morra, M., Nindo, C. 2013. Antioxidant extraction from mustard (*Brassica juncea*) seed meal using high-intensity ultrasound. *Journal* of Food Science, 78: 542-8.
- Dujic, J., Kippenberger, S., Ramirez-Bosca, A., Diaz-Alperi, J., Bereiter-Hahn, J., Kaufmann, R., *Bernd*, A., Hofmann, M. 2009. Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. *International Journal of Cancer*, 124:1422-8
- Duraipandiyan, V. & Ignacimuthu, S. 2007. Antibacterial and antifungal activity of *Cassia fistula* L.: anethnomedicinal plant. *Journal of Ethnopharmacology*, 112 (3): 590-4.
- El-Domiatya, M. M., Winkb, M., Aala, M. M. A., Abou-Hashema, M. M. & Abd-Alla, R.H. 2009. Antihepatotoxic Activity and Chemical Constituents of Buddleja asiatica Lour. Zeitschrift fur Naturforschung. C, A journal of biosciences, 64(1-2):11-9.
- Eliana, F.O., Paulo, C.S., Milton, C.C. 2007. Stability of anthocyanin in spinach vine (Basella rubra) fruits, *Cienciae Investigacion Agraria*, 34(2):115-120.
- Elizabeth, A.A., Josephine, G., Muthiah, N.S. & Muniappan, M., Evaluation of analgesic and anti-inflammatory effect of *Foeniculum vulgare*. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*; 5(2): 658-668.

- Evans, W.C., Evans, D. & Trease, G. E. 2002. *Trease and Evans' Pharmacognosy*, Edinburgh; New York: WB Saunders.
- Farnsworth, N. R. 1966. Biological and phytochemical Screening of Plants, *Journal* of *Pharmaceutical* Sciences, 55: 225.
- Ghareeb, M.A., Hussein, A.S, Hassan, M.F.M., Laila, A.R., Mohamed, M.A. & Saad, A.M. 2014.Antioxidant and Cytotoxic Activities of Flavonoidal Compounds from *Gmelina arborea*Roxb. *Global Journal of Pharmacology* (GJP). 8: 87
- Ghosh, R., Sharatchandra, K.H., Rita, S., Thokchom, I.S. 2004. Hypoglycemic activity of *Ficus hispida* (bark) in normal and diabetic albino rats. *Indian Journal of Pharmacology*, 36:222–5.
- Guo, Z-y., Li, P., Huang, W., Wang, J-j., Liu, Y-j., Liu, B., Wang, Y-l., Wu, S-B, Kennelly, E.J., Long, C-l. 2014. Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine. *Phytochemistry*, 106: 124-133.
- Harsha, S.N. & Anila kumar, K.R. 2014. In vitro free radical scavenging and DNA damage protective property of *Coriandrum sativum* L. leaves extract. *Journal* of Food Science and Technology; 51(8):1533-1539.
- Hassan, W., Kazmi, S.N. Z., Noree, H., Riaz, A. & Zaman, B. 2016. Antimicrobial Activity of *Cinnamomum tamala* Leaves. *Journal of Nutritional Disorders & Therapy*, 6:2 DOI: 10.4172/2161-0509.1000190
- Hossain, F., Saha, S., Islan, M.M., Nasrin, S & Adhikari, S. 2014. Analgesic and antiinflammatory activity of *Commelina benghalensis* Linn. *Turkish Journal* of *Pharmaceutical* Sciences.11 (1): 25-32.
- Hossain, M. M., Mazumder, K., Hossen, S.M.M., Tanmy, T.T. & Rashid, M.J. 2012. In vitro studies on antibacterial and antifungal activities of Emblica officinalis. *International Journal of Pharmaceutical Sciences* and *Research*, 3(4): 1124-1127
- Hossaina, M. A., A.S. Al-Toubi, W., Weli, A. M., A. Al-Riyami, Q., N. Al-Sabahi, J. 2013. Identification and characterization of chemical compounds in different crude extracts from leaves of Omani neem. *Journal of Taibah University for Science*, 7(4):181-188
- Hsu, C-L, Fang, S-C, Wen Huang, H., Yen, G-C. 2015. Anti-inflammatory effects of triterpenes and steroid compounds isolated from the stem bark of *Hiptage benghalensis*. *Journal of Functional Foods*, 12: 420-427
- Igbinosa, O.O., Igbinosa, I. H., Chigor, V.N., Uzunuigbe, O.E., Oyedemi, S.O., Oyedemi, E.E., Odjadjare, E.E., Okoh, A.I, Igbinosa, E.O. 2011. Polyphenolic contents and antioxidant potential of stem bark extract from Jatropha curcas (Linn), *International Journal of Molecular Sciences*, 12: 2958-2971
- Ilavarasan, R., Mallika, M. & Venkataraman, S., 2005, anti-inflammatory and antioxidant activities of *Cassia fistula* Linn bark extracts; *African Journal of Traditional*. Complementary and Alternative Medicines; 2(1), 70-85
- Inampudi, V. K., Kumar, J., Koshy, S. R. K., Patel, Y. & Sujitha, P. J. 2014. Antioxidant and anti-inflammatory activities of *Barringtonia acutangula* Linn.

Bark extracts on rats; International Journal of Current Research, 6 (11): 9785-9790

- Jaime A. & Teixeira, d. S. 2004. Mining the essential oils of the Anthemideae. *AfricanJournal of Biotechnology*. 3(12): 706-720.
- Jeet, K., Thakur, R., Sharma, A. K., Shukla, A. 2012. Pharmacognostic and phytochemical investigation on whole aerial part of *Argyreia nervosa*; *International Journal of Biological & Pharmaceutical Research*. 2012; 3(5): 713-717.
- John, S.A., & Koperuncholan, M. 2013. Antibacterial activities of various solvent extracts from Impatiens balsamina. *International Journal of Pharma and Bio Sciences*, 3(2): 401-406.
- Karthikeyan, S. & Gobianand, K. 2010. Anti ulcer activity of ethanol leaf extract of *Cassia fistula*. *International Journal of Pharmacognosy*, 48: 869-877.
- Kazeem, M.I., Abimbola, S.G., Ashafa, A.O.T. 2013. Inhibitory potential of *Gossypium arboreum* leaf extracts on diabetes key enzymes, α-amylase and αglucosidase. *Bangladesh Journal of Pharmacology*, 8:149-155
- Kedei, N., Lundberg, D.J., Toth, A., Welburn, P., Garfield, S.H., Blumberg, P.M. 2004. Characterization of the interaction of ingenol 3-angelate with protein kinase C. *Cancer Research*, 64(9): 3243-55.
- Khafagy, S.M., Mohamed, Y.A., Abde, N.A., Mahmoud, Z.F. 1977. Phytochemical study of *Jatropha curcas*. *Plant Medicine*, 31: 274-277
- Khan, H., Gupta, N., Mohammed, M.S., Meetu, A., Khan, G., Mohan, G. 2013. Antiulcer activity of seed extracts of *Gynocardia odorata* Roxb on pylorus ligation and indomethacin induced gastric lesions in albino rats. *International Journal* of *Development* Research, 3: 49-54.
- Khan, K.H. 2009. Roles of *Emblica officinalis* in Medicine A Review. International *Journal of Botany*. 2 (4): 218-228.
- Khare, C.P. 2007. Indian Medicinal Plants-An Illustrated Dictionary, Berlin: Springer Verlag p. 254.
- Kilari, B.P., Kotakadi, V.S., Penchalaneni, J. 2016. Anti-proliferative and apoptotic effects of *Basella rubra* (L.) Against 1, 2-Dimethyl Hydrazine-induced colon carcinogenesis in rats. *Asian Pacific Journal of Cancer Prevention*, 17:73–80.
- Kokate, C.K. 1994. *Practical Pharmacognosy*. 4th ed, Vallabh Prakashan, New Delhi, India.
- Konsam, S. C., Ningthoujam, S. S. & Potsangbam, K, S. 2015. Antibacterial Activity and Phytochemical Screening of Goniothalamus sesquipedalis (Wall.) Hook. f. & Thomson Extracts from Manipur, North East India. *European Journal of Medicinal Plants*, 8(3): 142-148
- Konwar, Tashmi, Hazarika, P.P. & Bora, R. L. 2020. Traditional use of some ethnomedicinal plants by Ahom community in chengalijan village of Dibrugarh district, assam, india, *Plant Archives*, 20: 8050-8058
- Krishna, S.R. A., Hafza, S., Chandrika, P.G., Lekhapriya, C., Rao, B. K.V. 2015. Pharmacological properties, phytochemical and GC-MS analysis of Bauhinia

acuminate Linn. Journal of Chemical and Pharmaceutical Research, 7(4):372–380

- Kumar, B. R., Anupam, A., Manchikanti, P., Rameshbabu, A. P., Dasgupta, S. & Dhara, S. 2018. Identification and characterization of bioactive phenolic constituents, anti-proliferative, and anti-angiogenic activity of stem extracts of *Basella alba and rubra*. *Journal of Food Science* and *Technology*, 55(5): 1675–1684.
- Kumaresan, M., Kannan, M., Sankari, A., Chandrasekhar, C.N. & Vasanthi, D.2019. Phytochemical screening and antioxidant activity of Jasminum multiflorum (pink Kakada) leaves and flowers. *Journal of Pharmacognosy and Phytochemistry*.8 (3): 1168-1173
- Kunle, O.F. &Egharevba, H.O. 2009. Preliminary studies on Vernonia ambigua: phytochemistry and antimicrobial screening of whole plant. *Ethnobotanical Leaflets*, 13: 1216-1221
- Kupchan, S.M., Uchida, I., Branfman, A.R., Dailey, R.G. Jr., Fei, B. 1976. Antileukemic principles isolated from Euphorbiaceae plants. *Science*, 191: 571-572.
- Lai, E.Y.C., Chyau, C.-C., Mau, J.-L., Chen, C.-C., Lai, Y.-J., Shih, C.-F., Lin, L.-L. 2004. Antimicrobial activity and cytotoxicity of the essential oil of Curcuma zedoaria. *The American Journal of Chinese Medicine*, 32: 281–290.
- Le, H., Ha, D.T., Minh, C.T.A., Kim, T.H., Kiem, P.V., Thuan, D.N., Na, M., 2012.Constituents from cytoprotective activity against hydrogen peroxide-induced hepatotoxicity. Archives of Pharmacal Research, 35(1):87–92
- Lee, S.H., Tanaka, T., Nonaka, G. & Nishioka, I. 1990. Hydrolysable tannins from *Euphorbia thymifolia*. *Phytochemistry*.29:3621.
- Machan, T., Korth, J., Liawruangrath, B., Liawruangrath, S. & Pyne, S.G. 2006. Composition and antituberculosis activity of the volatile oil of *Heliotropium indium* Linn. growing in Phitsanulok, Thailand. *Flavour and Fragrance Journal*.21: 265-267
- Mehrotra, S., Rawat, A.K.S. & Shome, U. 1993. Antimicrobial activity of the essential moldel of thrombosis. *Pharmacological Research*, 56(3): 254-260.
- Mon, M., New, N.T. & Hla, M.M.K. 2013. Antimicrobial activity of selected Myanmar medicinal plants; China: Third GMSARN International Conference on Sustainable Development: Issues and Prospects for the Greater Mekong Sub-region; 2008. 12-14 November, p- 35
- Nagaraju, G., Chinnalalaiah, R., Nagaraju, P., Kumar, P.A. 2012. Anti-inflammatory and anti-oxidant activities of ethanolic extract of *Euphorbia thymifolia* Linn. Whole plant. *International Journal of Pharmacy and Pharmaceutical Sciences*, 4(Suppl 3):516–9.
- Narmadha, R. & Devaki, K. 2012. Barleria cristata Linn: Phytochemical screening and HPTLC analysis. International Research Journal of Pharmacy, 3(7): 301-7.

- Nayak, S., Rout, G.R. 2005. Isolation and characterization of micro satellites in Bambusaarundinacea and cross species amplification in other bamboos. *African Journal of Biotechnology*. 4:151-156.
- Nayak, S.S., Jain, R. & Sahoo, A. K.2011.Hepatoprotective activity of Glycosmis pentaphylla against paracetamol induced hepatotoxicity in Swiss albino mice. Pharm Biol. 49: 111-117
- Neeharika, V., Swetha, T., Humaira, F., Reddy, B. M. & Sama V. 2012. Antinociceptive, Anti-inflammatory and Antipyretic effects of *Croton caudatus* leave s. *Indian Drugs*, 49(12)
- Ogidi, O. I., Omu, O. & Ezeagba, P. A. 2019. Ethno pharmacologically active Components of *Brassica juncea* (Brown Mustard) Seeds. *International Journal* of *Pharmaceutical Research and Development*, 1(1): 09-13
- Okwu, D.E. & Igara, E.C. 2009. Isolation, characterization and antibacterial activity of alkaloid from *Datura metel* Linn leaves. *African Journal of Pharmacy and Pharmacology*. 3(5): 277-81.
- Oudah, I.M. & Ali, Y.H. 2010. Evaluation of aqueous and ethanolic extraction for *Coriander* seeds, leaves and stems and studying their antibacterial activity. *Iraqi* National *Journal of Nursing Specialties*, 23(2):1-7.
- Pahwa, S., Mazumder, R., Bhattacharya, S., Kumari, S., Mazumder, A. & Singh, D.
 P. 2010. Pharmacognostical and Phytochemical Evaluation of the leaves of *Bauhinia purpurea* Linn. *Ancient Science of Life*, 30 (2): 28 32
- Pandey, A., Bigoniya, P., Raj, V., & Patel, A.A. 2011. Pharmacological screening of Coriandrum sativum Linn. for hepatoprotective activity. Journal of Pharmacy and Bioallied Sciences, 3(3): 435-441.
- Park, E.J., Jeon, C.H. & Ko, G. 2000. Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. *Journal of Ethnopharmacology*, 52: 437-440.
- Patel, J., Qureshi, M.S., Kumar, G.S. & Panigrahy, U. P. 2011. Phytochemical and Pharmacological activities of *Eupatorium odoratum* L. *Research Journal of Pharmacy and Technology*, 4(2): 184-188.
- Patil, K.J., Patil, V.A., Patil, S.V.& Bhuktar, A.S. 2012. Comparative preliminary phytochemical studies of *Jasminum multiflorum* and *Jasminum officinale*. *Trends in Life Sciences*, 1(3): 43-45.
- Paul, S., Thomas, E.E. Essien, Samuel J. N. & Mohammad, I. C. 2017. Eryngium foetidum L. Essential Oils: Chemical Composition and Antioxidant Capacity. Medicines (Basel), 4(2): 24.
- Phansri, K., Sarnthima, R., Thammasirirak, S., Boonchalee, P., Khammuang, S., 2011. Antibacterial activity of Bauhinia acuminata L. seed protein extract with low hemolytic activity against human erythrocytes. *Chiang Mai Journal of Science*, 38(2): 242–251
- Prasad, K., Bisht, G. 2011. Evaluation of nutritive minerals and antioxidants values of *Euphorbia thymifolia* Linn. *Current Research* in *Chemistry*, 3: 98–105.
- Priya, K., Gupta, A., Mahajan, S., Agnihotri, R.K., Sharma, R. 2015. Evaluation of antimicrobial properties of Basella rubra methanolic extracts on selected

microorganisms. International Journal of Pharmaceutical Sciences and Drug Research, 6: 334–336

- Raghuveer GPS, Ali, M.M., Eranna, D. & Setty, R. 2003. Evaluation of anti-ulcer effect of root of *Curcuma zedoaria* in rats. *Indian Journal Traditional Knowledge*, 2: 375–377.
- Rahmani M, Ling CY, Sukari MA, Ismail HBM, Meon S, Aimi N. 1998. Methoxyglycomaurin: A new carbazole alkaloid from *Glycosmis rupestris*. Planta Med. 64: 1998; 780-780.
- Rama, G & Ampati, S. 2013. Evaluation of flowers of Jasminum officinale antibacterial activity. *Journal of Applied Pharmaceutical Science*; 3(10): 428-431.
- Rao, B. G., Prasad, D.N., Rao, E.S., Rao, T.M., Praneeth, D.V. & Kiran, P.M., et al. Phytochemical Screening and in-vitro anti-bacterial activity of different extracts from Ficussemicordata leaves. *Inventi Rapid Pharm Biotech Microbio*, 29:65-74.
- Rao, B.G., Prasad, D.N., Rao, E.S. & Rao, T.M., Praneeth, D.V. 2012. Quantification of phytochemical constituents and in-vitro antioxidant activity of Ficussemicordata leaves extracts. *International Journal of Pharmacy and Pharmaceutical Sciences*, 4(2)619-22.
- Rao, C.V., Reddy, G.D., Kartik, R., Mehrotra, S. & Pushpangadan, P. 2003. National seminal on new millennium strategies for quality, safety and GMPs of herbal drugs/products. Lucknow: NBRI, p. 78.
- Rao, M.R., Reddy, I.B., Ramana, T. 2006. Antimicrobial activity of some Indian medicinalPlants. *Indian Journal of Microbiology*, 46: 259-262
- Rao, K.S., Mishra, S.H. 1996a. Studies on *Curculigoorchioides*. Gaertn. for antiinflammatory and hepatoprotective activities. *Indian Drugs*, 33: 20–25.
- Rao, K.S. & Mishra, S.H. 1996b. Effect of rhizomes of *Curculigoorchioides*. Gaertn. on drug induced hepatotoxicity. *Indian Drugs* 33: 458–461.
- Ratan, L., Meenu, B., Anju, D. & Arun, N. 2011.Morpho-anatomical and physicochemical studies of dried seeds of *Datura fastuosa*. *International Research Journal of Pharmacy*, 2 (3): 208-12.
- Raveen, R., Samuel, T., Arivoli, S. & Madhanagopal, R. 2015. Evaluation of mosquito larvicidal activity of Jasminum species [Oleaceae] crude extracts against the filarial vector Culex quinquefasciatus Say [Diptera: Culicidae]. *American Journal of Essential Oils and Natural Products.* 3(1): 24-28.
- Ravindran, P.N., Nirmal, B.K., Sivaraman, K. 2007. Turmeric. The golden spice of life. In: Turmeric. The Genus Curcuma. Boca Raton, FL, USA: CRC Press; p. 1-14.
- Ray, M. N., Naz, T., Khan, A. & Ali, M. H. 2017. Antidiabetic Potential of Methanolic Extract of Leave and Bark of Bangladeshi Medicinal Plant *Bauhinia acuminata* L on Mice. *Journal of Diabetes* and *Metabolism*, 8: 9. DOI: 10.4172/2155-6156.1000762
- Reddy, P.P., Rao, R.R., Rekha, K, Suresh, B.K., Shashidhar, J., Shashikiran, G., Vijaya, L.V., Rao, J.M. 2009. Two new cytotoxic diterpenes from the rhizomes

of *Hedychium spicatum*. *Bioorganic* & *Medicinal Chemistry Letters*, 19(1):192-5.

- Reddy, P.P., Rao, R.R., Shashidhar, J., Sastry, B. S., Rao, J. M., Babu, K.S. 2009 .Phytochemical investigation of labdane diterpenes from the rhizomes of *Hedychium spicatum* and their cytotoxic activity. *Bioorganic & Medicinal Chemistry Letters*.19 (21): 6078-6081.
- Rizwana, J. N., Nazlina, I., Razehar, A. R. M., A. Z. Noraziah, S., Ling, C. Y., Muzaimah, S. A. S., Farina, A. H., Yaacob W. A., Ahmad, I. B. & Din, L. B. 2010. A survey on phytochemical and bioactivity of plant extracts from Malaysian forest reserves; Journal of Medicinal Plants Research, 4(3), 203-210
- Rupeshkumar, M., Kavitha, K., Haldar, P. K. 2014. Pharmacological evaluation of anti-inflammatory, analgesic and antipyretic effects of *Gynocardiaodorata*Roxb in animal models; *International Journal of Pharmacy and Pharmaceutical Sciences*, 6 (11): 156-9
- Salami, M., Rahimmalek, M. &Ehtemam, M.H. 2016. Inhibitory effect of different fennel (*Foeniculum vulgare*) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. *Food Chemistry*, 2016; 213:196-205.
- Santilna, K.S., Mahesh, N.M., Suresh, J. 2014. Anticonvulsant Activity Study of Artemisia nilagirica; *International Journal of Pharmacognosy and Phytochemical Research*, 6(4): 826-830
- Santoshkumar, J., Manjunath, S., &Sakhare, P.M. 2013. A study of antihyperlipedemia, hypolipedemic and anti-atherogenic activity of fruit of Emblica officinalis (amla) in high fat fed Albino rats. *International Journal of Medical Research & Health Sciences*, 2 (1): 70-77
- Saravanan, N. & Nalini, N. 2007a. Antioxidant effect of Hemidesmus indicus on ethanolinduced hepatotoxicity in rats. *Journal of Medicinal food*. 2007a; 10(4):675-682.
- Seo, W-G., Hwang, J-C., Kang, S.-K., Jin, U-H., Suh, S-J., Moon, S-K, Kim, C-H. 2005. Suppressive effect of Zedoariaerhizoma on pulmonary metastasis of B16 melanoma cells. *Journal of Ethnopharmacology*, 101(1-3):249-57.
- Sharma, V. &Pracheta, J. 2013. Microscopic studies and preliminary pharmacognostical evaluation of *Euphorbia neriifolia* L. leaves. *Indian Journal of Natural Products* and Resources 4 (4):348-357
- Shete, R. V., Bodhankar, S.L. 2010. Hedychium spicatum: Evaluation of Its Nootropic Effect in Mice. Research Journal Pharmacognosy and Phytochemistry, 2(5): 403-406.
- Shrish K. S., Kumar, H., Mrityunjoy, A. 2014. Phytochemical screening and ulcer protective activity of ethanolic seeds extract of Gynocardiaodorata in different ulcer model. *American Journal of PharmTech Research*, 4:446-52
- Singh, R., Rajasree, P. H. & Sankar, C. 2012. Anti diabetic activity of ethanolic extract of *Barleria cristata* seeds. *International Journal of Pharmaceutical Sciences*, 3(10):2044-7.

- Sivaraman, D., Muralidharan, P. 2010. Anti-ulcerogenic evaluation of root extract of ficushispidalinn: In aspirin ulcerated rats. *African Journal* of Pharmacy and *Pharmacology*, 4:72–82.
- Soni, V., Jha, A.K., Dwivedi, J., Soni, P. 2013.Traditional uses, phytochemistry and pharmacological profile of *Bambusaarudinacea* Retz; *CellmedOrthocellular Medicine and Pharmaceutical* Association, 3 (3). Doi: http://dx.doi.org/10.5667/tang.2013.0011
- Sreelatha, S. &Inbavalli, R. 2012. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of *Coriandrum sativum* leaf and stem in alloxaninduced diabetic rats. *Journal of Food Science*.77 (7): T119-123.
- Srimal, R.C., Sharma, S.C. & Tandon, J.S. 1984. Anti-inflammatory and other pharmacological effects of *Hedychium spicatum*. *Indian Journal of Pharmacology*, 16: 143–147.
- Sudha, K., Deepak, G., Sushant, K., Vipul, P. & Nilofer, N. 2011.Study of antidepressant like effect of *Coriandrum sativum* and involvement of monoaminonergic and Gabanergic system. *International Journal of Research in Ayurveda and Pharmacy*, 2: 267-270.
- Sudheerkumar, K., Seetaramswamy, S., Ashok B.K., Kumar, P. K. 2015. Phyto pharmacognostical and isolation of chemical constituents from *Bauhinia variegata* leaf extract. *Journal of Pharmacognosy and Phytochemistry*, 4(1): 189-191
- Sukumar, D., Nambi, R.A., Sulochana, N. 1984. Studies on the leaves of Agremonemexicana. Fitoterapia, 55:325-53.
- Sundarmoorthy, S., Mani, D., Nagraj, S., Sathiavelu, M., Arunachalam, S. 2014. Antioxidant activity and Phytochemical Analysis of Datura metal. *International Journal of Drug Development and Research*, 6(4):46-53.
- Sunita, Verma. 2016. Pharmacological review on Cassia fistula Linn (Amaltas). International Journal of Pharmaceutical, Chemical and Biological Sciences, 6(3):332-335
- Talukdar, A. 2014. Gas Chromatography- Mass Spectrometric analysis of the essential oil of Eaglewood (Aquilaria agallocha Roxb.). International Journal of Pharmaceutical Sciences and Research, 6 (7): 629-631
- Tanira, M. O. M., Shah, A. H., Mohsin, A., Ageel, A. M., Qureshi, S. 1996. Pharmacological and toxicological investigations on Foeniculum vulgare dried fruit extract in experimental animals. *Phytotherapy Research*, 10: 33-36.
- Tognolini, M., Ballabeni, V., Bertoni, S., Bruni, R., Impicciatore , M., &Barocelli, E.
- Uddin, G., Rauf, A., Naveed, M., Shabana, Malik, N. and Mohsina. 2012. Phytochemical and Pharmacological Studies of the Whole Plant of *Calotropis* proceraMiddle-East. Journal of Medicinal Plants Research, 1(4): 71-74
- Venukumar, M.R., Lathanm, M.R. 2002. Antioxidant activity of *Curculiogorchioides*. in CCl₄ induced hepatopathy in rats. *Indian Journal* of *Clinical Biochemistry* .17: 80–87.

- Vonshak, A., Barazani, O., Sathiyamoorthy, P., Shalev, R., Vardy, D., Golan-Goldhirsh, A.2003. Screening South Indian medicinalplants for antifungal activity against cutaneous pathogens. *Phytotherapy* Research, 17(9): 1123-1125.
- Wilson, B., Abraham, G., Manju, V. S., Mathew, M., Vimala, B., Sundaresan, S., Nambisan, B. 2005. Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. *Journal of Ethnopharmacology*, 99(1):147-51.
- Wu, Q., Fu, DX., Hou, A.J., Lei, G.Q., Liu, Z.J. 2005. Antioxidative phenols and phenolic glycosides from *Curculigoorchioides.Chemical and Pharmaceutical Bulletin.* 53: 1065–1067.
- Yadav, R. & Jain, G.C. 1999. Antifertility effect of aqueous extract of seeds of Cassia fistula in female rats; *Advances in Contraception*, 15(4): 293-301.
- Yasukawa, K., Akihisa, T., Yoshida, Z.Y. 2002. Inhibitory effect of euphol, a triterpene alcohol from the roots of *Euphorbia kansui*, on tumor promotion by 12-o-tetradecanoylphorbol- 13-acetate in two-stage carcinogenesis in mouse skin. *Journal* of *Pharmacy* and *Pharmacology*, 54: 119-124.
- Zakaria, Z.A., Rahman, N.I. A., Loo, Y.W., Ayub, A.H. A., Sulaiman, M.R., Jais, A.M. M., Gopalan, H.K. and Fatimah, C.A., 2009. Antinociceptive and Anti-Inflammatory Activities of the Chloroform Extract of *Bauhinia purpurea* L. (Leguminosae) Leaves in Animal Models. *International Journal of Tropical Medicine*, 4: 140-145.

Chapter 8

Diversity of hepatoprotective medicinal plants traditionally used in folk healing practices among the ethnic groups in North East India: a review

Junali Chetia¹ & Amal Bawri²

¹Department of Botany, Silapathar College, Silapathar, Dhemaji, Assam–787059, India
²North Eastern Institute of Folk Medicine (An Autonomous Institute under Ministry of AYUSH, Govt. of India), Pasighat-791 102, East Siang, Arunachal Pradesh, India
Corresponding author: junali.chetia@yahoo.com

Abstract

Ethnomedicinal plants and traditional healing practices have a significant role among the ethnic groups in the healthcare management in the North East Region. Traditional healer used to treat various diseases by using many herbal plant species. Among the other ailments, Jaundice is one of the common diseases among the peoples of this region, which is also treating traditionally. Present review describes the different ethno-medicinal plants used for healing jaundice by the ethnic groups in the region. The study reveals 153 medicinal plant species belonging to 67 different families. Among the reported 153 plant species, 65 species are used in combination with other plant species in the treatment of Jaundice. Among the total species reported in this review, 69 species are herbs, 35 species are trees, 28 species are shrubs and 21 species are climber. Asteraceae (10), Leguminoaceae (9) and Phyllanthaceae (9) are the most dominant family followed by Cucurbitaceae (8), Amaranthaceae (6), Rubiaceae (6),

Acanthaceae (5), Poaceae (5), Rosaceae (5), Zingiberaceae (5), etc. The remaining families represented by one to four plant species (e.g., Rutaceae, Moraceae) or just a single one (e.g., Verbenaceae, Meliaceae, etc.). Some of the plant extracts have already been explored for their phytochemical and pharmacological significance and proved their potential in the preparation of new medicines or drugs against the treatment of jaundice. This review is an attempt tohighlight the indigenous knowledge of medicinal plants, which are specifically used for the treatment of jaundice. The data mentioned in the present review is compiled from various sources like existing literature, books, Google Scholar, and Scopus publications. Among all the observed plant parts, the leaves are the most used parts for the treatment of jaundice by the ethnic groups of North east India with a percentage of 27%, followed by the roots (22%), fruits (13%), whole plant (12%), bark (9%), rhizome (5%), stem (5%), seed (5%), flower (3%), aerial part (2%), Bulb (1%), Tuber (1%), foliage (1%), inflorescence (1%) and young shoot (1%). Plants that are mostly utilized for the treatment of jaundice need to be scientifically validated by pharmacological investigation, which may yield new information in terms of drug discovery for jaundice treatment.

Keywords: Ethno-medicinal plant, Jaundice, Traditional Healing, North East India

Introduction

North East (NE) India consists of the states of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura is one of the richest repositories of medicinal and aromatic plants in the World. This region is also wellknown for diverse culture and traditional knowledge of human races and home of large number of ethnic tribal people of India. Out of 450 tribal communities in India, the region alone provides the dwelling place of about 200 ethnic communities (Mao et al., 2009). The region can be considered as center of ethnic groups where peoples have strong cultural linkages with dependence on nature for their survival forests on a daily basis is very high. Most of the ethnic groups in this region live in the remote areas with close harmony to the adjacent forest areas. The socio-economic condition of the residents of forested areas is miserable and the ethnic communities cannot afford the expensive modern medical facilities. It is believed that they have developed their own traditional knowledge of herbal medicine through their aged long trial and error method and passed on orally from generation to generation. The practice of ritualistic healing and folk remedies has been an integral part of different ethnic communities in the region. The continuation of these practices can be attributed to the traditional healing usage and their promising activity over due course of time. Among the different ailment Jaundice is one of common problems, which is generally treated by traditional healers with their traditional knowledge. Many authors (Raghuvanshi et al., 2021; Janghel et al., 2019), carried out ethnobotanical survey of plant traditionally used to treat jaundice disease in other parts of the nation, but there is lack of specific research on use of ethno-medicine on particularly Jaundice diseases. The objective of this paper is to collate as much as possible, available information about medicinal plants traditionally used for the management of Jaundice in North East India.

Methods

Ethnopharmacological data sources and collection

Systematic literature searches relevant to the field of ethnobotany were carried out and the available information on various plants traditionally used for jaundice disorders was collected from different bibliographical databases via electronic search (using Pubmed, Sci Finder, Scopus, Scirus, Science Direct, Google Scholar and Web of Science) and a library search for articles published in peer-reviewed journals and also locally available books. The phytochemicals and pharmacological activities, which are considered as helpful for the treatment of jaundice disorder are reported in this review include: Antioxidant, Anti-bacterial, Anti-inflammatory and antimicrobial activity.

Systematization of plant names and chemical structures

For the systematization of plant names and to check the status of plants gathered in this review, reliable online databases such as the International Plant Names Index (IPNI), Tropicos and The Plant List Version 1.1 (2013) were consulted. Only the accepted names and family of plants species highlighted in this database were listed in this review.

Results and Discussion

Ethnobotanical data of medicinal plants used for Jaundice treatment North East India

It was observed that approximately 153 ethnomedicinal plants belong to 67 families are used by the tribal and rural communities of North East India for curing jaundice. This information is described in Table 8.1 & 8.2, where plant families are arranged in

alphabetical order and include scientific name, family, habit, part used, mode of use and scientific evidence of hepatoprotective activity are reported. Among the reported 153 plant species, 65 species are used in combination with other plant species in the treatment of Jaundice (Table 8.1). Among the total species reported in this review, 69 species are herbs, 35 species are trees, 28 species are shrubs and 21 species are climber. Asteraceae (10), Leguminoaceae (9) and Phyllanthaceae (9) are the most dominant family followed by Cucurbitaceae (8), Amaranthaceae (6), Rubiaceae (6),

Acanthaceae (5), Poaceae (5), Rosaceae (5), Zingiberaceae (5), etc. The remaining families represented by one to four plant species (e.g., Rutaceae, Moraceae) or just a single one (e.g., Verbenaceae, Meliaceae, etc.). This result is similar with the findings of Raghuvanshi *et al.*, (2020), who also reported that maximum plants belong to major families, i.e., Asteraceae, Fabaceae, Euphorbiaceae species which are traditionally used to treat jaundice.

Plant's parts, Use and mode of preparation and Pharmacological evaluation

The leaves are the most used parts for the treatment of jaundice by the ethnic groups of North east India with a percentage of 27%, followed by the roots (22%), fruits (13%), whole plant (12%), bark (9%), rhizome (5%), stem (5%), seed (5%), flower (3%), aerial part (2%), Bulb (1%), Tuber (1%), foliage (1%), inflorescence (1%) and young shoot (1%) (Fig. 8.1). This shows that in most cases, the leaves of medicinal plants have more significance than any other plant part. Hence, it can be concluded that leaves are highly effective for curing jaundice, which may be due to more phytochemical accumulation in the plant leaves. However, roots are the second most used to treat jaundice; fruit belongs to the third position for treating jaundice. The result of this present review is also similar with the study of Raghuvanshi et al. (2020).

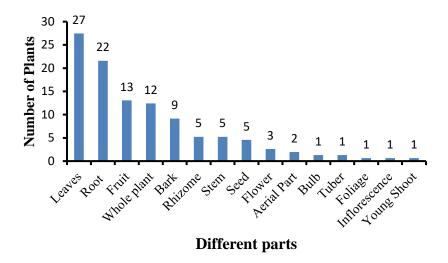


Fig. 8.1. Plant parts used as medicine.

3.3. Pharmacological evaluation

The medicinal property or activity of a plant species is mainly depended on the presents of various phytochemicals that occur naturally in the plants, which is used to cure Jaundice and various other diseases. An attempt has been made to review the pharmacological activity of the medicinal plants recorded based literature review to confirm their traditional use against jaundice. Total 119 plants out of 153 plant species have been found on which pharmacological studies were conducted to evaluate their antioxidant, anti-bacterial, anti-inflammatory and antimicrobial activity which are useful for the healing of jaundice. Remaining 34 species highlighted in the table yet to be evaluated pharmacologically in order to confirm their folkloric claim (Table 8.1 & 8.2). In vivo experimental studies with these plants (Table 8.1&8.2) have shown effective results in the treatment of jaundice and confer scientific evidence regarding plant use in the folk healing practices.

Sl. No.	Species name	Family	Habit	Part used	Mode of use in jaundice	Hepatoprotective activity
	Mangifera indica L.	Anacardiacea e	Tree	Bark		• Leaf and Stem bark extract
	Artocarpus heterophyllus Lam.	Moraceae	Tree	Bark		of <i>M.</i> <i>indica</i> contains effective
<i>Oroxylum</i> <i>indicum</i> (L.) Bignoniaceae Kurz	Bignoniaceae	Tree	Bark	The juice of all plants are	antioxidants which are useful against	
Treatment I	Passiflora nepalensis Walp.	Passifloracea e	Climb er	Whole plant	extracted and mixed well and one spoon is taken twice a day for one week. (Das et al., 2019).	liver injury (Karuppanan et al., 2014).
1	Cynodon dactylon (L.) Pers.	Poaceae	Herb	Whole plant		• Methanol and aqueous extract of leaves of A.
	Cuscuta reflexa Roxb.	Cuscutaceae	Climb er	Whole plant		heterophyllus showing hepatoprotectiv e activity (Prakash et al., 2016). • Methanol extract of

 Table 8. 1. Combinations of Medicinal plants traditionally used for Jaundice.

							whole plant of <i>P. nepalensis</i> record hepatoprotectiv e activity (Khare et al., 2015). Ethanolic
						•	extract of whole plant of <i>C. dactylon</i> showing hepatoprotectiv e activity (Surendra et al., 2008).
						•	Alcoholic and aqueous extract of <i>C. reflexa</i> have showing hepatoprotectiv e activity (Katiyar et al., 2015).
Гreatment II	<i>Carica papaya</i> L.	Caricaceae	Shrub	Fruit	Intake of syarane and	•	Aqueous leaf

	Saccharum officinarum L.	Poaceae	Herb	Stem	papaya are increased and		extract of <i>C.</i> <i>papaya</i> record
	<i>Curcuma</i> <i>zedoaria</i> (Christm.) Roscoe	Zingiberaceae	Herb	Rhizome	the rhizome of curcuma zedonia is cut into pieces and chewed for 10- 25 days. (Das et al., 2019).	•	hepatoprotectiv e activity (Mohammed et al., 2011). Juice of <i>S.</i> <i>officinarum</i> the protects against hepatotoxicity presumably via antioxidant action (Patel et al., 2010). The phytochemicals present in <i>C.</i> <i>zedoraia</i> report hepatoprotectiv e activity (Sumarheni et al., 2019).
Treatment	<i>Bridelia retusa</i> (L.) A.Juss.	Phyllanthecea e	Tree	Bark	The bark of <i>B</i> . <i>retusa</i> and	•	The aqueous ethanolic
III	Commelina benghalensis	Commelinace ae	Herb	Root	roots of <i>C</i> . <i>benghalensis</i>		extracts of <i>B</i> . <i>retusa</i> are

	L.				are grounds and made into one spoon juice and taken twice a day. (Das et al., 2019).	•	showing hepatoprotect ive activity (Raja & Srilakshmi, 2010). Aqueous and alcoholic root extract of <i>C</i> . <i>benghalensis</i> record hepatoprotect ive activity (Sambrekar et al., 2011).
	Sapindus mukorossi Gaertn.	Sapindaceae	Tree	Seed	The seeds of all the plants burned into fire	•	Extracts of fruit pericarp of S.
Treatment	Rhus succedanea L.	Anacardiacea e	Tree	Seed	till it chars, ground into		<i>mukorossi</i> (Ibrahim et
IV	<i>Entada</i> <i>scandens</i> (L.) Benth.	Fabaceae	Climb er	Seed	paste, mixed with water and two spoon of which is taken a day for two days. The paste	•	al., 2008). Antioxidant activity of <i>R.</i> succedanea record hepatoprotect

					is applied externally on the whole body in the evening and bath is taken in the next morning. (Das et al., 2019).	•	ive activity (Shah et al., 2010). Seed extracts of <i>Entada</i> <i>scandens</i> showing antimicrobia 1 activity (Prabakaran et al., 2016).
Treatment V	Edgeworthia spp.	Thymelacace ae	Shrub	Root	The root is cut into very small pieces and is to be chewed once every seven days for three weeks. (Das et al., 2019)		
	Artemisia vulgaris L.	Asteraceae	Shrub s	Young Shoot	The young shoot tip of A .	•	The crude extract of the
Treatment VI	<i>Rubus</i> calycinus Wall. <i>Ex</i> D.	Rosaceae	Climb er	Root	<i>vulgaris</i> and <i>R.</i> <i>calycinus</i> and made into paste. One spoon paste		aerial parts report hepatoprotect ive activity

Recent Advances in Folk Medicine Research in North East	India
---	-------

	Don				is mixed with ¹ / ₂ glass of water and taken once a day for 10-15 days. (Das et al., 2019	(Gilani et al., 2005)
Treatmen t VII	Musa balbisiana Colla	Musaceae	Herb	Inflorescen ce	Inflorescence is boiled with four to six crabs in water and decoction in given orally once daily for 7- 10 days in the treatment of Jaundice. (Borborah et al., 2016).	
Treatmen t VIII	<i>Emblica</i> officinalis Gaertn.	Phyllanthecea e	Tree	Fruit	Dried fruits are taken against the treatment of Jaundice. (Khongsai <i>et al.</i> , 2011)	• Fruit of <i>Emblica</i> <i>officinalis</i> showing hepatoprotecti ve property (Jose &Kuttan, 2000)

Treatment IX	Andrographis paniculata (Burm.f.) Nees	Acanthaceae	Herbs	Whole plant	The plant extract is taken for the treatment of Jaundice (Das et al., 2019)	• The extract of whole plant is reported for hepatoprotecti ve activity (Nagalekshami et al., 2011).
Treatment X	Phyllanthus amarus Schumach. & Thonn.	Phyllanthacea e	Herbs	Fruits & leaves	Dried leaf and fruit powder is eaten twice a day for two weeks to cure Jaundice (Das et al., 2019).	• Aqueous extract of whole plant of <i>P. amarus</i> recorded hepatoprotecti ve activity (Pramyothin <i>et</i> <i>al.</i> , 2007).
Treatment XI	<i>Catharanthus</i> <i>roseus</i> (L.) G. Don	Apocynaceae	Shrub s	Leaf	Leaf extract is given in Jaundice (Das et	
A	<i>Piper caninum</i> Blume	Piperaceae	Climb er	Leaf	al., 2019).	
Treatment XII	<i>Melothria</i> <i>perpusilla</i> (Blume) Cogn.	Cucurbitacea e	Climb er	Whole plant	<i>M. perpusilla</i> plant is boiled in water along with	• Aqueous extract of <i>M</i> . <i>perpusilla</i>

	Mimosa pudica L.	Leguminosae	Herb	Leaf	the plants of <i>M</i> . <i>pudica</i> and the soup is taken in against Jaundice (Das et al., 2019).	 record hepatoprotecti ve activity (Yengkhom et al., 2017). Ethanol extract of leaves of <i>M.</i> <i>pudica</i> showing hepatoprotecti ve activity (Purkayastha et al., 2016).
Treatmen t XIII	Solanum nigrum L.	Solanaceae	Herb	Whole plant	Freshly prepared extract of the plant is used in treatment of liver cirrhosis (Das et al., 2019).	• S. nigrum recorded hepatoprotecti ve activity (Lin et al., 2008)
Treatmen t XIV	Punica granatum L.	Punicaceae	Shrub s	Fruits & Seeds	Dried seed • powder mixed in water is taken for one treatment of Jaundice. Dried	 Fruit juice and seed extracts recorded hepatoprotecti ve activity (Niknahad et

					powder is mixed in sugar solution for the treatment of Jaundice, hepatitis and other disorders (Das et al., 2019)		al., 2012).
Treatment XV	Justicia adhatoda L.	Acanthaceae	Shrub	Root	Decoction of its roots is taken for a month in the treatment of Jaundice (Das et al., 2019)	•	Leaves and flowers extract of J. adhatodashow ed hepatoprotecti ve activity (Afzal et al., 2013).
Treatment	Cleistanthus monoicus (Lour.) Müll. Arg.	Phyllanthacea e	Shrub	Root	The roots of these plants are grounded and the paste is collected in a cup of water. The mixture is boiled and taken orally (Das et	•	No report from C. monoicus. Roots of S. ovalifolia
XVI	Smilax ovalifolia Roxb. ex D.Don	Smilacaceae		Root			recorded hepatoprotecti ve activity (Noor et al.,

	Ardisia paniculata Roxb.	Primulaceae		Root	al., 2019).	•	2013). Roots of <i>A</i> . <i>paniculata</i> recorded hepatoprotecti ve activity (Noor et al., 2013).
Treatment XVII	<i>Tinospora cordifolia</i> (Willd.) Miers	Menispermac eae	Climb er	Stem	Fresh stem juice is taken orally twice a day for 7 days. Das et al., 2019	•	Extract of all the parts reported hepatoprotecti ve effect (Kavitha et al., 2011).
Treatment XVIII	Lawsonia inermis L.	Lythraceae	Shrub	Bark	The bark are crushed into paste and boiled with $\frac{1}{2}$ liter of water. One pinch of salt is also added in this mixture. Half ($\frac{1}{2}$) cup of this liquid preparation is	•	Leaf extract of this plant recorded hepatoprotecti ve activity (Hossain et al., 2011).

					prescribed twice daily continuously for seven days. In case of children the amount of medicine is 3 tablespoon only twice daily (Deka and Nath, 2015).		
	<i>Ficus lepidosa</i> Wall. ex Kurz	Moraceae	Tree	Leaf	Nine (9) number leaves of <i>F</i> .	•	The extract of whole plant of T
Treatmen	Tabernaemontana divaricata(L.) R. Br. exRoem.&Schult.	Apocynaceae	Shrub	Flower	<i>lepidosa</i> and nine (9) number of petals of <i>T</i> . <i>divaricate</i> is paste with the help of mortar		<i>T. divanicata</i> recorded hepatoprotecti ve activity (Kannappan <i>et</i> <i>al.</i> , 2014).
t XIX	Averrhoa carambola L.	Oxalidaceae	Tree	Fruit	and is mixed carefully 100 ml fruit juice of <i>A</i> . <i>carambola</i> . 100 ml milk of goat is also added in this mixture. ¹ / ₂	•	Fruit extract of <i>A. carambola</i> recorded hepatoprotecti ve activity (Azeem et al.,

					cup of this mixture is prescribed thrice daily for 4 to 7 days after food. For children or adolescence boys/girls the herbal medicine is two table spoonful's twice daily. The patients are advice not to take spicy food items, meat, fishes during the period (Deka and Nath, 2015).	2010).
	Justicia adhatoda L.	Acanthaceae	Shrub	Leaf	Fifty (50) gm. fresh leaves of	• Leaves extract of <i>J. adhatoda</i>
Treatmen t XX	<i>Cajanus cajan</i> (L.) Millsp.	Leguminosae	Shrub	Leaf	all the three plants namely, <i>J. adhatoda</i> , <i>C</i> .	record hepatoprotecti ve activity
	Phyllanthus fraternus G.L.	Phyllanthacea e	Herb	Leaf	<i>cajan</i> and <i>P.</i> <i>fraternus</i> (with	(Afzal et al., 2013).

Webster	tender stem) are grinded and prepared tablets which are sun dried. These tablets are given to the patients for the treatment of jaundice. One tablet three times daily for continuously three days is prescribed. For children ½	• The seed of <i>C</i> . <i>cajan</i> record hepatoprotecti ve activity (Rizk <i>et al.</i> , 2016).
	tablets is prescribed two times daily for 5-7 days. The patients are strictly prohibited to	
	take fish, chillies, spicy food and advised to take	

					rest (Deka and Nath, 2015).			
	<i>Phyllanthus</i> <i>fraternus</i> G. L. Webster	Phyllanthacea e	Herb	Leaf, Stem	Leaves of all the plant ingredients are crushed and	The Saponin compound of <i>H.</i> <i>sibthorpioides</i>		
	Hydrocotyle sibthorpioides Lam.	Apiaceae	Herb	Leaf	the extract is boiled with 1/2 liter of water, a pinch of salt is also added in this preparation. After cooling the liquid extract is allowed to take internally at the rate of 3 tablespoon thrice daily before food for 5-8 days continuously. In case of children or adolescence boys or girls the	boiled with $\frac{1}{2}$ liter of water, a		contains an anti- HBV compound (Huang et al., 2013).
	<i>Centella</i> <i>asiatica</i> (L.) Urb.	Apiaceae	Herb	Leaf			The plant extract of <i>C</i> . <i>asiatica</i> record hepatoprotectiv	
Treatmen t XXI	<i>Leucas aspera</i> (Willd.) Link	Lamiaceae	Herb	Leaf			e activity (Antony et al., 2006).	
	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllac eae	Herb	Leaf		•	Aqueous extract of L. aspera reported for its hepatoprotectiv	
	<i>Centipeda</i> <i>minima</i> (L.) A. Braun & Asch.	Asteraceae	Herb				e and antioxidant activity (Banu et al., 2012). The	

					dosage 1-2 tablespoonful. The patient is advised to drink hot water after taking the medicine. The patients are strictly prohibited to take curd, spicy food, fish, meat, turmeric. Consumption of boiled food is advised (Deka and Nath, 2015)	 hepatoprotectiv e activity of <i>D</i>. <i>cordata</i> is yet to be investigated. The phytochemical groups present in <i>C</i>. <i>minima</i> also possessed various biological results including hepatoprotectiv e activity (Linh et al., 2021).
Treatmen t XXII	Swertia chirayita (Roxb.) Buch Ham. ex C.B.Clarke	Gentianaceae	Herb	Stem/Leaf	Hundred (100) gm stem of both <i>J. adhatoda</i> and <i>A. indica</i> , 50 gm stem of <i>P</i> .	extract of <i>S.</i> <i>chirayita</i> recorded hepatoprotecti
	Plumeria rubra L.	Apocynaceae	Tree	Stem	<i>acuminata</i> and 100 gm stem/leaf of S.	ve activity (Verma et al., 2013).
	Justicia	Acanthaceae	Shrub	Stem	<i>chirayita</i> are	• Hydromethan

	adhatoda L. Azadirachta indica A. Juss.	Meliaceae	Tree	Stem	crushed and boiled and stored in a bottle. Two tablespoonful of this medicine is take daily after food for two times for five days. In case of children the prescribe dose is (½) tablespoon (Deka & Nath, 2015)	•	olic and aqueous extracts of leaves of P. rubra recorded for hepatoprotect ive activity (Engineer et al., 2017). Leaf extract of A. indica reported for hepatoprotect ive activity (Chattopadhy ay et al., 1992).
Treatmen	<i>Inula cappa</i> (BuchHam. ex D. Don) DC.	Asteraceae	Herb	Leaves	Juice of crushed leaves taken orally in	•	Aqueous extract of whole plant of <i>I. cappa</i>
t XXIII	<i>Lobelia</i> <i>angulata</i> G. Forst.	Campanulace ae	Herb	Leaves	Jaundice (Lalramnghingl ova, 2016)		significantly showed hepatoprotect ive activity

	Plantago major L.	Plantaginacea e	Herb	Leaves		•	(Kaur et al., 2017). Hepatoprotect ive activity of <i>Lobelia</i> <i>angulate</i> G. Forst. yet to be reported. <i>P. major</i> has hepatoprotect ive activity (Turel et al., 2009).
	<i>Smilax ovalifolia</i> Roxb. ex D. Don	Smilacaceae	Climb er	Root	Clean roots boiled in water is used for	•	Roots of <i>S.</i> <i>ovalifolia</i> recorded hepatoprotect
Treatmen t XXIV	<i>Bridelia tomentosa</i> Blume	Phyllanthacea e	Shrub	Root	taking bath and drunk in the treatment of Jaundice (Lalramnghingl ova, 2016)	•	ive activity (Noor et al., 2013). Hepatoprotecti ve activity of <i>B.</i> <i>tomentosa</i> yet to be reported.

	Ardisia paniculataPrimulaceaeTreeRootRoxb.		•	Roots of <i>A</i> . <i>paniculata</i> recorded			
	<i>Smilax</i> ovalifolia Roxb. ex D. Don	difolia xb. ex D. n Smilacaceae Climb er Root Crushed roots in combination		hepatoprotecti ve activity (Noor et al., 2013).			
Treatme nt XXV	<i>Bridelia</i> <i>tomentosa</i> Blume	Phyllanthacea e	Shrub	Root	with <i>S.</i> <i>ovalifolia</i> and <i>B. tomentosa</i> is boiled with water (Rai & Lalramnghingl ova, 2010).	•	Roots of <i>S.</i> <i>ovalifolia</i> recorded hepatoprotecti ve activity (Noor et al., 2013). Hepatoprotecti ve activity of <i>B. tomentosa</i> yet to be reported.

Recent Advances in Folk Medicine Research in North East India

Species name	Family	Habit	Part used	Mode of use in jaundice	Hepatoprotecti ve activity
Ipomoea aquatic Forssk.	Convolvulacea e)	Aquatic herb	Whole plant	Extract of whole plant is used as medicine for jaundice.	<i>I. aquatic</i> showing the hepatoprotective activity (Alkiyumi et al., 2012).
Achyranthes aspera L.	Amaranthaceae	Herb	Stem & Leaf	Stem and leaf juice is used in the treatment of Jaundice (Das et al., 2008).	reported for
Ageratum conyzoides (L.) L.	Asteraceae	Herb	Whole plant	Plant juice is taken orally once daily in jaundice (Das et al., 2008; Sarkar and Devi, 2017).	The extract of whole plant is reported for hepatoprotective property (Verma et al., 2013).
Andrographis paniculata (Burm. f.) Nees	Acanthaceae	Herb	Whole plant	The whole plants extract is taken for jaundice	

Table 8.2. Medicinal plant traditionally used to treat Jaundice by the traditional healers in North Eastern Region.

				(Khongsai et al., 2011).	recorded hepatoprotective activity (Verma et al., 2013).
Erythrina arborescens Roxb.	Leguminosae	Tree	Seeds, barks	Decoction of seeds and barks taken orally to treat cholera and jaundice like disorders (Tsering et al., 2017).	Yet to be studied the hepatoprotective effect.
Rosa sericea Wall. ex Lindl.	Rosaceae	Shrub	Fruits	Infusion of fruits used to treat jaundice (Tsering et al., 2017).	Yet to be studied the hepatoprotective effect.
Terminalia chebula Retz.	Combretaceae	Tree	Fruit	Dried fruits chewed during severe fever and jaundice (Tsering et al., 2017).	Water extract of fruit of <i>T.</i> <i>chebula</i> recorded for hepatoprotective effect (Choi et al., 2015).
<i>Rheum nobile</i> Hook. f. & Thomson	Polygonaceae	Herb	Root	Decoction of root consumed	Not reported.

				during Jaundice (Tsering et al., 2017).	
Neopicrorhiza scrophulariiflora (Pennell) D. Y. Hong	Plantaginaceae	Herb	Root	Decoction of rhizome consumed to treat Jaundice (Tsering et al., 2017).	Root extract of this plant recorded for hepatoprotective activity (Wang et al., 2006).
Ligularia amplexicaulis DC.	Asteraceae	Herb	Root	Infusion of roots consumed to treat jaundice (Tsering et al., 2017).	Not reported.
Berberis aristata DC.	Berberidaceae	Shrub		Root used in the treatment of Jaundice (Shankar and Rawat, 2013)	Root extract of this plant recorded for hepatoprotective activity (Dehar et al., 2013).
Coptis teeta Wall.	Ranunculaceae	Herb	Root	Root tonic used in the treatment of jaundice (Shankar and	Not reported.

				Rawat, 2013).	
Phyllanthus emblica L.	Phyllanthaceae	Tree	Fruit	Fresh fruit are used as liver tonic. The dried fruit are chewed in the treatment of Jaundice (Khongsai et al., 2011).	Dried leaves and stems extract of this plant recorded for hepatoprotective activity (Srirama et al., 2012).
Oldenlandia Corymbosa L.	Rubiaceae	Herb	Whole plant	Used in the treatment of Jaundice (Sailo et al., 2017).	Methanolic extract of the whole plant of this plant recorded for hepatoprotective activity (Sadasivan et al., 2006).
Phyllanthus niruri L.	Phyllanthaceae	Herb	Root	The root juice in combination with milk is used in Jaundice (Sailo et al., 2017).	Methanolic and aqueous extract of leaves and fruits of <i>P. niruri</i> recorded for hepatoprotective activity (Harish

					& Shivanandappa, 2006).
Alternanthera sessilis (L.) R.Br. ex DC.	Amaranthaceae	Herb	Leaves	Leaves are used (Gogoi et al., 2019)	Methanolic extract of the whole plant of <i>A</i> . <i>sessilis</i> is recorded for hepatoprotective activity (Bhuyan et al., 2018).
Alseodaphne petiolaris Hook . f.	Lauraceae	Tree	Bark	Paste of about 50 gm of dried bark and a type of an insect is given once daily (fresh preparation each day) for 1 week (Rout et al., 2012)	The hepatoprotective activity of this species is yet to be reported.

Oxalis corymbosa DC.	Oxalidaceae	Herb	Whole	Entire plant is crushed and the extract is taken thrice daily to counteract jaundice (Sajem & Gosai, 2006)	The hepatoprotective activity of this species is yet to be reported.
Plantago major L.	Plantaginaceae	Herb	Leaves	An equal proportion of crushed leaves and raw milk (w/v) is mixed and taken in an empty stomach for almost a week to cure jaundice (Sajem & Gosai, 2006).	Plant extract of <i>P. major</i> is recorded for hepatoprotective activity (Turel et al., 2009).
Zingiber officinale Roscoe	Zingiberaceae	Herb	Rhizom e	Dry ginger powder mixed with equal amount of honey is given in the treatment of Jaundice (riary et al., 2019).	Hepatoprotective effect is recorded for <i>Z.</i> <i>officinale</i> (Atta et al., 2010).

Spinacia oleracea L.	Amaranthaceae	Herb	Leaves	Leaves curry is used to treat Jaundice (Swargiary et al., 2019).	Methanol extract of <i>S. oleracea</i> is recorded for hepatoprotective activity (Maximas et al., 2014).
Allium cepa L.	Amaryllidaceae	Herb	Bulb	Finely chopped onion mixed with lemon juice is given to treat jaundice (Swargiary et al., 2019).	Bulb extract of this species is reported for hepatoprotective effect (Shaik et al., 2012).
<i>Cuscuta reflexa</i> Roxb.	Cuscutaceae	Parasiti c climber	Stem	Stem cut into small pieces and crushed. The paste so obtained is then diluted to double its content and filtered through cotton cloth. The filtrate (about 5 ml) is then taken internally in	Alcoholic and aqueous extract of <i>C. reflexa</i> have showing hepatoprotective activity (Katiyar et al., 2015).

empty stomach for 7 days in mornings during jaundice. (Choudhury, 1999). Fresh rhizome cut into pieces pounded and made a paste. The paste is then diluted. The is decoction taken internally *wallichii* (R.Br.) Rhizom Dipteris $\frac{1}{2}$ cup about 20 Dipteridaceae Shrub Not reported Moore. ml) a day in e empty stomach for the treatment of jaundice. This process is continued till recovery (Choudhury, 1999). The juice of Eclipta prostrata (L.) L. Hepatoprotective Asteraceae Herbs Leaves Mant. leaves given in effect of Ε.

				jaundice (Choudhury, 1999).	<i>prostrata</i> is recorded (Dheeba et al., 2012).
<i>Flacourtia indica</i> (Burm. f.) Merr.	Salicaceae	Tree	Fruit	Fruits are used in jaundice (Choudhury, 1999).	Extracts of the aerial parts of <i>F</i> . <i>indica</i> (Burm. f.) Merr., were evaluated for hepato- protective effect (Nazneen et al., 2009).
<i>Magnolia champaca</i> (L.) Baill. ex Pierre	Magnoliaceae	Tree	Seed	About 10 gm. of seed powder is dissolved in a cup (about 40 ml) of cold water and taken in empty stomach in the treatment of jaundice. The disease is cured if it is taken regularly for 7	Flower extract of <i>M. champaca</i> possess promising hepatoprotective effect (Ananthi & Anuradha, 2015).

Recent Advances in Folk Medicine Research in North Ea	ıst India
---	-----------

				days (Choudhury, 1999).	
Archidendron clypearia (Jack) I. C. Nielsen	Leguminaceae	Tree	Leaves	Leaves boiled, the decoction is cold and used to give bath once a day during jaundice (Choudhury, 1999).	Not reported.
Argemone mexicana L.	Papaveraceae	Herb	Leaf	The boiled leaf is used in liver (Nonibala, 2010). Decoction of the leaves is used in jaundice (Sinha, 1996).	Extract of areal part of <i>A.</i> <i>mexicana</i> is recorded for hepatoprotective activity (Adam et al., 2011).
<i>Benincasa hispida</i> (Thunb.) Cogn.	Cucurbitaceae	Climber	Fruit	The boiled fruit is used in jaundice and stomach ulcer and liver complaints (Nonibala,	Not reported.

Recent Advances in Folk Medicine Research in North East Inc	lia
---	-----

				2010).	
<i>Potentilla indica</i> (Andr.) Wolf	Rosaceae	Herb	Whole plant	The plant is boiled and extract obtained is used in the treatment of jaundice (Nonibala, 2010).	Not reported.
<i>Oldenlandia Auricularia</i> (L.) K. Schum.	Rubiaceae	Herb	Whole plant	The boiled extract of the plant is used in liver problem (Nonibala, 2010).	Not reported.
<i>Oldenlandia diffusa</i> (Willd.) Roxb.	Rubiaceae	Herb	Leaf	Decoction of the plant is used in jaundice (Nonibala, 2010)	<i>O. diffusa</i> is recorded for hepatoprotective property (Sunwoo et al., 2015).
Lygodium flexuosum (L.) SW.	Lygodiaceae	Herb	Whole Plant	The boiled extract of the plant is used in the treatment of	<i>L. flexuosum</i> is recorded for hepatoprotective property (Wills

				jaundice (Nonibala, 2010).	& Asha, 2006).
Mimosa pudica L.	Leguminosae	Herb	Whole plant	The boil of whole plant along with crystal sugar is used in jaundice (Nonibala, 2010).	Ethanol extract of leaves of <i>M</i> . <i>pudica</i> showing hepatoprotective activity (Purkayastha et al., 2016).
Zehneria scabra Sond.	Cucurbitaceae	Climber	Leaf	The boiled extract of the leaves along with sugar molasses is given in jaundice (Nonibala, 2010).	Not reported.
Bixa orellana L.	Bixaceae	Shrub	Leaf & Seed	Leaf& Seed extract is used in jaundice (Nonibala, 2010).	Seed extract is recorded for hepatoprotective activity (Singh et al., 2018).
Mussaenda glabra Vahl	Rubiaceae	Shrub	Leaf	Leaf extract is used in jaundice	Not reported.

				(Devi, 2013).	
Amaranthus virdis L.	Amaranthaceae	Herb	Root	Few granules of mishri (rock sugar) added to crushed root soaked in water for about 1 hour taken orally twice a day before food (Kom et al., 2018).	Plant extracts of this plant is recorded for hepatoprotective activity (Sundarrajan et al., 2017).
<i>Artocarpus lacucha</i> Buch Ham.	Moraceae	Tree	Root	Few granules of mishri (rock sugar) added to crushed root soaked in water for about 1 hour taken orally twice a day before food (Kom et al., 2018).	Fruit extract is recorded for hepatoprotective activity (Saleem et al., 2018).
<i>Melothria perpusilla</i> (Blume) Cogn.	Cucurbitaceae	Creeper	Whole plant	The decoction of the whole plant	Aqueous extract of <i>M. perpusilla</i>

				mixed with mishri (rock sugar) is administered orally (Kom et al., 2018).	is recorded for hepatoprotective activity (Yengkhom et al., 2017)
Pavetta indica L.	Rubiaceae	Shrub	Leaves	10-15 leaves are boiled in about 300 ml water with or without salt. The decoction (one tea cup) is given both in the morning and evening before food for 6 months in the treatment of Jaundice & liver cirrhosis (Kom et al., 2018).	Ethanol extract of <i>P. indica</i> " exhibited significant hepatoprotective activity.
Mukia maderaspatana (L.) M. Roem.	Cucurbitaceae	Climber	Whole plant	Decoction is taken orally to treat Jaundice (Ningombam et	Not reported.

				al., 2014).	
Zanthoxylum rhetsa (Roxb.) DC.	Rutaceae	Tree	Leaves	Decoction is taken orally to treat jaundice (Ningombam et al., 2014).	Not reported.
Sonchus brachyotus DC.	Asteraceae	Herb	Root	Root extract is given in Jaundice (Singh, 1990).	Not reported.
<i>Hygrophila salicifolia</i> (Vahl) Nees	Acanthaceae	Herb	Leaves	The plant extract is used for stomach complaints and jaundice (Singh, 1990).	The plant extract is recorded for hepatoprotective activity (Feng et al., 2005).
<i>Gymnopetalum chinense</i> (Lour.) Merr.	Cucurbitaceae	Climber	Whole aerial part	Whole aerial parts of the plant are boiled and drink as a prescription against jaundice (Pofze, 2012).	Not reported
Lantana camara L.	Verbenaceae	Shrub	Flower	Boiled extract of flowers is given	Extract of this species is

for as remedy for reported jaundice (Pofze, hepatoprotective 2012). activity (Asija et al., 2015). Decoction of stem bark or Stem is root Mahonia napaulensis DC. Berberidaceae Shrub Bark & prescribed Not reported. Root against fevers and jaundice (Pofze, 2012). Whole plant of Decoction of extract plant used N.hydrophylla is Nymphoides indica (L.) Aquatic Whole against fever recorded for Menyanthaceae hepatoprotective Kuntze Herb Plant and jaundice (Rajkumari et activity al., 2013). (Bharathi et al., 2014). The juice obtained by crushing the Celtis australis L. Cannabaceae Tree Fruit fresh fruit is Not reported. mixed with water and honey prescribed and

				in Jaundice and dysentery (Salam, 2013).	
<i>Garcinia pedunculata</i> Roxb. ex BuchHam.	Clusiaceae	Tree	Fruit	Immature fruit are eaten raw for jaundice (Salam, 2013).	Fruit extract is reported for hepatoprotective activity (Mundugaru et al., 2014).
Oroxylum indicum (L.) Kurz	Bignoniaceae	Tree	Bark	Boiled extract of the bark mixed with the leaf juice of <i>Mussaenda</i> <i>roxburghii</i> is taken orally to cure jaundice (Salam, 2013).	Extract of the stem bark <i>O.</i> <i>indicum</i> is recorded for hepatoprotective property (Mohapatra et al., 2018).
Boerhaavia diffusa L.	Nyctaginaceae	Herb	Leaves	Leaf juice (15 ml) is taken orally 2 times to treat jaundice (Dolui et al., 2004).	Alcoholic extract of whole plant of <i>B. diffusa</i> is recorded for hepatoprotective property (Chandan et al., 1991).

Eleusine indica (L.) Gaertn.	Poaceae	Herb	Root	Root juice is used for jaundice (Kayang et al., 2005).	Extract of <i>E</i> . <i>indica</i> is recorded for hepatoprotective activity (Iqbal & Gnanaraj, 2012).
Thalictrum foliolosum DC.	Ranunculaceae	Herb	Root	The decoction of the roots is used to treat jaundice (Neogi et al., 1989).	Root ethanolic extract of <i>T.</i> <i>foliolosum</i> is recorded for hepatoprotective property (Marslin & Prakash, 2020).
<i>Benincasa hispida</i> (Thunb.) Cogn.	Cucurbitaceae	Climber	Leaves	Crushed juice of the leaves taken internally for jaundice (Khiangte & Lalramnghinglo va, 2017).	Dried seeds of B. hispid are recorded for hepatoprotective property (Patel et al., 2012).
Curcuma longa L.	Zingiberaceae	Herb	Rhizom e	Decoction of root stock taken for jaundice	Rhizome extract is recorded for hepatoprotective property

Recent Advances in Folk Medicine Research in North East India

				(Khiangte & Lalramnghinglo va, 2017).	(Karamalakova et al., 2019).
<i>Dendrocnide sinuata</i> (Blume) Chew	Urticaceae	Shrub	Root	Decoction of roots taken internally for jaundice (Khiangte & Lalramnghinglo va, 2017).	Aqueous extract of <i>D. sinuata</i> root bark is recorded for hepatoprotective effect (Angom et al., 2018).
Hibiscus rosa-sinensis L.	Malvaceae	Shrub	Flower	Raw flower is taken for curing Jaundice (Lalfakzuala et al., 2007).	Flower extract of <i>H. rosa-sinensis</i> is recorded for hepatoprotective effect (Biswas et al., 2014).
Lagerstroemia speciosa (L.) Pers.	Lythraceae	Tree	Root	Root decoction is taken in Jaundice (Lalfakzuala et al., 2007).	Bark extract of <i>L. speciosa</i> is recorded for hepatoprotective activity (Pal et al., 2020).
Chonemorpha fragrans (Moon) Alston	Apocynaceae	Climber	Fruit, root and leaf	Fruit, root and leaf were taken raw or boiled with water and	Ethanolic extract of <i>C. fragrans</i> root is recorded for

				taken for jaundice (Lalmuanpuii, 2013)	hepatoprotective activity (Duraisankar et al., 2015).
<i>Vitex peduncularis</i> Wall. ex Schauer	Lamiaceae	Tree	Stem Bark	Stem bark was boiled with water and drink in the treatment of jaundice (Lalmuanpuii, 2013).	Not reported.
Phyllanthus fraternus G.L.Webster	Phyllanthaceae	Herb	Stem Bark	Raw or hot water decoction of stem bark and leaves were taken for treating diabetes and jaundice ((Lalmuanpuii, 2013).	Aqueous extract of this species is recorded for hepatoprotective activity (Lata et al., 2014).
Baccaurea ramiflora Lour.	Phyllanthaceae	Tree	Stem bark	Hot or cold- water decoction of the stem bark used in the treatment of jaundice	Not reported.

				(Lalmuanpuii, 2013).	
Anodendron paniculatum A. DC.	Apocynaceae	Shrub	Leaves & Fruit	Raw leaves and fruits were eaten for jaundice (Lalmuanpuii, 2013).	Not reported.
<i>Inula cappa</i> (BuchHam. ex D. Don) DC.	Asteraceae	Herb	Leaves	Leaves juice is used for treating jaundice (Lalmuanpuii, 2013).	Not reported.
<i>Clerodendrum serratum</i> (L.) Moon	Lamiaceae	Shrub	Leaves	Leaf decoction of 4 -5 leaves used in jaundice twice a day and improves high blood pressure (Rama Shankar et al., 2012)	Ethanol extract of <i>C. serratum</i> roots is recorded for hepatoprotective property (Vidya et al., 2007).
<i>Thunbergia grandiflora</i> (Roxb. ex Rottl.) Roxb.	Acanthaceae	Climber	Root	Root powder or paste (1 gm.) is taken twice a day in the treatment of jaundice (Rama	Aqueous methanol extract of leaves of <i>T.</i> <i>grandiflora</i> is recorded for hepatoprotective

				Shankar et al., 2012).	effect (Ibrahim et al., 2017).
<i>Acacia concinna</i> (Willd.) DC.	Leguminaceae	Tree	Leaves	A mixture of infusion of leaves, black pepper and tamarind is taken orally in the treatment of jaundice (Sharma et al., 2001).	Not reported.
Amomum subulatum Roxb.	Zingiberaceae	Herb	Rhizom e	Decoction of the rhizome (5 ml, 4 times daily) is taken orally in jaundice (Sharma et al., 2001).	Methanolic extract of <i>A.</i> subulatum seeds is reported for hepatoprotective property (Parmar <i>et al.</i> , 2009).
<i>Curcuma caesia</i> Roxb.	Zingiberaceae	Herb	Rhizom e	The infusion of fresh rhizome is taken for jaundice (Jamir et al., 2012)	Rhizome extract of <i>C. caesia</i> is recorded for hepatoprotective property (Baghel et al., 2013).

Brassica oleracea L.	Brassicaceae	Herb	Foliage	The fresh juice of the foliage is consumed to treat jaundice (Kichu et al., 2015).	Inflorescence extract of <i>B.</i> <i>oleracea</i> is recorded for hepatoprotective property (Hashem et al., 2013).
Ananas comosus (L.) Merr.	Bromeliaceae	Herb	Fruit	About 50 ml juice of fresh fully ripened fruit is mixed with 100gm of sugar and taken 10 ml twice in a day after food for a week in the treatment of Jaundice (Singh et al., 2015).	Pineapple juice exhibited hepatoprotective activity (Yantih et al., 2017).
Asparagus racemosus Willd.	Asparagaceae	Climber	Root	Root pounded into paste and taken orally in jaundice (Rama Shankar & Devalla, 2012).	Aqueous extract of <i>Asparagus</i> <i>racemosus</i> root is recorded for hepatoprotective activity

					(Rahiman et al., 2011).
Cassia fistula L.	Leguminosae	Tree	Fruit	Fruit pulp used in the treatment of jaundice and liver diseases (Rama Shankar & Devalla, 2012).	Fruit extract were recorded for hepatoprotective activity (Ahirwar et al., 2010).
Rumex nepalensis Spreng.	Polygonaceae	Herb	Root	Infusion of root is used in the treatment of hepatitis and taken as liver tonic (Chhetri, 2005).	Not reported.
Oxalis corniculate L.	Oxalidaceae	Herb	Whole plant	The whole plant juice is taken as a liver tonic (Chhetri, 2005).	Plant extract were recorded for hepatoprotective activity (Sreejith et al., 2013).
Corydalis govaniana Wall.	Papaveraceae	Herb	Root	Decoction of root is used as a liver tonic (Chhetri, 2005).	The phytochemical govaniadine isolated from the

					plant extract of <i>C. govaniana</i> is recorded for hepatoprotective activity (Jahan et al., 2021).
<i>Cinnamomum bejolghota</i> (BuchHam.) Sweet	Lauraceae	Tree	Bark	Decoction of bark is used as liver tonic (Chhetri, 2005)	Not reported.
Abrus precatorius L.	Fabaceae	Climber	Root	Root used against jaundice (Dahal, 2019)	Seed extract is recorded for hepatoprotective property (Battu & Kumar, 2009).
Aphanamixis polystachya (W all.) R. Parker	Meliaceae	Tree	Bark	Bark used to cure liver disorder & jaundice (Dahal, 2019)	Not reported.
Bacopa monnieri (L.) Wettst.	Plantaginaceae	Herb	Whole plant	Plant juice is used to treat Jaundice (Dahal, 2019)	Plant extract is recorded for hepatoprotective property (Gudipati et al., 2012).

Betula utilis D. Don	Betulaceae	Tree	Stem Bark	Decoction of stem bark is used in the treatment of Jaundice (Dahal, 2019).	Not reported.
<i>Citrus aurantiifolia</i> (Christm.) Swingle	Rutaceae	Tree	Leaf	Leaves juice taken on empty stomach to cure jaundice (Dahal, 2019)	Peels extracts is recorded for hepatoprotective property (Oyinloye et al., 2020).
<i>Citrus maxima</i> (Burman) Merrill	Rutaceae	Tree	Fruit	Fruit juice taken against jaundice (Dahal, 2019).	Leaves extract is recorded for hepatoprotective activity (Feksa et al., 2018).
Citrus medica L.	Rutaceae	Tree	Root	Decoction of root used to cure jaundice (Dahal, 2019).	Not reported.
Coccinia grandis (L.) Voigt	Cucurbitaceae	Climber	Fruit	Fruits useful in the treatment of jaundice (Dahal, 2019).	Leaves extract is recorded for hepatoprotective activity (Kundu et al., 2012).

Cucumis sativus L.	Cucurbitaceae	Climber	Fruit	Fruits is used in the treatment of Jaundice (Dahal, 2019)	Ethanolic extract of the fruits of <i>C</i> . <i>sativus</i> is recorded for hepatoprotective activity (Gopalakrishnan & Kalaiarasi, 2013).
Curculigo orchioides Gaertn.	Hypoxidaceae,	Herb	Tuber	Pounded tuber given in jaundice and liver complaints (Dahal, 2019).	Rhizomes extract of <i>C.</i> <i>orchioides</i> is recorded for hepatoprotective activity (Babu <i>et</i> <i>al.</i> , 2013)
Desmostachya bipinnata (L.) Stapf.	Poaceae	Herb	Whole plant	Root used to cure jaundice (Dahal, 2019)	Root extract of this species is recorded for hepatoprotective activity (Rahate & Rajasekaran, 2015).
Gossypium arboretum L.	Malvaceae	Shrub	Flower	Decoction of flowers used to cure Jaundice	Not reported.

				(Dahal, 2019)	
<i>Imperata cylindrica</i> (L.) Raeusch.	Poaceae	Herb	Rhizom e	Rhizome juice taken against jaundice (Dahal, 2019)	Rhizome extract is recorded for hepatoprotective property (Ma <i>et</i> <i>al.</i> , 2018).
Jatropha curcas L.	Euphorbiaceae	Shrub	Leaves	Decoction of leaves used against jaundice (Dahal, 2019).	Leaf extract is recorded hepatoprotective activity (Adejumobi <i>et</i> <i>al.</i> , 2012).
Nardostachys jatamansi (D. Don) DC.	Caprifoliaceae	Herb	Rhizom e	Infusion of rhizomes taken to cure Jaundice (Dahal, 2019)	Ethanolic extract of the rhizomes is recorded for hepatoprotective property (Ali <i>et</i> <i>al.</i> , 2000).
<i>Phlogacanthus thyrsiflorus</i> Nees.	Acanthaceae	Shrub	Leaves	Leaf juice taken to cure jaundice (Dahal, 2019).	Leaves extract is recorded for hepatoprotective property (Saikia <i>et al.</i> , 2019).
Portulaca oleracea L.	Portulacaceae	Herb	Aerial Part	Aerial parts used in	Aqueous extract of <i>P. oleracea</i> is

				Jaundice (Dahal, 2019)	recorded for hepatoprotective property (Anusha et al., 2011).
Potentilla lineata Trevir.	Rosaceae	Herb	Root	Root juice used to cure jaundice (Dahal, 2019)	Not reported.
<i>Pterocephalus hookeri</i> (C.B. Clarke) E. Pritz.	Caprifoliaceae	Herb	Aerial part	Infusion of aerial part taken to cure jaundice (Dahal, 2019)	Not reported.
Rubia cordifolia L.	Rubiaceae	Climber	Root	Root juice taken on empty stomach to cure jaundice (Dahal, 2019)	Extracts of roots of <i>R. cordifolia</i> is recorded for hepatoprotective property (Babita <i>et al.</i> , 2007).
Rubus ellipticus Sm.	Rosaceae	Shrub	Root	Decoction of root taken to cure jaundice (Dahal, 2019)	Not reported.
Sarcococca hookeriana Baill.	Bischofiaceae	Shrub	Root	Root juice taken in treatment of jaundice (Dahal, 2019).	Not reported.

Senecio scandens Buch Ham. ex D. Don	Asteraceae	Herb	Leaves	Leaves juice taken to cure jaundice (Dahal, 2019).	Not reported.
Tamarindus indica L.	Leguminosae	Tree	Leaf	Leaf juice taken in the treatment of jaundice (Dahal, 2019).	Leaves extract is recorded for hepatoprotective property (Rodriguez Amado et al., 2016).
<i>Taraxacum campylodes</i> G. E. Haglund	Asteraceae	Herb	Root	Roots juice taken against jaundice (Dahal, 2019).	Not reported.
Urtica dioica L.	Urticaceae	Herb	Leaves	Boiled leaves taken to cure jaundice (Dahal, 2019).	Whole plant extract is recorded for hepatoprotective property (Joshi et al., 2015).
Xanthium strumarium L.	Asteraceae	Herb	Leaves	Decoction of leaves and fruits taken to cure jaundice (Dahal, 2019).	Fruit extract is recorded for hepatoprotective property (Wang et al., 2011).

Zephyranthes carinata Herb.	Amaryllidaceae	Herb	Bulb	Decoction of bulb taken against jaundice (Dahal, 2019)	Not reported.
<i>Dactylorhiza hatagirea</i> (D. Don) Soo	Orchidaceae	Herb	Tuber	The tuber is made into paste (1-2 gm per dose) and is prescribed twice daily in case of Jaundice and is taken till recovery (Maity et al., 2004).	Not reported.
Cucurbita pepo Linn.	Cucurbitaceae	Climber	Fruit	Ripen fruits cure jaundice (Pradhan & Badola, 2008).	Seed extract is recorded for hepatoprotective property (Elmeligy et al., 2019).
Bryophyllum pinnatum (Lam.) Oken	Crassulaceae	Herbs	Leaves	Juice is administered in jaundice (Das & Choudhury, 2012)	Leaves extract is recorded for hepatoprotective property (Yadav & Dixit, 2003).

Conclusions

In this review, we described the medicinal plants used to treat jaundice and liver disorders in North East India. Local people or traditional healers are using plants without any scientific base. There are large number of important plant resources in this region, practices and folk healing knowledge among the ethnic groups, which can address several problems in the health science. The details documentation of folk medicine and healing practices and their scientific validation is utmost important to preserve this precious knowledge and for wider use for health management and disease treatment. Phytochemical screening for progressive chemical constituents, clinical studies and biological activities is of global importance. Therefore, such popular plant species could be further analyzed for bioactive constituents, *in vivo/in vitro* biological activities, which may lead to new and potential drugs. This review provides a baseline data for initial screening of promising plants used in jaundice treatment and liver disorders in this north eastern region, India.

References

- Adam, S. I. Y., Idris, I. A., Abdelgadir, E. H., Ahmed, R. H. & Kamal, E. E. 2011. Evaluation of hepatoprotective activity of *Argemone mexicana* aerial part extracts on CCL_4 induced liver damage in wistar rats. *British Journal of Pharmacology and Toxicology*, 2(5): 251-256.
- Adaramoye, O.A., Odunewu, A.O. & Farombi, E.O. 2010. Hepatoprotective effect of *Curcuma longa* L. in D-galatosamine induced liver injury in mice: evidence of antioxidant activity. *African Journal of Medical Science*, 39 Suppl: 27-34.
- Adejumobi, A. E., Areola, J. O. & Babalola, O. O. 2015. Hepatoprotective potentials of the methanolic leaf extract of *Jatropha curcas* (LINN) on cadmium induced toxicity in rabbit. *Journal of Medicine and Medical Sciences*, 6(7): 156-161.
- Afzal, U., Gulfraz, M., Hussain, S., Malik, F., Maqsood, S., Shah, I. & Mahmood, S. 2013. Hepatoprotective effects of *Justicia adhatoda* L. against Carbon tetrachloride (CCl4) induced liver injury in Swiss albino mice. *African Journal* of *Pharmacy and Pharmacology*, 7(1): 8-14.
- Ahirwar, D. K., Jain, R., Chourasia, S., Saxena, R. C. & Jain, D. K. 2010. Hepatoprotective Activity of *Cassia fistula* alcohlic extract against CCl4, induced liver damage in Albino rats. *Biomedical & Pharmacology Journal*, 3(1): 251-255.

- Ali, S., Ansari, K. A., Jafry, M. A., Kabeer, H. & Diwakar, G. 2000. Nardostachys jatamansi protects against liver damage induced by thioacetamide in rats. Journal of ethnopharmacology, 71(3): 359-363.
- Alkiyumi, S. S., Abdullah, M. A., Alrashdi, A. S., Salama, S. M., Abdelwahab, S. I., & Hadi, A. H. A. 2012. *Ipomoea aquatica* extract shows protective action against thioacetamide-induced hepatotoxicity. *Molecules*, 17(5): 6146-6155.
- Ananthi, T. & Anuradha, R. 2015. Hepatoprotective activity of *Michelia champaca* L. against carbon tetrachloride induced hepatic injury in rats. *Journal of Chemical* and Pharmaceutical Research, 7(9): 270-274.
- Angom, B., Mohan, P., Lalmuanthanga, C., Maurya, P. & Chane, K.V. 2018. Hepatoprotective activity of aqueous extract of *Dendrocnide sinuate* (Bhume) Chew. *Journal of Pharmacognosy and Phytochemistry*, 7(3): 1072-1077.
- Antony, B., Santhakumari, G., Merina, B., Sheeba, V. & Mukkadan, J. 2006. Hepatoprotective effect of *C. asiatica* (L.) in carbon tetrachloride induced liver injury in rats. *Indian Journal of Pharmaceutical Sciences*, 68(6): 772-776.
- Anusha, M., Prabhakaran, V., Kumari, B.P., Venkateswarlu, M., Taj, S.S. & Ranganayakulu, D. 2011. Hepatoprotective activity of aqueous extract of *Portulaca oleracea* in combination with lycopene in rats. *Indian Journal of Pharmacology*, 43(5): 563-567.
- Anusha, M., Venkateshwarlu, M., Prabhakar, V., Jaj, S.S., Kumari, B.P. & Ranganayakula, D. 2011. Hepatoprotective activity of aqueous extract of *P. oleracea* in combination with lycopene in rats. *Indian Journal of Pharmacology*, 43(5): 563-567.
- Asija, R., Kumar, V. & Sharma, A. K. 2015. Hepatoprotective Activity of Lantana camera against carbon tetra chloride Induced hepatotoxicity in Wister Rat. International Journal of Pharmaceutical Erudition, 4(4): 1-7.
- Atta, A.H., Elkoly, T.A., Mouneir, S.M., Kamel, G. & Alwabel, Z. S. 2010. Hepatoprotective effect of methanol extracts of *Zingiber officinale* and *Cichorium intybus*. *Indian Journal of Pharmaceutical Sciences*, 72(5): 564-570.
- Azeem, A.K., Mathew, M., Dilip, C. & Nair, C. 2010. Hepatoprotective effect of *Averrhoea carambola* fruit extract on carbon tetrachloride induced hepatotoxicity in mice. *Asian Pasific Journal of Tropical Medicine*, 3(8): 610-613.
- Babita, M. H., Chhaya, G. & Goldee, P. 2007. Hepatoprotective activity of *Rubiacordifolia*. *Pharmacologyonline*, 3: 73-79.

- Babu, G., Shalima, N. K., Divya, T. A. & Divya, T. 2013. Evaluation of Hepatoprotective Activity of Rhizomes of *Curculigo orchioides* Gaertn. *Research Journal of Pharmacy and Technology*, 6(10): 1127-1130.
- Babu, G., Shalima, N.K., Divya, T.A. & Divya, T. 2013. Evaluation of hepatoprotective activity of rhizomes of *Curculigo orchioides* Gaertn. *Research Journal of Pharmacy and Technology*, 6(10): 1127-1130.
- Baghel, S. S., Mavai, Y., Baghel, R. S., Sikarwar, I. & Shrivastava, N. 2013. Evaluation of hepatoprotective efficacy of rhizomes *Curcuma caesia* in paracetamol induced hepatotoxicity in rats. *International Journal of Pharmacy and Pharmaceutical Sciences*, 5(3): 249-255.
- Banu, S., Bhaskar, B. & Balasekar, P. 2012. Hepatoprotective and antioxidant activity of *Leucas aspera* against D-galactosamine induced liver damage in rats. *Pharmaceutical Biology*, 50(12): 1592-1595. doi: 10.3109/13880209.2012.685130. Epub 2012 Sep 20. PMID: 22992009.
- Battu, G. R. & Kumar, B. M. 2009. Hepatoprotective activity of *Abrus precatorius* Linn. against paracetamol induced hepatotoxicity in rats. *Pharmacology* online, 3: 366-375.
- Bharathi, R., Shankar, K. R. & Geetha, K. 2014. In vitro antioxidant activity and in vivo hepatoprotective activity of ethanolic whole plant extract of *Nymphoides hydrophylla* in CCl 4 induced liver damage in albino rats. *International Journal of Research in Ayurveda and Pharmacy*, 5(6): 667-672.
- Bhuyan, B., Baishya, K. & Rajak, P. 2018. Effects of *Alternanthera sessilis* on liver function in carbon tetra chloride induced hepatotoxicity in wister rat model. *Indian Journal of Clinical Biochemistry*, 33(2): 190-195. doi: 10.1007/s12291-017-0666-1. Epub 2017 May 18. PMID: 29651210; PMCID: PMC5891458.
- Borborah, K., Borthakur, S.K. & Tanti, B. 2016. *Musa balbisiana* Colla.- Taxonomy, traditional knowledge and economic potentialities of the plant in Assam, India. *Indian Journal of Traditional Knowledge*, 15(1): 116-120.
- Chandan, B.K., Sharma, A.K. & Anand, K.K. 1991. Boerhaavia diffusa: a study of its hepatoprotective activity. Journal of Ethnopharmacology, 31(3): 299-307.
- Chattopadhyay, R.R., Sarkar, S.K., Ganguly, S., Banerjee, R.N., Basu, T.K. & Mukherjee, A. 1992. Hepatoprotective activity of *Azadirachta indica* leaves on paracetamol induced hepatic damage in rats. *Indian Journal of Experimental Biology*, 30(8): 738-740.
- Chhetri, D.R. 2005. Ethnomedicinal plants of the Khangchendzonga National park, Sikkim, India. *Ethnobotany*, 17: 96-103.

- Choi, M. K., Kim, H. G., Han, J. M., Lee, J. S., Lee, J. S., Chung, S. H. & Son, C. G. 2015. Hepatoprotective effect of *Terminalia chebula* against t-BHP-induced acute liver injury in C57/BL6 mice. *Evidence-Based Complementary and Alternative Medicine*, 2015.
- Choudhury, M.D. 1999. *Ethnomedico botanical aspects of Reang tribe of Assam a comprehensive study*. Ph.D. Thesis (Unpublished) Gauhati University, Assam.
- Dahal, S. 2019. *Studies on traditional medicinal plants of Sikkim*. Ph.D. Thesis, Gauhati University, Guwahati, Assam.
- Das, A.K., Dutta, B.K. & Sharma, G.D. 2008. Medicinal plants by different tribes of Cachar District, Assam. *Indian Journal of Traditional Knowledge*. 7(3): 446-454.
- Das, G., Sharma, R.K. & Borborah, M. 2019. Ethnomedicinal use of different medicinal plant used by the traditional practitioners in North East India for the treatment of jaundice. *World Journal of Pharmacy and Pharmaceutical Sciences*, 8(2): 1133-1138.
- Dehar, N., Walia, R., Verma, R. B. & Pandey, P. 2013. Hepatoprotective activity of *Berberis aristata* root extract against chemical induced acute hepatotoxicity in rats. *Asian Journal of Pharmaceutical and Clinical Research*, 6(5): 53-56.
- Devi, M. H. 2013. Macrophytes of Keibul Lamjao National Park, Manipur with special reference to Ethnobotanical notes. Ph.D. Thesis, Assam University, Silchar.
- Dheeba, B., Vaishnavi, E., Sampath kumar, P. & Kannan, M. 2012. Hepatoprotective and curative effect of *Eclipta prostrata* on CCl4 Induced hepatotoxicity in albino rats. *Biosciences Biotechnology Research Asia*, 9(1): 309-314.
- Dolui, A.K., Sharma, H.K., Marein, T.B. & Lalhriatpuii, T.C. 2004. Folk herbal remedies from Meghalaya. *Indian Journal of Traditional Knowledge*, 3(4): 358-364.
- Elmeligy, M. H., Farid, A. S. & Fararh, K. 2019. Antioxidant and hepatoprotective effect of pumpkin seed oil in CCl4-intoxicated rats. *Benha Veterinary Medical Journal*, 36(2): 77-89.
- Engineer, A., Pal, S., Desai, K. & Highland, H. 2017. Synergistic antioxidant action of *Murraya koenigii* and *Plumeria rubra* extracts enhance hepatoprotective efficacy against methotrexate induced liver injury. *International Journal of Pharmacy and Pharmaceutical Sciences*, 9(10): 152-159.
- Fahim, N. F. & Sathi, Z. S. 2018. Assessment of hepatoprotective activity of roots and barks of *Achyranthes aspera* in carbon tetrachloride-induced hepatotoxicity in rats. *Malaysian journal of halal research*, 1(2): 23-26.

- Feksa, D. L., Coelho, R. P., da Costa Güllich, A. A., Dal Ponte, E. S., Piccoli, J. D. C. E. &Manfredini, V. 2018. Extract of *Citrus maxima* (pummelo) leaves improve hepatoprotective activity in Wistar rats submitted to the induction of nonalcoholic hepatic steatosis. *Biomedicine & Pharmacotherapy*, 98: 338-346.
- Feng, D. M., Wang, S., Tang, Y. L., Yang, Y. Z., Zhu, G. Z. & Yan, D. Z. 2005. Protective effect of extraction from *Hygrophila salicifolia* on mice acute hepatic injury. *World Chinese Journal of Digestology*, 13(9): 1098-1101.
- Gilani, A.H., Yaeesh, S., Jamal, Q. & Ghayur, M.N. 2005. Hepatoprotective activity of aqueous-methanol extract of *Artimisia vulgaris*. *Phytotherapy Research*, 19(2): 170-172.
- Gogoi, M., Saikia Barooah, M. & Dutta, M. 2019. Use of medicinal plants in traditional health care practices by tribes of Dhemaji district, Assam, India. *International Journal of Herbal Medicine*, 7(5): 1-6.
- Gopalakrishnan, S. & Kalaiarasi, T. 2013. Hepatoprotective activity of the fruits of Cucumis sativus (L.). International Journal of Pharmaceutical Sciences Review and Research, 20(2): 229-234.
- Gudipati, T., Srivastava, P., Bhadauria, R. & Prasad, G. B. 2012. Hepatoprotective potential of in vitro *Bacopa monnieri* (L.) against carbon tetrachloride-induced hepatotoxicity in albino mice. *International Journal of Pharmacy and Biological Sciences*, 3, 664-672.
- Harish, R. & Shivanandappa, T. 2006. Antioxidant activity and hepatoprotective potential of *Phyllanthus niruri*. *Food chemistry*, 95(2): 180-185.
- Hashem, F. A., Motawea, H. M., El-Shabrawy, A. R. E., El-Sherbini, S. M., Shaker, K. & Farrag, A. R. H. 2013. Hepatoprotective activity of *Brassica oleracea* L. var. *italica*. *Egyptian Pharmaceutical Journal*, 12(2): 177-185.
- Hossain, C.M., Maji H. S., Chakraborty, P., 2011. Hepatoprotective activity of *Lawsonia inermis* Linn. Warm aqueous extract in carbon tetrachloride induced hepatic injury in Wister rats. *Asian Journal of Pharmaceutical and Clinical Research*, 4(3): 106-109.
- Huang, Q. Zhang, S., Huang, R., Wei, L., Chen, Y., Lv, S., Liang, C., Tan, S., Liang, S., Zhuo, L. & Lin, X. 2013. Isolation and identification of an anti-hepatitis B virus compound from *Hydrocotyle sibthorpioides* Lam. *Journal of Ethnopharmacology*, 150(2): 568-575. doi: 10.1016/j.jep.2013.09.009. Epub 2013 Sep 16. PMID: 24051027.
- Ibrahim, M., Khaja, M.N., Aara, A., Khan, A.A., Habeeb, M.A., Devi, Y.P., Narasu, M.L. & Habibullah, C.M. 2008. Hepatoprotective activity of *Sapindus*

mukorossi and Rheum emodi extracts: in vitro and in vivo studies. World Journal of Gastroenterology, 14(16): 2566-2571.

- Iqbal, M. & Gnanaraj, C. 2012. *Eleusine indica* L. possesses antioxidant activity and precludes carbon tetrachloride (CCl 4)-mediated oxidative hepatic damage in rats. *Environmental health and preventive medicine*, 17(4): 307-315.
- Jahan, A., Shams, S., Ali, S., Samrana, S., Ali, A., Adhikari, A., Sajid, M., Ali, A. & Ali, H. 2021. Govaniadine Ameliorates Oxidative Stress, Inflammation, and Kupffer Cell Activation in Carbon Tetrachloride-Induced Hepatotoxicity in Rats. ACS omega, 6(4): 2462–2472. https://doi.org/10.1021/acsomega.0c02261
- Jamir, N.S., Lanusunep & Pongener, N. 2012. Medico-herbal medicine practiced by the Naga Tribes In the state of Nagaland (India). *Indian Journal of Fundamental and Applied Life Sciences*, 2(2): 328-333.
- Jose, J.K. & Kuttan, R. 2000. Hepatoprotective activity of *Emblica officinalis* and Chyavanaprash. *Journal of Ethnopharmacology*, 7(1-2): 135-140.
- Joshi, B. C., Prakash, A. & Kalia, A. N. 2015. Hepatoprotective potential of antioxidant potent fraction from *Urticadioica* Linn. (Whole plant) in CCl4 challenged rats. *Toxicology reports*, 2: 1101-1110.
- Karamalakova, Y.D., Nikolova, G.D., Georgiev, T.K., Gadjeva, V.G. & Tolekova, A.N. 2019. Hepatoprotective properties of *Curcuma longa* L. extract in bleomycin-induced chronic hepatotoxicity. *Drug Discoveries & Therapeutics*, 13(1): 9-16. doi: 10.5582/ddt.2018.01081. PMID: 30880325.
- Karuppanan, M., Krishnan, M., Padarthi, P. & Namasivayam, E. 2014. Hepatoprotective and antioxidant effect of *M. indica* leaf extract against Mercuric chloride induced liver toxicity in mice. *European Journal of Hepato* gastroenterology, 4(1): 18-24.
- Kaur, A.K., Kumar, S. & Sharma, P.K. 2017. Hepatoprotective activity of *Inula cappa* DC. aqueous extract against carbon tetrachloride induced hepatotoxicity in Wistar rats. *International Research Journal of Pharmacy*, 8(1): 14-19.
- Kavitha, B.T., Shruthi, S.D., Rai, S.P. & Ramachandra, Y.L. 2011. Phytochemical analysis and hepatoprotective properties of *Tinospora cordifolia* against carbon tetrachloride-induced hepatic damage in rats. *Journal of basic and clinical Research*, 002(003):139-142.
- Kayang, H., Kharbuli, B., Myrboh, B. & Syiem, D. 2005. Medicinal Plants of Khasi Hills of Meghalaya, India. In: Bernáth, J., Németh, E., Craker, L.E. & Gardner, Z.E. (Eds.) Proc. WOCMAP III, Vol. 1: Bioprospecting & Ethnopharmacology, pp.75-80.

- Khare, P., Verma, S., Khare, N. & Yadav, G. 2015. Investigation of hepatoprotective activity of *Passiflora nepalensis*. *Global Journal of Pharmacology*, 9(3): 256-259.
- Khiangte, Z. & Lalramnghinglova, H. 2017. An Ethno Botanical Study of Ralte Communities in the North Eastern Part of Mizoram, North East India. *Journal* of Natural. Product Plant Resource, 7 (4): 1-10.
- Khongsai, M., Saikia, S.P. & Kayang, H. 2011. Ethno-medicinal plants used by different tribes of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 10(3): 541-546.
- Khongsai, M., Saikia, S.P. & Kayang, H. 2011. Ethnomedicinal plants used by different tribes of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 10(3): 541-546.
- Kichu, M., Malewska, T., Akter, K., Imchen, I., Harrington, D., Kohen, J., Vemuplad, S. R. & Jamie, J. F. 2015. An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India. *Journal of Ethnopharmacology*, 166: 5–17.
- Kom, L.E., Tilotama, K., Singh, T.D., Rawat, A.K.S. & Thokchom, D.S. 2018. Ethno-medicinal plants used by the Kom community of Thayong village, Manipur. *Journal of Ayurvedic and Herbal Medicine*, 4(4): 171-179.
- Kundu, M., Mazumder, R. & Kushwaha, M. D. 2012. Evaluation of hepatoprotective activity of ethanol extract of *Coccinia grandis* (L.) Voigt. leaves on experimental rats by acute and chronic models. *Oriental Pharmacy and Experimental Medicine*, 12(2): 93-97.
- Lalfakzuala, R., Lalramnghinglova, H. & Kayang, H. 2007. Ethnobotanical usages of plants in Western Mizoram. *Indian Journal of Traditional Knowledge*, 6(3): 486-493.
- Lalmuanpuii, J., Rosangkima, G. & Lamin, H. 2013. Ethno-medicinal practices among the Mizo ethnic group in Lunglei district, Mizoram. *Science Vision*, 13(1): 24-34.
- Lalramnghinglova, H. 2016. Documentation of Medicinal Plants based on Traditional Practices in the Indo-Burma Hotspots Region of Mizoram, North East India. *Emergent Life Sciences Research*, 2(1): 10-45.
- Lin, H.M., Tseng, H.C., Wang, C.J, Lin, J.J., Lo, C.W. & Chou, F.P. 2008. Hepatoprotective effects of *Solanum nigrum* Linn. extract against CCl4 induced oxidative damage in rats. *Chemico-Biological Interactions*,171(3):283-293.

- Linh, N.T.T., Ha, N.T.T., Tra, N.T., Anh, L.T.T., Tuyen, N.V. & Son, N.T. 2021. Medicinal Plant *Centipeda Minima*: A Resource of Bioactive Compounds. *Mini-Reviews in Medicinal Chemistry*, 21(3):273-287. doi: 10.2174/1389557520666201021143257. PMID: 33087028.
- Ma, J., Sun, H., Liu, H., Shi, G.N., Zang, Y.D., Li, C.J., Yang, J.Z., Chen, F.Y., Huang, J.W., Zhang, D. & Zhang, D.M. 2018. Hepatoprotective glycosides from the rhizomes of *Imperata cylindrical. Journal of Asian Natural Product Research*, 20(5): 451-459. doi: 10.1080/10286020.2018.1471065. PMID: 29873252.
- Maity, D., Pradhan, N. & Chauhan, A. S. 2004. Folk uses of some medicinal plants from North Sikkim. *Indian Journal of Traditional Knowledge*, 3(1): 66-71.
- Marslin, G., & Prakash, J. 2020. Hepatoprotective Activity of *Thalictrum foliolosum* (Ranunculaceae) Root Ethanolic Extract. *International Journal of Life science* and Pharma Research, 10(3): P8-11.
- Maximas, H.R., Sudha, P.N. & Sudhakar, K. 2014. A study on the hepatoprotective activities of Methanol Extract of *Spinacia oleracea* (Linn.) to the induced hepatotoxicity in wistar rat models. *International Journal of Pharma Research* and Health Sciences, 2 (4): 287-301.
- Mohammed, A., Abubakar, S.A. & Sule, M.S. 2011. Hepatoprotective effect of aqueous leaf extract of *Carica papaya* Linn. against CCl4 induced hepatic damage in rats. *International Journal of Pharmaceutical Sciences and Research*,11(2):13-16.
- Mohapatra, S. S., Roy, R. K., Mohan, P., Upadhyaya, T. N. & Sarma, J. 2018. Phytochemical analysis and hepatoprotective effect of hydroethanolic extract of stem bark of *Oroxylum indicum*. *International Journal of Current Microbiology and Applied Sciences*, 7(1), 1000-1006.
- Mundugaru, R., Varadharajan, M. C. & Basavaiah, R. 2014. Hepatoprotective activity of fruit extract of *Garcinia pedunculata*. *Bangladesh Journal of Pharmacology*, 9(4): 483-487.
- Nagalekshmi, R., Menon, A., Chandrasekharan, D.K. & Nair, C.K.K. 2011. Hepatoprotective activity of *Andrographis paniculata* and *Swertia chirayita*. *Food and Chemical Toxicology*, 49(12): 3367-3373.
- Nazneen, M., Mazid, M. A., Kundu, J. K., Bachar, S. C., Begum, F. & Datta, B. K. 2009. Protective effects of *Flacourtia indica* aerial parts extracts against paracetamol-induced hepatotoxiciy in rats. *Journal of Taibah University for science*, 2: 1-6.

- Neogi, B., Prasad, M. N. V. & Rao, R. R. 1989. Ethnobotany of Some Weeds of Khasi and Garo Hills, Meghalaya, North Eastern India. *Economic Botany*, 43(4): 471-479.
- Niknahad, H., Jamshidzadeh, A., Abbasian, M. & Mehrabadi, A.R. 2012 Hapatoprotective effect of Pomegranate (*Punica granatum*) fruit juice and seed extracts against CCl4 induced toxicity. *Iranian Journal of Pharmaceutical Sciences Summer*, 8(3): 181-187.
- Ningombam, D.S., Devi, S.P., Singh, P.K., Pinokiyo, A. & Thongam, B. 2014. Documentation and Assessment on Knowledge of Ethnomedicinal Practitioners: A Case Study on Local Meetei Healers of Manipur. *IOSR Journal of Pharmacy and Biological Sciences*, 9(1): 53-70.
- Nonibala, K. 2010. Ethno-medicobotanical aspect of Kukis of Senapati District of Manipur. Ph.D. Thesis, Assam University, Silchar.
- Noor, S.D., Krishnasamy, K. & Behbehani, R.S. 2013. In silico docking study of phytochemicals identified from the roots of *Ardisia paniculata*, *Bridelia tomentosa* and *Smilax ovalifolia* for the hepatoprotective activity. *International Journal of Chemical and Pharmaceutical Sciences*, 4(4): 51-55.
- Oyinloye, O. E., Alabi, A. O., Oluwasusi, D. D., Murtala, A. A., Aderinola, A. A., & Bakarey, A. S. 2020. Evaluation of protective potential of *Citrus aurantifolia* (christm) swingle peel extract in attenuating doxorubicin-induced hepatotoxicity in experimental models. *African Journal of Science and Nature*, 10: 138-145.
- Patel, A., Patel, J.D. & Raval, B.P. 2010. Hepatoprotective activity of Saccharum officinarum against paracetamol induced hepatotoxicity in rats. International Journal of pharmaceutical sciences and Research, 4(1): 102-108.
- Patel, R. K., Patel, S. B. & Shah, J. G. 2012. Acute and subacute oral toxicity evaluation of *Benincasa hispida* extract in rodents. *Journal of Applied Pharmaceutical Science*, 2(8): 250-253.
- Pfoze, N.L. 2012. Ethnobotanical studies and phytochemical analysis of selected medicinal plants of Senapati district, Manipur. Ph.D. Thesis, North Eastern Hill University, SHILLONG, Meghalaya, India.
- Prabakaran, R., Pradeep, P. N., Jeyakumar, K. & Joseph, B. 2016. Antimicrobial activities of selected four less known pulses. *Microbiology Research Journal International*, 15(1): 1-8.
- Pradhan, B.K. & Badola, H. K. 2008. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim, India. *Journal of Ethnobiology and Ethnomedicine*, 4: 22.

- Prakash, O., Srivastava, R. & Kumar, R. 2016. Hepatoprotective activity of Artocarpus heterophylla Lam. Leaves against thioacetamide induced hepatotoxicity on Wister albino rats. International research Journal of Pharmacy, 7(4): 24-29.
- Pramyothin, P., Ngamtin, C., Poungshompoo, S. & Chaichantipyuth, C. 2007. Hepatoprotective activity of *Phyllanthus amarus* Schum et. Thonm extract in ethanol treated rats: *in vitro* and *in-vivo* studies. *Journal of ethnopharmacology*, 114(2): 169-173.
- Purkayatha, A., Chakravarty, P. & Dewan, B. 2016. Evaluation of hepatoprotective activity of the ethanolic extract of leaves of *Mimosa pudica* Linn. In Carbon tetrachloride induced hepatic injury in albino rats. *International Journal of Basic and Clinical Pharmacology*, 5(2): 496-501.
- Rahate, K.P. & Rajasekaran, A. 2015. Hepatoprotection by active fractions from Desmostachya bipinnata Stapf (L.) against tamoxifen-induced hepatotoxicity. Indian Journal of Pharmacology, 47: 311-315.
- Rahiman, F., Kumar, M. R., Mani, T. T., Niyas, K. M., Kumar, B. S., Phaneendra, P. & Surendra, B. 2011. Hepatoprotective activity of *Asparagus racemosus* root on liver damage caused by paracetamol in rats. *Indian Journal of Novel Drug Delivery*, 3(2): 112-117.
- Rai, P.K. & Lalramnghinglova, H. 2010. Lesser known ethnomedicinal plants of Mizoram, North East India: An Indo-Burma hotspot region. *Journal of Medicinal Plants Research*, 4(13): 1301-1307.
- Raja, S. & Srilakshmi, S. 2010. Hepatoprotective and antioxidant effect of *Bridelia* retusa against Carbon tetrachloride induced hepatotoxicity. *Toxicological and Environmental Chemistry*, 92(7): 1373-1394.
- Rajkumari, R., Singh, P.K., Das, A.K. & Dutta, B.K. 2013. Ethnobotanical investigation of wild edible and medicinal plants used by the Chiru Tribe of Manipur, India. Pleione, 7(1): 167 - 174.
- Rama Shankar & Devalla, R. B. 2012. Conservation of folk healing practices and commercial medicinal plants with special reference to Nagaland. *International Journal of Biodiversity and Conservation*, 4(3): 155-163.
- Rama Shankar, Rawat, M. S., Majumdar, R. Baruah, D. & Bharali, B. K. 2012. Medicinal plants used in traditional medicine in Mizoram. *World Journal of Science and Technology*, 2(12): 42-45.
- Rizk, M.Z., Aly, H.F., Abo-Elmatty, D.M., Desoky, M.M., Ibrahim, N. & Younis, E.A. 2016. Hepatoprotective effect of *Caesalpinia gilliessi* and *Cajanus cajan*

proteins acetoaminophen overdose induced hepatic damage. *Toxicology and Industrial Health*, 32(5):877-907.

- Rodriguez Amado, J. R., Lafourcade Prada, A., Escalona Arranz, J. C., Pérez Rosés,
 R., Morris Quevedo, H., Keita, H., Puente Zapata, E., Pinho Fernandes, C. & Tavares Carvalho, J. C. 2016. Antioxidant and Hepatoprotective Activity of a New Tablets Formulation from *Tamarindus indica* L. *Evidence-based complementary and alternative medicine*: eCAM, 2016, 3918219. https://doi.org/10.1155/2016/3918219
- Rout, J., Sajem, A.L. & Nath, M. 2012. Medicinal plants of North Cachar Hills district of Assam used by the Dimasa tribe. *Indian Journal of Traditional Knowledge*, 11(3): 520-527.
- Sadasivan, S., Latha, P. G., Sasikumar, J. M., Rajashekaran, S., Shyamal, S. & Shine, V. J. 2006. Hepatoprotective studies on *Hedyotis corymbosa* (L.) Lam. *Journal* of ethnopharmacology, 106(2): 245-249.
- Saikia, Q., Das, M. & Saikia, A. 2019. Heapatoprotective role of *Phlogacanthus thysiflorus* Nees. as a potential iron chelating drug. *International Journal of Pharmacology, Phytochemistry and Ethnomedicine*, 12: 12-22.
- Saikia, Q., Das, M. & Saikia, A. 2019. Hepatoprotective role of *Phlogacanthus* thyrsiflorus Nees. as a potential iron chelating drug. *International Journal of Pharmacology, Phytochemistry and Ethnomedicine*, 12: 12-22.
- Sailo, L., Kushari, S. Kumar, S. 2017. Traditionally used medicinally plants of Bhergaon sub-division, Udalguri district, Assam. *Journal of Medicinal Plants Studies*, 5(6): 109-113.
- Sajem, A. L. & Gosai, K. 2006. Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India. *Journal of Ethnobiology* and *Ethnomedicine*, 2: 33-40.
- Saleem, M., Asif, A., Akhtar, M. F. & Saleem, A. 2018. Hepatoprotective potential and chemical characterization of *Artocarpus lakoocha* fruit extract. *Bangladesh Journal of Pharmacology*, 13(1): 90-97.
- Sambrekar, S.N., Patil, P.A. & Kangrtalkar, V.A. 2011. Evaluation of protective activity of *Commelina benghalensis* root extract carbon tetrachloride induced hepatic toxicity in Wistar rats. *Research Journal of Pharmacy and Technology*, 4(4): 612-615.
- Shaik, R., Manisha, R. L., Sayana, S. B. & Pal, R. 2012. Hepatoprotective activity of alcoholic and aqueous extracts of *Allium cepa* Linn. (liliaceae) in rats. *International Journal of Pharmaceutical Sciences and Research*, 3(9): 3189-3195.

- Shankar, R. & Rawat, M. S. 2013. Conservation and cultivation of threatened and high valued medicinal plants in North East India. *International Journal of Biodiversity and Conservation*, 5(9): 584-591.
- Sharma, H.K. Chhangte, L. & Dolui, A.K. 2001. Traditional medicinal plants in Mizoram, India. *Fitoterapia*, 72: 146-161.
- Singh, M., Wal, P., Wal, A. & Srivastava, S. 2018. Hepatoprotective Evaluation of *Bixa orellana* L. seed extract against acute ethanol-Induced hepatotoxicity in rats. *International journal of pharmaceutical sciences and research*, 9(12): 5168-5176.
- Singh, O.K. 1990. Floristic Study of Tamenglong District, Manipur with ethnobotanical notes. Ph.D. Thesis, Manipur University, Imphal.
- Singh, P.K., Gajurel, P.R. & Rethy, P. 2015. Ethnomedicinal value of traditional food plants used by the Zeliang tribe of Nagaland. *International Journal of Traditional Knowledge*, 14(2): 298-305.
- Sinha, S.C., 1996. *Medicinal Plants of Manipur*. Manipur Association for Science and Soceity, Manipur.
- Sreejith, G., Jayasree, M., Latha, P. G., Suja, S. R., Shyamal, S., Shine, V. J., Anuja, G.I., SIni, S., Shikha, P. Krishnakumar, N.M., Vilash, V., Shoumya, S. & Rajasekharan, S. 2014. Hepatoprotective activity of *Oxalis corniculata* L. ethanolic extract against paracetamol induced hepatotoxicity in Wistar rats and its in vitro antioxidant effects. *Indian Journal of Experimental Biology*, 52: 147-152.
- Sreejith, G., Jayasree, M., Latha, P.G., Suja, S.R., Shyamal, S., Shine, V.J., Anuja, G.I. & Sini, S. 2013. Hepatoprotective activity of *Oxalis corniculata* L. ethanolic extract paracetamol induced hepatotoxicity in Wistar rats and its invitro antioxidant effects. *Indian Journal of Experimental Biology*, 52:147-152.
- Srirama, R., Deepak, H. B., Senthilkumar, U., Ravikanth, G., Gurumurthy, B. R., Shivanna, M. B., Chandrasekaran, C.V., Agarwal, A. & Shaanker, R. U. 2012. Hepatoprotective activity of Indian phyllanthus. *Pharmaceutical biology*, 50(8): 948-953.
- Srirama, R., Deepak, H.B., Senthikumar, U., Ravikanth, G., Gurumurthy, B.R., Shivana, M.B., Chandrasekhran, C.V., Agarwal, A. & Shanker, R.U. 2012. Hepatoprotective activity of Indian *Phyllathus. Pharmaceutical Biology*, 50(8):948-953.
- Sumarheni, S., Nursyamsi, R. A. & Fitriyani, F. A. 2019. The Effect of Curcuma zedoaria (Berg.) Roscoe extract on liver function tests of Rattus norvergicus exposure by cigarette smoke. Proceedings of the 3rd International Conference

on Environmental Risks and Public Health, ICER-PH 2018, 26-27, October 2018, Makassar, Indonesia.

- Sundarrajan, T., Velmurugan, V. & Jothieswari, D. 2017. Hepatoprotective Activity of Ethanol Extracts of *Amaranthus viridis* Linn on aflatoxcin B1 Induced Rats. *Journal of Pharmaceutical Sciences and Research*, 9(10): 1899-1902.
- Sunwoo, Y.Y., Lee, J.H., Jung, H.Y., Jung, Y.J., Park, M.S., Chung, Y.A., Maeng, L.S., Han, Y.M., Shin, H.S., Lee, J. & Park, S.I. 2015. Oldenlandia diffusa promotes antiproliferative and apoptotic effects in a rat hepatocellular carcinoma with liver cirrhosis. Evidence-Based Complementary and Alternative Medicine, 2015. |Article ID 501508 https://doi.org/10.1155/2015/501508
- Surendra, V., Prakash, T., Sharma, U.R. &Goli, d. 2008. Hepatoprotective activity of aerial parts of *Cynodon dactylon* against CCl4- induced in rats. *Pharmavognosy Magazine*, 4(16): S195-S201.
- Swargiary, N., Dey, T. & Das, A. N. 2019. A Survey on Traditionally Used Medicinal Plants of Rangjuli (Belpara), Goalpara, Assam. *Periodic Research*, 7(4): 86-96.
- Thailakchand, K.R., Mathai, R.T., Simon, P., Ravi, R.T., Baliga-Rao, M.P. & Baliga, M.S. 2013. Hepatoprotective properties of the Indian gooseberry (*Emblica* officinalis Gaertn.): A review. Food Function, 4(10): 1431-1441.
- Tsering, J. 2017. Ethnobotany and phytochemical analysis of selected traditional wild food and medicinal plants of the Monpa community of Arunachal Pradesh. Ph.D. Thesis, Rajiv Gandhi University, Itanagar.
- Turel, I., Ozbek, H., Esten, R., Oner, A.C., Cengiz, N. & Yilmaz, O. 2009. Hepatoprotective and anti-inflammatory activities of *Plantago major L. Indian Journal of Pharmacology*, 41(3):120-124.
- Verma, P. K., Sultana, M., Raina, R., Prawez, S., Pandita, S., Jamwal, N. & Mir, A. H. 2013. Hepatoprotective Effects of *Ageratum conyzoides* L. on biochemical indices induced by acetaminophen toxicity in Wistar rats. *Journal of Applied Pharmaceutical Science*, 3(4): S23-S27.
- Verma, V. K., Sarwa, K. K., Kumar, A. & Zaman, M. K. 2013. Comparison of hepatoprotective activity of *Swertia chirayita* and *Andrographis paniculata* plant of North–East India against CCl4 induced hepatotoxic rats. *Journal of pharmacy research*, 7(7): 647-653.
- Vidya, S.M., Krishna, V., Manjunatha, B.K., Makani, K.L., Ahmed, M. & Singh, S.D.J. 2007. Evaluation of hepatoprotective activity of *Clerodendrum serratum* L. *Indian Journal of Experimental Biology*, 45(6): 538-542.

- Wang, H., Wu, F. H., Xiong, F., Wu, J. J., Zhang, L. Y., Ye, W. C., Li, P. & Zhao, S. X. 2006. Iridoids from *Neopicrorhiza scrophulariiflora* and their hepatoprotective activities in vitro. *Chemical and pharmaceutical bulletin*, 54(8): 1144-1149.
- Wang, Y., Han, T., Xue, L.M., Han, P., Zhang, Q.Y., Huang, B.K., Zhang, H., Ming, Q.L., Peng, W. & Qin, L.P. 2011. Hepatotoxicity of kaurene glycosides from *Xanthium strumarium* L. fruits in mice. *Pharmazie*, 66(6): 445-449.
- Wills, P.J. & Asha, V.V. 2006. Protective effect of *Lygodium flexuosum* (L.) Sw. extract against carbon tetrachloride-induced acute liver injury in rats. *Journal Ethnopharmacology*, 108(3): 320-326. doi: 10.1016/j.jep.2006.05.032. Epub 2006 Jun 20. PMID: 16889918.
- Yadav, N. P. & Dixit, V. K. 2003. Hepatoprotective activity of leaves of *Kalanchoe pinnata* Pers. *Journal of Ethnopharmacology*, 86(2-3): 197-202.
- Yantih, N., Harahap, Y., Sumaryono, W., Setiabudy, R. & Rahayu, L. 2017. Hepatoprotective activity of pineapple (*Ananas comosus*) juice on isoniazidinduced rats. *Journal of Biological Sciences*, 17(8): 388-393.
- Yengkhom, N.S., Gunindro, N., Kohli, S.M., Moirangthem, R.S. & Rajkumari, B.D. 2017. Hepatoprotective effect of aqueous extract of *Melothria perpusilla* against Carbon tetrachloride induced liver injury in albino rats. *International Journal of Research in Medical Sciences*, 5(3): 806-810.

Chapter 9

DIVERSITY OF MEDICINAL PLANTS TRADITIONALLY USED TO TREAT GASTROINTESTINAL AILMENTS AMONG THE ETHNIC GROUPS IN NORTH EAST INDIA: A REVIEW

Kishor Deka^{*1}, Sagarika Das¹, Bhaben Tanti² ¹Departent of Botany, Darrang College, Tezpur, Assam ²Departent of Botany, Gauhati University, Assam *¹Corrospond author: <u>dekakishor300@gmail.com</u>

Abstract

The present documentation hasgathered information from published literature on plant based traditional medicine used by the dependent communitiesalong with their traditional way of treating different stomach related diseases/disorders recorded from different parts of North East India. We documented a total of 400 species belonging to 303 genera and 114 families used to treat gastrointestinal disorders in North Eastern part of India.Most of the reported medicinal plant species were Angiosperms (395 species), followed by gymnosperms (3 species) and pteridophytes (2 species).Asteraceae was the most dominant family reported to be used for the treatment of gastrointestinal tract. Among all the plant parts leavesare highly preferred in stomach disorder by the healers.Juice/extract (148 species) was the most popular form of treatment used. We foucasedthe diversity and importance of medicinal plants used to treat gastrointestinal disorders in the traditional health care systemofNorth east region. As such disorders are still causing several deaths each year, it is of the utmost importance to conduct phytochemical and pharmacological studies on the most promising species. It is also crucial to increase access to traditional medicine, especially in rural areas. Threatened species need special attention for traditional herbal medicine to be exploited sustainably.

Keywords: North East India, Traditional medicine, Gastrointestinal disorder, Pharmacological activity

Introduction

Gastrointestinal Disorder

Gastrointestinal diseases affect the gastrointestinal (GI) tract from the mouth to the anus. It basically effects the functions of the digestive tract, i.e., food and liquid absorption, digestion, or excretion (Neamsuvan et al., 2012). Such disorders are caused by infections by various kinds of bacteria, viruses and parasitic organisms (Mathabeet al., 2006; Karki & Tiwari, 2007). In human being, the gastrointestinal (GI) tract is considered as the most important organ vulnerable to diverse diseases such as bloating, constipation, diarrhea, gastroenteritis, reflux and parasitic and other infectious ailments (Kasper et al., 2005). Diet dependent GI ailments are mainly due to disordered eating patterns in individual's body. These patterns describe irregular eating behaviors like skipping meals, restricted food types, fasting and binge eating (Grilo, 2006). These ailments slowly and steadily lead to mortality, particularly in developing countries where proper sanitation facilities are deficient (Pawlowski et al., 2009; Tuite et al., 2011). According to reported studies, diarrhea as infectious disease occurs in about 19-83 people out of every 100 people annually depending on regions (Porcelliet al., 2004). Outbreaks of diarrhea, dysentery, or cholera caused by contaminated drinking water have claimed millions of lives worldwide, mainly infants and children (Ryan, 2011). Diarrhoea itself responsible for killing around 52,5000 children every year all over world and it is the second leading cause of death in children under five years old (WHO, 2009). Infection is spread generally through contaminated food or drinking-water, or from person-to-person as a result of poor hygiene (WHO, 2017). Serious diarrhea/dysentery/cholera gastrointestinal outbreaks were reported in Ethiopia (Bartels et al., 2010), Haiti (Tuite et al., 2011), Vietnam (Anh et al., 2011), Zimbabwe (Fisher, 2009), Nepal (Bhandari et al., 2009) and India (Ramamurthy & Sharma, 2014) all with a high death toll. India has an estimated about 1.5 million patients affected by Gastrointestinal disorder every year due to eating indigestible, excessive or irregular foods, imbalanced and spicy diets, and adulteration of food and contamination of drinking water (Kedia & Ahuja, 2017).

TraditionalherbalmedicinesinEthnodermatological practices

Natural products (NPs) signify large and diverse secondary metabolites with a comprehensive choice of biological activities those have established with their numerous practices, particularly in human and veterinary. Pharmaceutical, insecticidal, and herbicidal importance have been driven form Natural products discovery and been taken a significant role after the discovery of penicillin more than 85 years ago. Since then, numerous NPs have been isolated and characterized. What mostly have fascinated NP scientists the phytochemical diversities and their complication to find out proper manifestation in treatment and management of diseases (Adhikari & Paul, 2018). However, throughout the ages, humans have relied on mother nature for the practice of herbal and phytonutrients treatment to fight against numerous diseases which are expanding across the world and about 80-85% or about 6 billion people worldwide trust herbal medication for the treatment of various diseases (WHO, 2004; Ekor, 2014).

Approximately 70-80% of global population of human depends on plants for medicine in prime healthcare (Singh et al., 2014). Indian traditional medicine, the foundation of age-old practice of medicine in the world, has played an essential role in human health care service and welfare from its inception. (WHO, 2008). Traditional medicine are much compatible with nature of human body and are reported to have little or no side effects (Rafieian-Kopaei, 2012; Nasri&Shirzad, 2013). Use of plant species as medicine is primary system of medication for the people residing in remote places of sub-urban or rural areas (Nandankunjidam, 2006). In India, 65% of the population in rural areas use Ayurveda and medicinal plants to help meet their primary health care needs. (WHO, 2003). The use of medicinal plants is widespread, not only because they are easily accessible and affordable, but also due to persistent cultural beliefs and practices, as well as the lack of access to modern health care systems in rural areas (Baral & Kurmi, 2006). Traditional, complementary and alternative medicines are commonly used to treat or prevent disease and chronic illness and to improve quality of life (WHO, 2003). Herbal medicines or botanicals are considered as the most effective candidate to cure various human and animal diseases including gastrointestinal ailments (Street & Prinsloo, 2013; Madikizela et al., 2012; Manandhar, 2002; Heinrich et al., 1992). Use of medicinal plants to treat various gastrointestinal disorders ranging from simple types such as vomiting to more complex problems like peptic ulcer were reported (Lama et al., 2001; Rajbhandari 2001)

The aim of thepresent study study is to record the cross analysis of traditional knowledge about treatment of stomach disorder for all the states of North east India. Specifically, we collected information on the plants species used to treat for gastrointestinal disorders of North East India along with information on medicinal plants, part uses, recipies, mode of use and phytochemical constituent. The main purpose of the study was to conserve the Ethnomedicinal knowledge and to select candidate medicinal plants for further phytochemical and pharmacological investigation. The available literature shows that such studies can constitute the starting point for the development of new drugs. Our efforts are towards not only providing nutrition and health care to the people, but also recovering record and diffuse local botanical knowledge and traditional wisdom.

Methods

Ethnopharmacological data sources and collection

Systematic literature searches relevant to the field of ethnobotany were carried out and the available information on various plants traditionally used for gastrointestinal disorder was collected from different bibliographical databases via electronic search (using Pubmed, SciFinder, Scopus, Scirus, ScienceDirect, Google Scholar and Web of Science) and a library search for articles published in peer-reviewed journals, Ph.D thesis and also locally available books.For each species, we also searched the literature for information on conservation status, as well as for phytochemical and pharmacological studies in support of the ethnobotanical information. We used principal component analysis to explore the relation among disorders and plant families, plant life forms, plant parts and preparation modes. The phytochemicals and pharmacological activities, which are considered as helpful for the treatment of gastrointestinal disorder health care are reported in this review include: Antioxidant, Anti-bacterial, Anti-inflammatory and Antimicrobial activity.

Systematization of plant names and chemical structures

For the systematization of plant names and to check the status of plants gathered in this review, the database: The Plant list (<u>http://www.theplantlist.org/2020</u>) was used. Only the accepted names and family of plants species highlighted in this database were retained to be listed in this review.

Results and Discussion

Diversity, uses, preparation modes

A total of 400 species belonging to 303 genera and 114 families have been reported for the treatment of gastrointestinal disorders. Most of the reported medicinal plant species were Angiosperms (395 species), followed by gymnosperms (3 species) and pteridophytes (2 species). It was also found that wild species (70%) are most commonly used by the healers than that of domesticated (19%) or semiwild species (11%) (Fig 9.1). Herbaceous species are (annual and perennial) are dominating the list with as much as 53% species, followed by trees (22%), shrubs (16%) and climbers (9%)(Fig 9.2).For each species scientific name with family, parts used and method of drug preparation and dosage, and phytochemical constituent with reference are provide (Table 9.1). Well dominant Angiosperm families were Asteraceae (31), followed by Fabaceae (25 species), Lamiaceae (15), Zingiberaceae (15) and Poceae (12). The family Polygonaceae, Moraceae, Rutaceae and Rubiaceae representing 11 species respectively. The poorly representing families (one species each) areEbenaceae, Cycadaceae, Convulvulaceae, Iridaceae, Lycopodiaceae, Hypoxidaceae, Primulaceae, Nepenthaeeae, Davalliaceae, Bignoniaceae, Moringaceae, Melanthiaceae. Passifloraceae, Sterculiaceae, Symplocaceae, Taxaceae, Plumbaginaceae, Orchidaceae, Portulacaceae, Onagraceae, Fagaceae, Loranthaceae, Dipterocarpaceae, Smilacaceae, Stemonaceae, Tiliaceae, Umbelliferae, Malpighiaceae, Lardizabalaceae, Saururaceae, Flacourtiaceae, Caryophyllacerae, Equisetaceae, Basellaceae, Elaeocarpaceae, Costaceae, Caricaceae, Lecythidaceae, Vitaceae, Nyctaginaceae, Cannabaceae, Bombaceae, Cornaceae, Woodsiaceae, Verbinaceae, Bromeliaceae, Araceae, Pinaceae, Pinaceae and Xanthorrhoeaceae. The dominant genus is Asteraceaerepresented by 27 species. The most significant plant for the use of gastrointestinal disorders by most of the herbal healers in this region includes Acorus calamus, Aegle marmelos, Asparagus racemosus, Centella asiatica, Drymaria cordata, Garcinia spp, Houttuynia cordata, Mangifera indica, Oroxylum indicum, Oxalis corniculata, Paedaria foetida and Psidium guajava. Different plant parts were used for the treatment of gastrointestinal disorders. Different therapies were reported for the disease. Some are taken as direct raw oral consumption of the plant whiles others after preparation of formulations either orally or externally.

All plant parts are used either singly or as mixture and in some cases whole plants are also used. In general, leaves are highly used in stomach disorder followed by fruits, roots, barks, whole plant, shoots, rhizomes, stem, seeds, tubers, flowers, bulbs, latex and petiole respectively (Fig 9.3). Dosage of recipe was found to be related with the age of the patient. Also, it was determined that gastrointestinal system ailments for which the folk medicinal plants are mostly used, are as follows: diarrhea, dysentery, constipation, gastritis and ulcer, intestinal winds and indigestion.It was also found that herbal drugs were most commonly prepared in the form of juice/extract (148 species), followed by decoction (105 species), Raw/chew (37 species), Paste (33 species), Infusion (28 species), Powder (21 species), Roasted/vegetable (13 species) for gastrointestinal disorder (Fig 9.4).

Pharmacological evaluation

In our present investigation we found slightly more pharmacological studies than phytochemical studies on plant species used in gastrointestinal disorders in North East India. We found 31% species for antioxidant activities followed by Antimicrobial (27%) and Antibacterail (26%). Whereas 11% species were studied both for Antibacterial and Antioxidentactivies, 4% species for Antimicrobial and Antioxident, 1% species for Anti-inflammatory and Antioxident and only 0.5% species for Anti-inflammatory and antimicrobial (Fig 9.5). More pharmacological studies were *in-vivo* experiments than in-vitro experiments. Almost all *in-vivo* experiments were conducted for diarrhea, induced in wistar rats by castor oil and magnesium sulfate, *Escherichia coli* enterotoxin, charcoal meal and castor oilarachidonic acid. The *in-vitro* experiments included antimicrobial tests for diarrhea or dysentery or for other diseases caused by bacteria such as *Escherichia coli, Shigella spp., Salmonella typhii, Vibrio cholera* and *Pseudomonas aeruginosa*. It was also found that 50 species have not any report on pharmacological or phytochemical studies on gastrointestinal disorder. **Table 9.1.** Plant species used for treating Gastrointestinal ailments along with part uses, mode of preparations and Pharmacological effects.

SI No	Species with family	Part use	Disease	Mode of uses with reference	Pharmacological effect/ hytochemical Constituent with reference
1	Abies densa Griff. (Pinaceae)	Leaves	Diarrhoea, Dysentery	Infusion of fresh leaves once daily in empty stomach till cure. (Badola & Bharat, 2013; Mandal et al., 2013; Dahal, 2019).	Not repoeted
2	Abroma augusta (L.) L.f. (Malvaceae)	Stem	Dysentery	Stem bark decoction is take orally twice daily as antidysenteric. (Murtem & Chaudhry, 2016; Kagyung et al., 2009; Sharma et al., 2014; Chetryet al., 2018; Gurung, 2002).	Antibacterial (Bisht &Bhattacharaya, 2013)
3	Abrus precatorius L. (Fabaceae)	Root, Seed	Diarrhoea, Dysentery	1 teaspoonful of juice of roots is given twice or thrice daily for 3 days. (Ahmed & Borthakur, 2005; Bora, 2016).	Antibacterial (Mistryet al., 2010)
4	Acacia catechu (L.)Willd (Arecaceae)	Fruit	Constipati on	Fruit eaten after food to cure indigestion. (Ranjana, et al., 2013; Sharma & Hazarika,	Antibacterial (Thangaveluet al., 2018)

				2018).	
5	<i>Acacia farnesiana</i> Willd. (Fabaceae)	Leaf	Dysentery, Stomach pain	Leaf of <i>Cajanuscajan</i> , <i>Acacia farnesiana</i> , <i>Desmodiumtriflorum</i> and <i>Hydroc otyle sibthorpioides</i> along with the rhizome of <i>Acorus calamus</i> are mixed gently to prepared pea motor sized teblets. One tablet is given orally in empty stomach for 3 days.(Bora, 2016; Bora, 2001).	Antimicrobial (Yallappaet al., 2013)
6	Acacia pinnata (L.) Wild. (Fabaceae)	Root	Indisetion	Root extract is given 2 tea- spoonful thrice a day for one week. (Badola& Pradhan, 2013; Das, 2003; Dahal, 2019).	Antioxidant (Chanwitheesuket al., 2005)
7	Achyranthes aspera L. (Amaranthaceae)	Whole plant	Diarrhoea, Dysentery	Decoction take orally twice daily till cure. (Rai et al., 2010; Borkataki, 2006; Devi, 2015; Sharma et al., 2014; Das et al., 2013; Majumdar et al., 2006; Debbarmaet al., 2017; Lalramnghinglova, 2003; Dahal, 2019).	Antioxidant (Husain & Kumar, 2015; Upadhyaet al., 2015)
8	Acmella paniculata (Wall. ex DC.) R.K.Jansen	Flower	Diarrhoea, Dysentery	Flower heads are crushed and juice is extracted. One tatablespoon of dose mixed with	Antimicrobial (Mamidala & Prasad, 2013)

	(Asteraceae)			1/2 cup of water and take it twice daily for 3-7 days. (Majumdar & Dutta, 2007; Das, 2003; Kar & Borthakur, 2008; Hynniewta& Bora, 1997; Dahal, 2019).	
9	Aconitum ferox Wall. ex Seringe (Ranunculaceae)	Rhizom e	Diarrhoea	After proper cleaning, dried rhizome chewed during diarrhea. (Badola & Pradhan, 2013)	Antimicrobial (Singhet al., 2019)
10	<i>Aconitum palmatum</i> D. Don (Ranunculaceae)	Leaf, Root	Diarrhoea	 The leaf is crushed and prescribe till cure. (Rai et al., 2010; Sharma & Sharma, 2010; Badola & Pradhan, 2013; Dahal, 2019; Chhetri et al., 1992; Das & Sharma, 2002; Zhasa et al., 2015). The root is crushed and soaked overnight in water and 1 cup of these drunk as a tonic. (Sharma et al., 2014; Devi, et al., 2011; Komet al., 2018). 	Antimicrobial (Aslam&Ahmad, 2016)

11	<i>Acorus calamus</i> Linn. (Araceae)	Rhizom e, Leaf	Dysentery, Stomach pain, Indisation	 Rhizome along with the leaf of <i>Cajanus</i> <i>cajan</i>, <i>Acacia</i> <i>farnesiana</i>, <i>Desmodium triflorum</i> and <i>Hydrocotyle sibthorpio</i> <i>ides</i> are mixed gently to prepared teblets. One tablet is given orally in empty stomach for 3 days. (Khongsai et al., 2011; Lalramnghinglova, 2003; Bora, 2016; Mandal et al., 2013; Changkija, 1999; Saikia, 2006; Kar & Borthakur, 2008; Dahal, 2019; Pfoze, 2012; Das et al., 2006; Monlai, 2013; Sharma & Pegu, 2011; Bora, 2001; Marak, 2018; Bhuyan, 1998; Samati, 2006; Chhetri et al., 	Antibacterial (Joshi, 2016)
----	--	-------------------	--	--	--------------------------------

12	Adiantum philippense L. (Adiantaceae) Aegle marmelos L.	Shoot	Dysentery	and applied over the belly in indigestion with colic pain. (Chhetri et al., 1992; Khatoon, 2014; Gogoi, 1997). Decoction of aerial part given oally once daily after food till cure. (Singh et al., 1989; Dahal, 2019) The fruit juice is mixed with milk and is prescribed orally for about 7 days. (Bora, 2016,	Antimicrobial (Ramesha et al., 2020) Antioxident
				 2008; Chetryet al., 2018; Naldarine & Lalnundanga, 2017; Borkataki, 2006). 2. Burnt ashes of the leaves is made into paste with coconut oil and applied over the belly in indigestion with colic pain. (Chhetri et al., 1992; 	

				2006; Kom et al., 2018;	
				Hazarika et al., 2012;	
				Lalramnghinglova, 2003; Das,	
				2003; Shankar & Rawat, 2008;	
				Gurung, 2002 Choudhury,	
				1999; Rout et al., 2012; Chhetri	
				et al., 1992; Devi, 2015; Das et	
				al., 2013; Rao & Jamir, 1982;	
				Chhetri et al., 1992; Naldarine	
				& Lalnundanga, 2017; Das &	
				Dutta Choudhury, 2012;	
				Zhasaet al., 2015;)	
				Boiled Fruit pulp mixed with	
				fruits of <i>Punica granatum</i> and	
				leaves of Psidium guajava. The	
				filtrate after mixing along with	
				sugar and water is taken to get	
				cure. (Ahmed, 2005; Das &	
				Dutta Choudhury, 2010; Dahal,	
				2019)	
				Solution from roasted unripe	
				fruit (wrapped with mud) with a	
				spoonful of sugar in water is	
				given in dysentery and	
				diarrhoea. (Khatoon, 2014)	
14	A a gua gua ani a gua a T	Whole	Diamhass		Antihantarial (Chinata
14	Agave americana L.	Whole	Diarrhoea	Half cup of decoction of root	Antibacterial (Shigute

	(Asparagaceae)	plant		given orally once daily for 3-6 days (Srivastava et al., 1987; Dahal, 2019)	&Wasihun,2020)
15	Ageratina adenophora (Spr.) King & Robinson. (Asteraceae)	Shoot	Dysentery, Ddiarrhea	Tender shoots are grinded and the juice obtained by squeezing. 1/2 cup of juice take orally twice daily after food till cure. (Ahmed, 2005; Daur&Hajra, 1980; Hynniewta, 2010)	Antioxident (Subba& Kandel, 2012)
16	<i>Ageratum</i> <i>conyzoides</i> L. (Amaranthaceae)	Root, Leaf	Ddiarrhea, Stomach ulcer	The root is crushed with <i>Callicarpa arborea</i> (bark) and rhizome of <i>Curcuma longa</i> & the juice is drunk for the remedy of stomach cancer; stem and leaf as anti-diarrhoeal. (Hazarika et al., 2012; Rai et al., 2010; Das & Dutta Choudhury, 2010; Kagyung et al., 2009; Badola & Pradhan, 2013; Nath, 2001; Devi, 2013; Chetryet al., 2018; Daur & Hajra, 1980)	Antibacterial (Shirwaikaret al., 2003)
17	Alternanthera sessilis (Linn.) R. Br. ex DC. DC. (Amarnthaceae)	Shoot, Leaves	Chronic dysentery, Dysentery, Stomachic	Shoot and leaves boiled with 1 crab & juice is given orally for 3-5 days. (Srivastava et al., 1987; Das & Sharma, 2002; Sharma, et al., 2014; Bora,	Antioxident (Reddyet al., 2019)

				2016) Tender shoot and leaf boiled or roasted and given in dysentery. (Srivastava et al., 1987; Bora, 2016; Borah & Bora, 2020; Dahal, 2019; Bora, 2001; Bora, 2001; Dutta, 2012)	
18	<i>Alangium chinense</i> (Lour.) Harms (Cornaceae)	Leaves, Bark.	Dysentery	Decoction of leaves with ¹ / ₂ spoon sugar and little salt is given in dysentery. (Khatoon, 2014)	Antioxident (Kumari & Krishnan, 2016; Kotaet al., 2017)
19	<i>Albizia chinensis</i> (O sbeck) Merr. (Fabaceae)	Bark	Stomach pain	Powder with one glass of water once daiy after food. (Chhetri, 2005; Myrchianget al., 2020; Ahmed & Borthakur, 2005; Jamir &Tsurho, 2016)	Antioxident (Kumari et al., 2011)
20	Allantodia aspera (Blume) Ching. (Woodsiaceae)	Root	Diarrhoea, Dysentery	Half cup of decoction of root given orally once daily for 3-6 days. (Dahal, 2019)	Not reported
21	Allium ascalonicum L. (Amaryllidaceae)	Bulb	Diarrhoea, Dysentery, Stomach pain	Bulb crushed and mixed with lukewarm water and prescribe these dose once daily till cure. (Daur & Hajra, 1980; Das, 2003; Hazarika et al., 2012)	Antioxidant, Antimicrobial (Raeisiet al., 2016)

22	<i>Allium hookeri</i> L. (Amaryllidaceae)	Leaves	Stomach ulcers	10 ml leaf juice mixed with salt and is prescribed thrice a day in stomach ulcers. (Choudhury, 1999; Khan & Yadava, 2010; Khatoon, 2014; Guha et al., 2018; Singh et al., 2015; Salam et al., 2014)	Antioxidant (Singh & Singh, 2014)
23	Allium sativum Linn. (Amaryllidaceae)	Bulb	Indigestion	One bunch aerial parts of <i>Stellaria media</i> are boiled and mixed with 3-4 bulbs of garlic and kept overnight and then filtered. Orally one dose daily morning for 3-4 days or till relief of symptoms. (Hazarika et al., 2012; Bora, 2016; Kagyung et al., 2009)	Antioxidant (Lawrence& Lawrence, 2011)
24	Allium wallichii Kun th (Amaryllidaceae)	Whole plant	Indigestion	The plant is eaten cooked for gastritis, and is believed to aid in indigestion. (Daur & Hajra, 1980; Chase & Singh, 2013)	Antibacterial (Kishoret al., 2011)
25	<i>Alnus nepalensis</i> D. Don (Verbenaceae)	Root	Diarrhoea	A decoction (about 1 cup) of the root is drunk to treat diarrhea. (Changkija, 1999; Dahal, 2019; Gurung, 2002; Sangtam et al., 2012; Imchen and Jamir, 2011; Jamir et al., 2012)	Antibacterial (Ren, et al., 2017)

26	<i>Aloe vera</i> (L.) Burm.f. (Xanthorrhoeaceae)	Leaves	Constipati on	Half cup of infusion taken orally for about 7 days. (Hazarika et al., 2012; Srivastava et al., 1987; Sharma and Hazarika, 2018; Debbarmaet al., 2017; Chetryet al., 2018; Dahal, 2019)	Antioxidant (Mirandaet al., 2009)
27	Alpinia officinarum Hance(Zingiberacea e)	Rhizom e	stomach pain	Rhizome is carminative and is eaten in stomach pain. About one cup take orally till cure. (Chettri & Sharma, 2011; Khan, 2005; Khatoon, 2014)	Antioxidant, Anticholinergic (Köseet al., 2015)
28	Alpinia allughas Roscoe (Zingiberaceae)	Rhizom e	Diarrhoea, Dysentery	Crush the roots (rhizome) and mix with gooseberry and little honey and take one tea spoonful as syrup after food whenever thirsty. (Majumdar & Dutta, 2007; Yuhlung & Bhattacharyya, 2016)	Antibacterial (Bhunia&Kumar, 2012)
29	<i>Alpinia</i> galangaWilld. (Zingiberaceae)	Rhizom e	Diarrhoea, Dysentery	10 ml of rhizome juice with teaspoonful of spoon of honey is given twice daily for continuing up to ten days in stomach trouble. (Daur and Hajra, 1980; Khatoon, 2014)	Antimicrobial, Antioxidant (Tang,2018)

30	Alstoniascholaris R. Br. (Apocynaceae)	Bark	Dysentery	 100 ml of juice is mixed with 100 ml goat milk. The juice is given orally 4 spoonfuls for adults and 2 spoons for child twice daily till cure the disease. (Megoneitso & Rao, 1983; Bora, 2016) 250 ml infusion of the bark of Alstonias cholaris and Oroxylum indicum is mixed and given orally at morning in empty stomach till cure. (Hazarika et al., 2012; Changkija, 1999; Borkataki, 2006; Bora, 2001; Choudhury, 1999; Das et al., 2008; Lalramghinglova, 2003; Gogoi, 1997; Naldarine & Lalnundanga, 2017;
----	--	------	-----------	--

				Dahal, 2019; Teron, 2011)	
31	Amaranthus spinosus L. (Amaranthaceae)	Leaves, stems	Indigation	Tender leaves use as vegetable with rice during indigation. (Chetryet al., 2018; Das et al., 2008; Bora & Das, 2015; Gogoi et al., 2019)	Antioxident (Kumaret al., 2011)
32	Amaranthus tricolour L.(Amaranthaceae)	Leaves	Indigestion	Curry prepared from green leaves taken to cure indigestion. (Dahal, 2019; Rai & Sharma, 1994; Gurung, 2002; Chhetri et al., 1992)	Antibacterial (Fatimah &Aftrid, 2019)
33	Amaranthus viridis L. (Amaranthaceae)	Root	Indisetion	Infusion of root take twice daiy till cure. (Dahal & Borthakur, 2017; Dahal, 2019)	Antioxident (Saravanan, et al., 2013)
34	Amomum dealbatum Roxb. (Zingiberaceae)	Stem	Diarrhoea, Dysentery	Fresh soft stems are eaten raw and can treat both diarrhoea and dysentery. (Gurumayum & Soram, 2014; Ahmed & Borthakur, 2005; Dahal, 2019)	Not repoeted
35	Amomum subulatumRoxb. (Zingiberaceae)	Seed	Gastric problem	Powdered seeds taken with warm water to cure cough, asthma and in gastritis. (Devi, et al., 2011; Majumdar & Dutta, 2007; Hynniewta & Bora, 1997;	Antimicrobial (Alam& Singh, 2021

				Dahal, 2019; Shankar & Rawat, 2008)	
36	Ananascomosus L. Merr. (Bromeliaceae)	Leaves, Fruit	Diarrhoea, Intestinal worms	Juice of tender leaves, about 10 ml once daily is given for 3 days. (Gogoi et al., 2019) Fruit is effective against intestinal worms when consumed. (Borah & Bora, 2020; Devi, 2015; Dahal, 2019)	Antioxidant (Beniteset al., 2019; Emekaaet al., 2014)
37	Andrographis paniculata (Burm.f.) Wall. Ex Nees. (Acanthaceae)	Leaf	Dysentery, Diarrhoea	Leaf extract taken in empty stomach in worm infection of the gastrointestinal tract of children. (Khongsai et al., 2011; Taluder & Gupta, 2014; Konwar et al., 2020; Lalramnghinglova, 2003; Konwaret al., 2020; Rethy et al., 2010; Devi, 2015; Zhasa et al., 2015; Shankar & Rawat, 2008; Achoudhury, 1999; Talukdar & Gupta, 2014; Das et al., 2008; Debbarma et al., 2017)	Antimicrobial (Akowuahet al.,2006)
38	Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae)	Rhizom e	Diarrhoea, Dysentery	Decoction of rhizome take orally twice daily till cure. (Chettri & Sharma, 2011; Kar &	Antibacterial (Khan&Omoloso, 2008)

				Borthakur, 2008; Ranjana, et al., 2013)	
39	Antidesma acidum Retz. (Phyllanthaceae)	Leaves	Diarrhoea, Dysentery	Leaves cooked with fish and eaten as curry to get relief from stomach problem. (Devi, 2015; Das, 2003; Khatoon, 2014)	Antibacterial, Antioxidant (Patil & Jadhav, 2014)
40	Aporosa octandra (Buch Ham. ex D.Don) Vickery (Phyllanthaceae)	Bark	Gastritis	Bark is boiled and administered orally after taking meal. (Lalruatfeliet al., 2019)	Antimicrobial (Panda et al., 2018)
41	Arctium lappa L. (Asteraceae)	Root	Gastric problem	Decoction of root (250 ml) is used twice a day to get relief from gastric problem. (Das & Sharma, 2002; Khatoon, 2014)	Antioxidant (Liuet al., 2014)
42	Ardisia humilis Vahl. (Myrsianaceae)	Bark, Leaves	Diarrhoea, Ulcer	About 10 ml juice of the bark is given once daily for 3 days. (Borah & Bora, 2020)	• Antibacterial (Khatunet al., 2013)
43	Argemone maxicana L. (Papaveraceae)	Seed	Dysentery	Pounded seed mixed with hot water and given for 3-5 days after food. (Ahmed & Borthakur, 2005; Dahal, 2019)	Antibacterial (Bhattacharjeeet al., 2006)
44	Artemisia vulgaris L. (Asteraceae)	Leaf	Dysentery, Diarrhoea	Half cup of decoction of leaf prescribe after food for 2-4 days. (Dahal, 2019)	Antibacterial (Pandeyet al., 2017)
45	Artemisia nilagirica	Root	Stomach ulcers	2 tea-spoonful root extract is given thrice a day for one week.	Antibacterial (Naiket al., 2014)

	(C.B.Clarke) Pamp. (Asteraceae)			(Devi, 2015; Salam et al., 2014.)	
46	Artocarpus lacucha BuchHam. (Moraceae)	Bark, Fruit	Constipati on	 Juice of bark, about 10 ml once daily is given for 3 days (Khan, 2005; Ranjana, et al., 2013; Sangtam et al., 2012; Gurung, 2002; Rao & Jamir, 1982; Dahal, 2019) Fruit juice is prescribing orally once daily fo 2-3 days. (Khan, 2005; Konwar et al., 2020; Lalramnghinglova, 2003; Konwaret al., 2020) 	Antioxident (Kumaret al., 2010)
47	Arundinaria maling Gamble. (Poaceae)	Tender shoot	Stomach ulcers	Tender shoots are eaten cooked for stomach problems, especially stomach ulcers. (Sharma et al., 2014; Singh et al., 1989; Khan & Yadava, 2010; Chase & Singh, 2013)	Not reported
48	Asparagus filicinus Buch. Ham. (Liliaceae)	Root	Dysentery	2 teaspoon of root juice is mixed along with equal amount of honey and is taken to cured diarrhea. (Ahmed, 2005)	Antioxidant (Negiet al., 2010)

crushed along 1. Root with root/stem of Stemona tuberosa and the juice is given orally to stop diarrhoea. (Dahal, 2019; Bora, 2016) 2. Mixture of ground Asparagus racemosus and Byttneria pilosa with together the Antioxidant (Karunaet boiled bark of Myrica al., 2018;Dohareet al., Asparagus Diarrhoea. esculenta and is given 2011) 49 racemosus Willd. Root all together to cure Dysentery (Liliaceae) dysentery. (Ahmed, 2005; Das & Sharma, 2002: Choudhury, 1999; Myrchiang, 2020) 3. Juice of fresh roots mixed with little honey is used in diarrhoea and dysentery. (Borah & Bora. 2020: Naldarine&Lalnundan ga, 2017; Chhetri et al.,

				1992; Hazarika et al., 2012).	
50	Astilbe rivularis BuchHam. ex D. Don (Saxifragaceae)	Rhizom e	Dysentery, Diarrhoea	Pounded rhizome taken with honey to cure gastritis and constipation. (Sharma & Sharma, 2010; Myrchianget al., 2020)	Antioxidant (Mandalet al., 2009)
51	Averrhoa carambola L. (Oxalidaceae)	Fruit	Dysentery, Diarrhoea, Intestina worms	Raw fruits are taken once daily for abut 1-2 days. (Samati, 2006; Srivastava et al., 1987; Borah & Bora, 2020; Hazarika et al., 2012)	Antibacterial, Antioxident (Astitiet al., 2018)
52	<i>Azadirachta indica</i> A. Juss. (Meliaceae)	Leaf	Dysentery	¹ / ₂ cup of boiled leaf extracts pescribe orally for 2-3 days. (Dutta, 2012; Laloo & Hemalatha, 2011; Devi, 2015; Murtem & Chaudhry, 2016; Chetryet al., 2018; Gogoi, Kayang et al., 2005; 1997; Namsaet al., 2011; Dahal, 2019)	Antimicrobial (Thakurtaet al., 2007)
53	Bacopa monnieri (L.) Wettst. (Plantaginaceae)	Whole plant	Indisetion	Plant juice drunk twice daiy against constipation and stomach disorder. (Das et al., 2013; Shilet al., 2014; Ranjana, et al., 2013; Dahal, 2019).	Antioxidants (Mishraet al., 2006)

54	Bambusa nutans Wall. ex Munro (Poaceae)	Stem	Indisetion	Watery liquid of internodes taken against constipation. (Das, 2003; Das, 2003; Chettri & Sharma, 2011; Sharma, et al., 2014; Dahal, 2019)	Antioxidant (Tripathiet al., 2015)
55	<i>Basella alba</i> L. (Basellaceae)	Tender leaves	Diarrhoea, Dysenter y	Tender leaves are taken as vegetables. (Ranjana, et al., 2013; Gogoiet al., 2019)	Antibacterial (Ratheeet al., 2010)
56	<i>Bauhinia purpurea</i> Linn. (Fabaceae)	Bark	Diarrhoea	Bark is crushed and the juice extract drunk to treat diarrhea. (Changkija, 1999; Pfoze, 2012; Dahal, 2019; Badola & Pradhan, 2013)	Antimicrobial (Zakariaet al., 2011)
57	<i>Bauhinia acuinata</i> Linn. (Fabaceae)	Flower	Dysentery	Flowers are boiled and ¹ / ₂ cup f decoction take orally for 6-7 days. (Rai & Sharma, 1994; Das and Dutta Choudhury, 2012; Laloo & Hemalatha, 2011; Dahal, 2019; Bhuyan, 1998; Zhasa et al., 2015; Jamir and Tsurho, 2016; Lalramnghinglova, 1998; Panda et al., 1991)	Antimicrobial (Panda, et al., 2015)
58	Bauhinia vahlii Wig ht & Arn. (Fabaceae)	Seeds	Dysentery	Roasted seeds are chewed and taken once dally for three days. (Dahal & Borthakur, 2017;	Antimicrobial (Samysowndhararajan & Chulkang, 2013)

				Dahal, 2019; Kayang et al.,2005; Lalramnghinglova, 2003; Kar & Borthakur, 2008)	
59	<i>Begonia josephii</i> A. DC. (Begoniaceae)	Shoot, Leaves	Indisetion	Decoction of freshly collected shoot and leaves are prescribing 2-3 times after food. (Kagyung et al., 2009; Rao & Jamir, 1982; Singh et al., 1989; Teron, 2011)	Not repoeted.
60	<i>Begonia picta</i> Sm. (Begoniaceae)	Shoot	Colic and dysentery	Lukewarm juice prescribes orally till cure in colic and dysentery. (Gurung, 2002; Dahal, 2019)	Antioxidant, Antibacterial (Nisha et al., 2016).
61	<i>Begonia rubrovenia</i> Hook. (Begoniaceae)	Stem	Dysentery and diarrhea.	Leaf juice taken orally twice daily in empty stomach for one week. (Mao, 1993; Laloo & Hemalatha, 2011)	Not repoeted.
62	Begonia roxburghii A. DC (Begoniaceae)	Root	Diarrhoea, Bile dysentery	Root decoction (1/2 cup) take orally once daily for 2-3 days. (Hynniewta, 2008, 2010;Teron, 2011)	Antioxidant, Antibacterial Lalawmpuii & Tlau, 2021).
63	<i>Benincasa hispida</i> (Thunb) Cogn. (Cucurbitaceae)	Fruit	Dysentery, Diarrhoea	One glass of freshly prepared fruit juice is taken in the morning in empty stomach for 1 month. (Salam et al., 2014)	Antibacterial (Soliman et al., 2020).

64	<i>Betula alnoides</i> Buc hHam. ex D.Don (Betulaceae)	Leaf, Bark	Stomach ache, Diarrhoea, Indisetion	 Decoction of leaf with one pinch of salt is given orally twice daily till cure. (Pfoze, 2012). The bark is aromatic, and chewed for digestion. (Ranjanaet al., 2013). Decoction of bark (about half cup) used against stomach ache and diarrhoea. (Sharma et al., 2017; Das, 2003; Gurung, 2002; Dahal, 2019). 	Antibacterial (Sur et al., 2002).
65	Betula utilis D. Don (Betulaceae)	Bark	Dysentery	¹ / ₂ cup of decoction of stem bark used against dysentery. (Chhetri, 2005; Dahal, 2019)	Antimicrobial (Pandey et al., 2020).
66	<i>Berberis angulosa</i> Wall. (Berberidaceae)	Root	Dysentery	Root paste with half cup of water used to cure dysentery. (Mao, 1993; Singh et al., 1989; Dahal, 2019; Das, 2003)	Antioxidant and antibacterial activities of fruit extracts of Berberis species from Nepa Antimicrobial (Dhungel et al., 2016).
67	<i>Berberis aristata</i> DC. (Berberidaceae)	Stem, Bark	Diarrhoea, Gastritis	Decoction of stem and bark used against gastritis and diarrhoea. (Badola & Pradhan, 2013; Gurung, 2002; Dahal,	Antioxidant and antibacterial activities of fruit extracts of Berberis

				2019)	species from Nepa Antioxidant (Singh & Kakkar, 2009).
68	Berberis wallichiana DC (Begoniaceae)	Shoot	Dysentery	Decoction of young twigs mixed with leaf juice of Oxalis richardiana is given for dysentery. (Gurung, 2002; Laloo & Hemalatha, 2011; Chhetri et al., 1992).	Not repoeted
69	<i>Bergenia ciliata</i> (Haw.) Sternb. (Saxifragaceae)	Leafs, Root	Diarrhoea, Dysentery	Infusion of root is taken internally for diarrhoea and dysentery @ 1/2 cup (50 ml) twice daily. (Sharma, et al., 2014; Badola & Pradhan, 2013; Iramnghinglova, 1998) Infusion of leaves and root is taken orally twice daily till cure. (Khan & Yadava, 2010; Rai et al., 2010; Chase & Singh, 2013)	Antioxidant, Antimicrobial (Singh et al., 2017; Shahet al., 2020)
70	Bidens pilosa L. (Asteraceae)	Whole plant	Dysenter, Diarrhoea, Stomachac he	1. The plant juices with salt or honey are prescribed in diarrhea and dysentery thrice daily for 3-7 days. (Rai & Sharma, 1994; Singh	Antioxidant, Antibacterial (Owoyemi & Oladunmoye, 2017; Deba et al., 2008)

				et al., 1989; Ahmed & Borthakur, 2005; Salam et al., 2014; Nonibala, 2015) 2. Decoction of leaves (about one cup) is taken in intestinal and stomach problem. (Shilet al., 2014; Khatoon, 2014)	
71	<i>Bischofia javanica</i> Blume (Phyllanthaceae)	Bark	Pain in the abdomen	Two teaspoon of powder with one glass of water once daiy after food till cure. (Dahal, 2019; Lalramnghinglova, 2003; Myrchiang et al., 2020)	Antibacterial (Chowdhury et al., 2020)
72	Blumea balsamifera D.C. (Asteraceae)	Tender shoots	Dysentery	¹ / ₂ cup of leaf decoction twice daily till cure. (Hazarika et al., 2012; Chhetri et al., 1992; Rao & Jamir, 1982)	Antioxidant, Antibacterial (Nessa et al., 2004)
73	Blumea fistulosa (Roxb.) Kurz (Asteraceae)	Leaf	Diarrhoea	Leaf paste or infusion with one cup of lukewarm water taken orally to cure diarrhoea. (Rai & Sharma, 1994; Dahal, 2019)	Not repoeted
74	Blumea hieracifolia Hayata (Asteraceae)	Leaves	Gastritis	The extract of the fresh leaves is orally administered after food till cure. (Chhetri et al., 1992;	Not repoeted

				Sharma et al., 2014; Majumdar & Dutta, 2007; Singh et al., 1989; Kom et al., 2018)	
75	Blumea lanceolaria (Roxb.) Druce (Asteraceae)	Leaves	Dysentery	Infusion (1 glass) of leaves is taken orally twice daily till cure. (Rai et al., 2010; Bora, 2001; Ngente, 2012)	Antimicrobial, Antioxidant (Mishraet al., 2015)
76	<i>Boerhaevia diffusa</i> L. (Nyctaginaceae)	Whole plant	Stomach ulcers	Whole plant is used as leafy vegetable in stomach ulcer. (Dutta, 2012; Das & Sharma, 2002; Chhetri et al., 1992; Borah & Bora, 2020)	Antibacterial (Kumar et al., 2014).
77	<i>Boehmeria</i> <i>macrophylla</i> Horn. (Urticaceae)	Stem, Leaf	Dysentery	A paste of the stem and leaf is taken twice daily to get cured from dysentery. (Sharma et al., 2014; Mao, 1993; Ahmed, 2005)	Antioxidant (Islam et al., 2016).
78	Bombax ceiba Linn. (Bombaceae)	Bmboo shoot	Blood dysentery	Aqueous extracts mixed along with curd is used to check blood dysentery. (Das et al., 2008; Laloo & Hemalatha, 2011; Das & Sharma, 2002)	Antibacterial,Antioxid ant (Rehman et al., 2017)
79	Borassus flabellifer L. (Arecaceae)	Fruit	Indisetion	Fruit juice drunk twice daily till cure. (Das, 2003; Gurung, 2002; Ranjana, et al., 2013; Dahal, 2019)	Antioxidant (Athinarayanan et al., 2018)

80	Bossenbergia rotunda (L.) Mansf (Zingiberaceae)	Tuber	Indigestion	Boiled tuber (about one cup) is used in indigestion. (Konwar et al., 2020)	Antibacterial (Zainin et al., 2013).
81	Brassaiopsis glomerulata Bl. Regd. (Araliaceae)	Bark	Constipati on	Juice extract of the bark is drunk for digestion and during constipation. (Majumdar & Dutta, 2007; Changkija, 1999)	Not repoeted
82	<i>Brassaiopsis mitis</i> Clarke (Araliaceae)	Fruit	Dysentery	Powdery form of dry fruits mixed with luckwarm water and prescribe twice daily after food till cure. (Singh et al., 1989; Chhetri et al., 1992; Dahal, 2019)	Not repoeted
83	Brassica oleracea L. (Brassicaceae)	Leaves	Stomach ulcer	Decoction of leaves takes twice daily till cure. (Das, 2003; Chettri & Sharma, 2011; Sharma, et al., 2014; Dahal, 2019)	Antioxidant (Volden et al., 2008)
84	Breonia chinensis (Lam.) Capuron (Rubiaceae)	Fruit	Dysentery, Gastritis	Fruits paste with hot water used to treat gastritis and dysentery. (Gurung, 2002; Dahal & Borthakur, 2017; Dahal, 2019)	Not repoeted
85	Brunella vulgaris L. (Lamiaceae)	Leaves	Blood dysentery	Leaves taken raw for cure of blood dysentery. (Hynniewta, 2010; Singh et al., 1989; Das & Sharma, 2002)	Antioxident (Mojab et al., 2003)

86	Bryophyllum pinnat um (Lam) Oken (Crassulaceae)	Leaves	Diarrhoea, Dysentery	 Paste of leaves with little salt used in dysentery, 20 ml once daily until cure. (Sharma, et al., 2014; Mao, 1993; Goswami et al., 2009; Borah & Bora, 2020) Two to three leaves chewed raw with 1 teaspoon sugar. (Hynniewta & Bora, 1997; Das & Dutta Choudhury, 2010; Pfoze, 2012; Das et al., 2008) 	Antimicrobial, Antioxidant (Tatsimo et al., 2012)
87	<i>Caesalpinia bonducella</i> L. Flem. (Fabaceae)	Fruit, Shoot	Gastritis	Filtrate prepared from fruit and shoots along with 3 black pipper. 50ml of dosage thrice daily for 3 days. (Borah & Bora, 2020)	Antibacterial, Antidiarrhoeal (Billahet al., 2013)
88	<i>Cajanus cajan</i> (L.) Millsp. (Fabaceae)	Leaf	Dysentery, Stomach pain	Leaf of Cajanus cajan, Acacia farnesiana, Desmodium triflorum and Hydrocotyle rotundifolia along with the rhizome of Acorus calamus are	Antibacterial (Nagati et al., 2012)

				mixed gently to prepared teblets. One tablet is given orally in empty stomach for 3 days. (Rout et al., 2012; Bora, 2016; Das & Dutta Choudhury, 2010)	
89	<i>Callicarpa arborea</i> Roxb. (Verbenaceae)	Young shoot	Gastric problems	Juice extracted from the young twigs is drunk for the treatment of gastric problems. (Khongsai et al., 2011; Dahal & Borthakur, 2017, 2017a; Das & Sharma, 2002; Shankar & Rawat, 2008; Shankar & Rawat, 2008; Das et al., 2008; Dahal, 2019; Changkija, 1999)	Antibacterial (Roy et al., 2020)
90	Calotropis gigantea (L.) Dryand. (Apocynaceae)	Leaf	Dysentery	Leaf decoction (about half cup) use against dysentery. (Daur & Hajra, 1980; Shilet al., 2014; Marak, 2018; Naldarine & Lalnundanga, 2017; Dahal, 2019)	Antibacterial (Habib et al., 2010)
91	Campylandra aurant iaca Baker (Asparagaceae)	Rhizo me	Dysentery, Diarrhoea	Rhizome decoction is admenestrated 2-3 times daily as antidiarrhoaic. (Ranjana et al., 2013; Megoneitso & Rao, 1983; Rao & Jamir, 1982;	Antibacterial (Chakraborty et al., 2017)

				Kagyung et al., 2009; Chhetri, 2005; Devi et al., 2011; Das, 2003; Dahal, 2019).	
92	Cannabis sativa Linn. (Cannabaceae)	Leaf	Diarrhoea, Dysentery	Leaves are grinded with water and filter. The filtrate is prescribes orally till cure. (Ahmed, 2005; Myrchiang et al., 2020; Khongsai et al., 2011; Pfoze, 2012; Borkataki, 2006; Gogoi, 1997; Rai and Sharma, 1994; Badola and Pradhan, 2013; Chetry et al., 2018; Khan, 2005; Shankar and Rawat, 2008; Dahal, 2019; Zhasa et al., 2015; Dutta, 2012)	Antimicrobial (Cantele et al., 2020)
93	Canscora diffusa (V ahl) R.Br. ex Roem. & Schult. (Gentianaceae)	Whole plants	Diarrhoea, Dysentery	Decoction (about two cup) once daily till cure. (Myrchiang et al., 2020)	Antibacterial (Mahida & Mohan, 2006)
94	Capsella bursa- pastoris (L.) Medik. (Brassicaceae)	Leaf	Diarrhoea	Leaf juice (1 cup) twice daily till cure. (Singh et al., 1989; Mao, 1993; Dahal, 2019)	Antibacterial (Soleimanpour et al., 2013)
95	Capsicum chinense	Fruit	Diarrhoea	About 20 gm fruit taken orally	Antimicrobial,

	Jacq. (Solanaceae)			stops blood dysentery. (Hazarika et al., 2012; Das, 2003)	Antioxidant (Loizzo et al., 2015)
96	Capsicum frutescens Linn. (Solanaceae)	Seeds	Dysentery	Paste along with the aerial part of <i>Drymaria cordata</i> and leaves of <i>Ocimum sanctum</i> is given orally once daily till relief of symptoms. (Samati, 2006; Dahal, 2019; Teron, 2011; Bora, 2016).	Antimicrobial, Antioxidant (Gurnani et al., 2016)
97	<i>Capsicum minimum</i> Roxb. (Solanaceae)	Fruit	Blood dysentery	About 20 gm fruit taken orally stops blood dysentery. (Dutta, 2012; Chhetri et al., 1992; Hynniewta, 2010; Ved et al., 2017)	Not repoeted
98	<i>Cardamine hirsuta</i> L. (Brassicaceae)	Leaf	Stomach ulcer	Leaf juice waith warm water taken against gastric ulcers. (Majumdar & Dutta, 2007; Singh et al., 1989; Dahal, 2019)	Antibacterial, Antithrombin (Medeiros et al., 2000)
99	Careya arborea Rox b. (Lecythidaceae)	Bark, Leaf	Stomachac he, Dysentery	Bark is crushed and decoction (about 1 cup) taken orally till cure. (Lalruatfeli et al., 2019; Bhuyan, 1998) Leaf juice taken orally twice daily in empty stomach for about one week. (Teron, 2011;	Antioxidant (Natesan et al., 2007; Kumar et al., 2006)

				Laloo & Hemalatha, 2011)	
100	<i>Carica papaya</i> Linn. (Caricaceae)	Root	Cholera	Root crushed along with the seed of <i>Piper nigrum</i> and mixed with a cup of warm water and prescribe orally daily in empty stomach for 1-2 days. (Bora, 2016; Das & Dutta Choudhury, 2010; Borah et al., 2006; Kar & Borthakur, 2008; Hazarika et al., 2012; Choudhury, 1999; Das et al., 2008; Das & Dutta Choudhury, 2012;Chetry et al., 2018; Murtem & Chaudhry, 2016; Pfoze, 2012)	Antioxidant (Bapan et al., 2017).
101	<i>Carum carvi</i> L. (Apiaceae)	Seed	Gastritis, Ulcer, Indigestion	Seed paste with luckwarm water prescribe twice daily till cure. (Chettri & Sharma, 2011; Dahal, 2019)	Antioxidant, Antibacterial (Thippeswamy et al., 2013).
102	Carum khasianum C.B.Clarke (Apiaceae)	Seeds	Dysentery	Seeds are soaked in water over night and that water can be drink against the dysentery at the rate of 1 glass daily after food. (Ranjana, et al., 2013)	Antioxidant (Choudhury et al., 2020).
103	Cascabela thevetia (L.) Lippold (Apocynaceae)	Leaf, Root	Stomachac he	Leaf is crushed and the juice is taken as an effective remedy for stomachache. (Rai et al., 2010)	Antioxidant, Antibacterial (Seetharaman et al.,

					2017).
104	<i>Cassia fistula</i> L. (Fabaceae)	Seeds	Diarrhoea	Seed powder with 10 ml hot water prescribe locally for two days. (Borah & Bora, 2020; Srivastava et al., 1987; Dutta, 2012; Sumitra, 2013; Bhuyan, 1998)	Antibacterial, Antioxident (Duraipandiyan & Ignacimuthu, 2007)
105	Catharanthus roseus (L.) G.Don (Apocynaceae)	Leaf, Root	Stomachac he	Root and leaf juice extract is boiled and drunk to cure stomachache. (Khatoon, 2014; Dahal&Borthakur, 2017, 2017a; Changkija, 1999)	Antimicrobial (Jaleel et al., 2006)
106	<i>Centella asiatica</i> (Linn.) Urban. (Apiaceae)	Whole plant	Blood dysentery, Gastritis, Chronic dysentery, Stomachac he	10-25 ml juice with cow milk is given orally daily at morning in empty stomach for 3 days. (Kar & Borthakur, 2008; Bora, 2001; Bora, 2016; Ahmed, 2005; Taluder & Gupta, 2014; Gogoi et al., 2019; Chase & Singh, 2013; Das & Dutta Choudhury, 2010; Lea1 & Limasenla, 2020; Nath, 2001;Khongsai et al., 2011; Kagyung et al., 2009; Bhuyan, 1998; Das et al., 2009; Das & Dutta Choudhury, 2012;	Antioxidant, Antibacterial (Puttaraket al., 2017; Ray et al.,2013; Oyedeji & Afolayan, 2005)

				Sharma & Pegu, 2011; Das et al., 2006; Naldarine & Lalnundanga, 2017; Murtem & Chaudhry, 2016; Teron, 2011; Marak, 2018; Nonibala, 2015; Borah & Bora, 2020; Lalramnghinglova, 2003; Das & Singh, 2017; Namsaet al., 2011; Salam et al., 2014) Juice in raw condition is preserved in airtight container and 2 teaspoons ofdosageaa take orally thrice daily after food. (Gogoi, 1997; Dutta, 2012; Devi, 2013; Hynniewta, 2010)	
107	Cheilocostus speciosus (J.König) C.Specht (Costaceae)	Rhizom e	Stomach inflammati on	Rhizome (about half cup) used to cure stomach inflammation. (Majumdar & Dutta, 2007; Dahal, 2019)	Antioxidant (Balasubramanian et al., 2018)
108	<i>Chenopodium album</i> L. (Chenopodiaceae)	Fruit, Leaf	Diarrhoea, Dysentery	Fruit is bitter and acrid, and taken during stomach pain. Leaf juice with rice used in dysentery &diarrhea. (Hazarika et al., 2012)	Antioxident (Hafeezlaghari et al., 2011)

109	Chromolaena odorata (L.) Voigt. (Asteraceae)	Leaf	Dysentery, Diarrhoea	Two teaspoon leaf juice prescribe orally twice a day till cure. (Taluder & Gupta, 2014; Myrchiang et al., 2020; Pfoze, 2012; Talukdar & Gupta, 2014; Naldarine & Lalnundanga, 2017)	Antioxident (Thang et al., 2001)
110	Chrysanthemum morifolium Desmond (Asteraceae)	Leaves	Diarrhoea, Dysentery	Young leaves are chewed raw to treat diarrhoea and dysentery. (Chhetri, 2005; Badola & Pradhan, 2013; Singh et al., 1989; Dahal, 2019)	Antioxidant (Duh et al., 1999)
112	<i>Chukrasia tabularis</i> A. Juss. (Meliaceae)	Root, Seed	Stomach pain, Diarrhoea, Dysenter y	Raw roots are taken for the remedy of stomach pain; infusion of seedcoat taken internally or a small portion is eaten raw for diarrhoea and dysentery. (Rai et al., 2010)	Antioxident (Kaur & arora, 2009)
113	<i>Ciccus repens</i> Lam. (Vitaceae)	Leaf	Diarrhoea, Dysenter y	Tender leaves are taken as vegetables. (Konwar et al., 2020)	Antioxident (Chaveerach et al., 2017)
114	Cinnamomum pauciflorum Nees (Lauraceae)	Bark	Diarrhoea, Dysentery	2 teaspoons of pawder mixed with half cup of hot water and taken orally till cure. (Laloo et al., 2006)	Antibacterial (Wanget al., 2009)
115	Cinnamomum	Leaf	Diarrhoea	Leaf extract which is aromatic in	Antibacterial (Goyalet

	<i>tamala</i> Fr. Nees (Lauraceae)			odor is used to treat diarrhea. (Badola& Pradhan, 2013; Lalooet al., 2006; Guha et al., 2018; Sharma &Pegu, 2011; Nath, 2001; Bora et al., 2016; Gogoiet al., 2019)	al., 2009)
116	Cissampelos pareira Linn. (Menispermaceae)	Stem	Dysentery	Paste is mixed with 1 gm salt & given orally in empty stomach daily at morning for 3 days. (Ahmed & Borthakur, 2005; Borkataki, 2006; Khan, 2005; Bora, 2016; Shankar & Rawat, 2008; Biswas, 1956)	Antibacterial (Shrestha & Gupta, 2019)
117	Citrus aurantifolia (Christm.) Swingle. (Rutaceae)	Fruit	Dysentery, Diarrhoea	 Orally ¹/₂ tea spoonful of powder thrice daily before food for 5-7 days. (Ranjana, et al., 2013; Nath, 2006; Sharma, et al., 2014; Devi, et al., 2011). One roasted fruit is kept overnight in dew and taken in morning empty stomach. (Bora, 2016) 	Antioxident (Al- Aamriet al., 2017).
118	Citrus hystrix DC.	Fruit	Stomachac	Extract of the fruit with warm	Antioxident (Abirami

	(Rutaceae)		he	water is given in stomach	et al., 2014).
				disorder. (Ranjana, et al., 2013;	
				Marak; 2018; Khatoon, 2014)	
119	<i>Citrus limon</i> L. Burm (Rutaceae)	Leaves, Seed, Bark	Diarrhoea	Leaves, seed and bark crushed and mixed with little salt is given to control diarrhoea. (Gogoi, 1997; Dutta, 2012; Nath, 2006; Dahal, and Borthakur, 2017, 2017a; Borah and Bora, 2020; Chetry et al., 2018; Chhetri et al., 1992)	Antioxidant, Antibacterial (Saeb et al., 2016).
120	Citrus medica L. (Rutaceae)	Fruit	Dysentery	Fruit juice along with juice of sugarce mixed gently. 1-2 spoon of the mixture is given orally daily for 2-3 times. (Laloo & Hemalatha, 2011; Badola & Pradhan, 2013; Das & Sharma, 2002; Bora, 2016)	Antioxidant, Antibacterial (Wuaet al., 2013).
121	<i>Citrus paradisi</i> Macf (Rutaceae)	Fruit	Chronic dysentery	A ripe fruit is taken & create a small hole where petiole of <i>Piper betle</i> Linn. is placed inside the fruit. Then the fruit is placed inside the burning tuh (by product of rice- lemma). After totally cooked one fruit is given daily at morning in empty	Antioxidant, Antibacterial (Giamperi et al., 2004).

				stomach up to 10 days. (Singh et al., 1989; Bora, 2016).	
122	Clerodendrum colebrookianum Walp. (Lamiaceae)	Tender leaves	Diarrhoea, Dysentery	Decoction taken orally 2-3 times daily till cure. (Gogoi et al., 2019; Rao & Jamir, 1982; Namsa, et al., 2001)	Antimicrobial (Kar et al., 2019).
123	Clerodendrum indicum L. Kuntz. (Lamiaceae)	Leaves	Stomach ache	20 ml of decoction of leaves is given once daily for 3 days. (Borah & Bora, 2020; Das & Sharma, 2002; Murtem & Chaudhry, 2016; Chhetri et al., 1992; Yakang et al., 2013)	Antimicrobial (Pal et al., 2012).
124	Clerodendrum infort unatum L. (Lamiaceae)	Roots	Stomach problem	Root extract (about one cup) is administrated to the patient till cure. (Lalramnghinglova, 1998; Das & Dutta Choudhury, 2010; Das et al., 2009; Das et al., 2008; Choudhury, 1999)	Antimicrobial (Sannigrahi et al., 2009)
125	Codonopsis clematidea (Schrenk) CL. (Campanulaceae)	Leaf	Diarrhoea	About half cup of leaf juice given to infant to cure diarrhoea. (Sharma, et al., 2014; Rao & Jamir, 1982; Dahal & Borthakur, 2017; Daur & Hajra, 1980; Ahmed & Borthakur, 2005; Gurung, 2002; Dahal, 2019)	Antioxidant, Antibacterial (Bhardwaj et al., 2020)

126	<i>Codonopsis</i> <i>foetens</i> Hook. f. et Thomson (Campanulaceae)	Leaf	Diarrhoea	About half cup of leaf juice given to infant to cure diarrhoea. (Mao, 1993; Dahal, 2019)	Antioxidant (Luan et al., 2019)
127	<i>Coffea benghalensis</i> B.Heyne ex Schult. (Rubiaceae)	Leaf	Diarrhoea, Stomachac he	One cup of decoction is admenestrated as antidiarrhoaic and stomachache. (Devi, et al., 2011; Kagyung et al., 2009)	Antioxidant (Patayet al., 2016)
128	<i>Coix lacryma-jobi</i> Linn (Poaceae)	Leaf	Dysentery	Leaf juice (about 1 cup) is taken orally till cure. (Hynniewta, 2008, 2010; Chase & Singh, 2013; Das & Sharma, 2002)	Antibacterial (Diningrat et al., 2020)
129	<i>Coptis teeta</i> Wall. (Ranunculaceae)	Rhizom e	Dysentery	Infsion of dry rhizome soaked overnight in water is taken as antidysenteric. (Kagyung et al., 2009; Rethy et al., 2010; Gurung, 2002; Mao, 1993; Monlai, 2013)	Antibacterial (Payum, 2017)
130	Corchorus capsularis L. (Tiliaceae)	Leaves	Intestinal worms	Tender leaves use as vegetable with rice. (Das et al., 2013; Chhetri et al., 1992)	Antioxidant (Ademiluyi et al., 2015)
131	Cordia dichotoma G. Forst. (Boraginaceae)	Bark	Diarrhoea	Decoction of bark taken against fever and diarrhoea. (Das, 2003; Dahal, 2019; Lalramnghinglova, 2003; Singh et al., 1989)	Anti-inflammatory, Antioxidant (Hatware et al., 2018)

132	Cordia fragrantissima Kurz. (Boraginaceae)	Bark	Diarrhoea, dysentery	2 teaspoons of pawder mixed with half cup of hot water and taken orally given till cure. (Ranjana, et al., 2013; Laloo et al., 2006)	Antioxidant (Ozaa & Kulkarni, 2017)
133	Crassocephalum crepidioides (Benth.) Moore (Asteraceae)	Whole plant	Gastriti, Indigestion , Stomach ache	About half cup freshly collected plant juice taken to cure diarrhoea. (Sharma et al., 2014; Chettri & Sharma, 2011; Das, 2003; Dahal, 2019;Pfoze, 2012; Chhetri et al., 1992; Salam et al., 2014; Das & Sharma, 2002; Devi, 2015)	Antioxidant, Anticholinesterases (Ayodele et al., 2019)
134	<i>Croton tiglium</i> L. (Euphorbiaceae)	Bark, Shoots	Amoebic dysentery, Constipati on	 Juice of about 50 gm bark with 50 ml water is given thrice daily for 3 days. About ¹/₂ cup of juice of tender shoots with 1 teaspoonful of powdered pipper is mixed and prescribe it once daily for 3 days. (Borah & Bora, 2020; Srivastava et al., 1987; Shil et al., 2014; Borkataki, 2006; Gogoi, 1997) 	Antifungal, Antibacterial (Shahid et al., 2008)
135	Cucumis sativus L. (Cucurbitaceae)	Fruit	Constipati on	Fruit chewed and is reported to be very useful in stomach	Antioxident (Zhu et al., 2004)

				disorder and constipation. (Chettri & Sharma, 2011; Wangpan et al., 2019; Das, 2003; Majumdar & Dutta, 2007; Samati, 2006; Khatoon, 2014)	
136	<i>Cucurbita maxima</i> Duch. (Cucurbitaceae)	Fruit, Seed	Stomach ache	Seeds and fruit are use to prepae curry. (Dahal & Borthakur, 2017; Gogoi, 1997; Dahal, 2019; Bora, 2001)	Antioxident (Amabirami et al., 2014)
137	<i>Curcuma aromatica</i> Salisb. (Zingiberaceae)	Rhizom e	Diarrhoea, Blood dysentery	 The rhizome of <i>Curcuma zedoria</i> made into paste. Added water into it and taken one cup of it three times only to cure strong diarrhea. (Singh et al., 1989; Devi, et al., 2011; Bhuyan, 1998) Paste of two tablespoons of rhizome take thrice daily for three days after meals. (Daur & Hajra, 1980; Devi, 2015; Kar & 	Antioxident (Al-Reza et al., 2010)

				Borthakur, 2008)	
138	<i>Curcuma caesia</i> Rox b. (Zingiberaceae)	Rhizom e	Indisagitio n, Stomachac he	 Infusion twice daily till cure. (Mandal et al., 2013; Pfoze, 2012; Salam et al., 2014; Singh et al., 1989; Rao & Jamir, 1982; Dahal, 2019; Tushar et al., 2010) Juice extract of rhizome taken orally to get releafe from stomachache. (Kagyung et al., 2009; Dahal & Borthakur, 2017, 2017a; Chhetri et al., 1992; Shil et al., 2014; Bora, 2001) 	Antioxident (Borahbet al., 2019; Krishnarajet al., 2008)
139	Curcuma longa Linn. (Zingiberaceae)	Rhizom e	Diarrhoea, Blood dysentery	Juice of rhizome is mixed with sugar and given in empty stomach daily for 3 days. (Kagyung et al., 2009; Bora, 2016; Saikia, 2006; Bhuyan,	Antioxident (Ahmadet al., 2020; Danapur & Venugopal, 2019)

				1998; Hynniewta, 2010; Das et al., 2013; Chetryet al., 2018; Das & Sharma, 2002)	
140	<i>Cyanthillium</i> <i>cinereum</i> (L.) H. Rob. (Asteraceae)	Root	Stomachac h, Diaarrhoea	2 tea-spoonful of root extract is given thrice a day for one week. (Dahal & Borthakur, 2017; Daur & Hajra, 1980; Chhetri, 2005; Dahal, 2019)	Antimicrobial (Tantengco et al., 2016)
141	Cycas pectinata BuchHam. (Cycadaceae)	Leaves	Stomachac h, Dysentery	Juice of tender leaves (about half cup, twice daily) used to cure dysentery and stomach complaints. (Singh et al., 1989; Deb, 1957; Majumdar & Dutta, 2007; Chhetri et al., 1992; Dahal, 2019)	Antibacterial (Tareq et al., 2020)
142	Cymbopogon citrate s (DC) Stapf (Poaceae)	Leaf	Gastritis	Decoction of leaf prescribe orally to cure gastritis. (Das, 2003; Devi, 2013; Dahal, 2019)	Antibacterial (Nyamath & Karthikeyan, 2018)
143	<i>Cynodon dactylon</i> (L.) Pers. (Poaceae)	Whole plant	Dysentery, Diarrhoea	Decoction of plant prescribe twice daily till cure. (Das et al., 2008; Das & Dutta Choudhury, 2012; Nonibala, 2015; Dahal, 2019)	Antimicrobial (Pmelinda et al., 2010)
144	<i>Cyperus rotundus</i> Linn.	Tuber	Dysentery, Diarrhoea	About 1 glass of decoction of plant prescribe twice daily till	Antimicrobial (Kilani- Jaziri et al., 2011)

	(Cyperaceae)			cure. (Ahmed & Borthakur, 2005; Devi, 2013; Dahal, 2019)	
145	Dactyloctenium aeg yptium (L.) Willd. (Poaceae)	Whole plant	Diarrhoea, Dysentery	The extract (about ½ cup) of the plant with honey is prescribed in stomach problem. (Mao, 1993; Deb, 1957; Kom et al., 2018)	Antimicrobial (Ali, 2017)
146	Dactylicapnos scand ens (D. Don) Hutch. (Papaveraceae)	Tuber	Dysentery	¹ / ₂ cup of juice take twice daily after food till cure. (Pfoze, 2012; Singh et al., 1989; Khan, 2005; Srivastava et al., 1987)	Antimicrobial (Xu et al., 2006)
147	<i>Debregeasia</i> <i>longifolia</i> Wedd. (Urticaceae)	Fruit	Indigestion	One cup of decoction of fruit prescribe after food. (Leal & Limasenla, 2020)	Antioxidant, Antiproliferative (Sathak et al., 2014)
148	Deeringia amaranthoides (Lam.) Merr. (Amaranthaceae)	Leaf	Dysentery	Fresh leaf paste is prescribing orally for about 3-7 days. (Rai & Sharma, 1994; Laloo & Hemalatha, 2011)	Not reported
149	<i>Desmodium</i> gangeticum (Linn.) DC (Fabaceae)	Root	Dysentery	Root crushed and mixed with ginger and two teaspoon of dose prescribe orally for 3-5 days. (Dahal & Borthakur, 2017, 2017a)	Antibacterial (Thirunavoukkarasu et al., 2013)

150	Desmodium triflorum (L.) DC. (Fabaceae)	Leaf	Dysentery, Stomach pain	Leaf of <i>Cajanus cajan, Acacia</i> <i>farnesiana, Desmodium</i> <i>triflorum</i> and <i>Hydrocotyle sibthorpioides</i> along with the rhizome of <i>Acorus calamus</i> are mixed gently to prepared teblets. One tablet is given orally in empty stomach for 3 days. (Das & Sharma, 2002; Rao & Jamir, 1982; Chhetri et al., 1992; Bora, 2016)	Antibacterial (Sharma et al., 2013)
151	<i>Desmostachya</i> <i>bipinnata</i> (L.) Stapf. (Poaceae)	Leaves	Dysentery, Diarrhoea	Decoction of leaf prescribe twice daily till cure. (Ranjana, et al., 2013; Gurung, 2002; Sharma, et al., 2014; Das, 2003; Dahal, 2019)	Antibacterial (Subramaniam et al., 2014)
152	Dichrocephala integ rifolia (L.f.) Kuntze (Asteraceae)	Leaves	Diarrhoea	Leaves are crushed and the juice is taken orally. (Chhetri, 2005; Sharma & Sharma, 2010; Lalruatfeli et al., 2019; Shilet al., 2014)	Antioxidant (Nadègeaet al., 2017)
153	<i>Dillenia indica</i> Linn. (Dilleniaceae)	Fruit	Dysentery, Diarrhoea	The fruit is boiled & the water is taken for the remedy of diarrhoea & dysentery. (Bora, 2016; Hazarika et al., 2012;	Antioxident(Kumar et al., 2011)

				Khatoon, 2014; Sumitra, 2013; Dahal, 2019; Ray et al., 2010; Kagyunget al., 2009; Bora, 2001; Bora et al., 2016; Borkataki, 2006; Baidya et al., 2020; Naldarine & Lalnundanga, 2017; Majumdar et al., 2006; Chetry et al., 2018; Lalramnghinglova, 1998)	
154	Dillenia pentagyna Roxb. (Dilleniaceae)	Leaves, Bark	Diarrhoea, Indigestion	Decoction of the leaves or bark are used for curing gastric trouble and dysentery. (Das & Sharma, 2002; Sharma, et al., 2014; Ngente, 2012)	Antioxident (Yadavet al., 2017)
155	<i>Dioscorea alata</i> L. (Dioscoreaceae)	Tuber	Diarrhoea	Boiled tuber prescribe with lukewarm water for 2-4 days. (Mao, 1993; Dahal, 2019; Shilet al., 2014; Das, 2003)	Antimicrobial (Ochoaet al., 2020)
156	<i>Dioscorea bulbifera</i> L. (Dioscoreaceae)	Tuber	Dysentery	Boiled tuber taken to cure dysentery. (Rai & Sharma, 1994; Chettri & Sharma, 2011; Das, 2003; Singh et al., 1989; Dahal, 2019)	Antibacterial (Kuete et al., 2012)
157	Dioscorea deltoidea Wall. ex Griseb. (Dioscoreaceae)	Tuber	Indigestion	Juice of tuber used for treatment of constipation. (Dahal & Borthakur, 2017; Dahal, 2019)	Antimicrobial (Chandra et al., 2013)

158	<i>Diospyros pilosula</i> (DC.) Heim. (Ebenaceae)	Whole parts	Dysentery	Half cup of juice taken orally twice daily in empty stomach for one week. (Chhetri et al., 1992; Rai & Sharma, 1994; Srivastava et al., 1987; Hynniewta & Bora, 1997; Laloo & Hemalatha, 2011; Daur & Hajra, 1980; Laloo et al., 2006)	Not repoeted
159	<i>Dipsacus inermis</i> W all. (Caprifoliaceae)	Rhizom e	Diarrhoea, Dysentery	Four tablespoon of fresh juice of rhizome take orally once daily for three days. (Kar &Borthakur, 2008)	Not repoeted
160	<i>Dolichos lablab</i> Linn. (Fabaceae)	Fruit	Dysenter y	Pod is boiled and 1 cup of decoction taken orally till cure. (Majumdar & Dutta, 2007; Chase & Singh, 2013)	Antimicrobial (Narenderet al., 2017)
161	Dolomiaea macrocephala DC. (Asteraceae)	Whole plant	Indigestion	Decoction of plant prescribe orally twice daily till cure. (Singh et al., 1989; Dahal, 2019)	Not repoeted
162	Drymaria cordata Willd (Caryophyllacerae)	Shoot	Dysentery and Diarrhoea, Gastritis	1. Paste along with the seed of <i>Capsicum</i> <i>frutescens</i> and leaves of <i>Ocimum sanctum</i> is given orally once daily	Antimicrobial (Ghimire et al., 2011)

				 till relief of symptoms. (Ahmed & Borthakur, 2005; Samati, 2006; Bora, 2016; Chetry et al., 2018; Devi, 2013) Whole plant is eaten as vegitable for stomach troubles. (Bora & Bora, 2020; Gogoi et al., 2019; Kagyung et al., 2009) 	
163	<i>Duabanga</i> grandiflora (Roxb. Ex DC.) walp. (Lythraceae)	Leaves	Diarrhoea	Decoction of tender leaves (one glass) used against diarrhoea. (Deb, 1957; Chhetri et al., 1992; Sharma et al., 2014; Dahal, 2019; Khan, 2005)	Antimicrobial (Othman et al., 2011)
164	<i>Dysoxylum</i> <i>procerum</i> Heirn. (Meliaceae)	Leaf, Root	Dysentery, Diarrhoea	 Half cup of decoction of the crushed leaves prescribes orally given till cure. (Laloo & Hemalatha, 2011) The decoction of the root is used twice daily after food for about 4 days. (Mao, 1993; Srivastava et al., 1987; Neogiet al., 1989) 	Antimicrobial (Arya et al., 2017)

165	<i>Eclipta prostrata</i> (L.) L. (Asteraceae)	Whole plant	Indigestion	Decoction of whole plant (about one lass) taken against constipation. (Ahmed & Borthakur, 2005; Sharma, et al., 2014; Das, 2003; Dahal, 2019; Bora, 2016; Khan, 2005; Khan & Yadava, 2010; Mao, 1993; Gogoi et al., 2019)	Antimicrobial (Kim et al., 2008; Pandey et al., 2011)
166	Elaeagnus parvifolia Wall. ex Royle (Elaeagnaceae)	Fruits	Diarrhoea	10-15 fruits are taken orally once daily for about one week. (Dahal & Borthakur, 2017a; Das, 2003)	Antioxident (Spínola et al., 2019)
167	<i>Elaeocarpus floribu ndus</i> Blume (Elaeocarpaceae)	Fruits	Indigestion	Extract of leaves (100 ml) with one pinch of salt is given thrice daily in dysentery and diarrhoea till motion is controlled. (Pfoze, 2012; Khatoon, 2014)	Antioxident (Umar et al., 2013)
168	Elatostema platyphyllum Wedd. (Urticaceae)	Stem	Gastrict	Shoot consumed as vegetable in gastritis. (Devi et al., 2011; Badola& Pradhan, 2013; Dahal & Borthakur, 2017; Rai & Sharma, 1994; Dahal, 2019)	Antimicrobial (Medak & Singha, 2018)
169	Eleusine coracana (L.) Gaertn. (Poaceae)	Seed	Gastritis	Fermented seed with rice taken to cure gastritis. (Mao, 1993; Chettri & Sharma, 2011;	• Antimicrobial (Jayawardana et al., 2021)

				Majumdar &Dutta, 2007; Dahal, 2019)	
170	Eleutherococcus ciss ifolius (Griff. ex C.B.Clarke) Nakai (Araliaceae)	Leaves	Stomachac he	Leaf extract mixed with hot water and prescribe orally twice daiy till cure. (Daur & Hajra, 1980; Gurung, 2002; Gurumayum & Soram, 2014)	Not repoeted
171	Elsholtzia blanda (Benth.) Benth. (Lamiaceae)	Leaf	Diarrhoea	About half cup of decoction of leaf is used once daily till cure. (Majumdar & Dutta, 2007; Lea1 & Limasenla, 2020)	Not repoeted
172	<i>Elsholtzia</i> <i>ciliata</i> Thunb. (Lamiaceae)	Leaves	Dysentery, Stomachac he	Fresh leaves extract is given to treat gas formation and quick relief. (Sharma, et al., 2014; Gurumayum & Soram, 2014; Das, 2003; Gurung, 2002; Devi, et al., 2011; Pfoze, 2012)	Antimicrobial (Pudziuvelytea et al., 2017; Ishwori et al., 2014)
173	<i>Emilia sonchifolia</i> (L.) DC. Ex DC. (Asteraceae)	Whole plant	Diarrhoea, Dysentery	Root extract (1/2 cup) take orally once daily after food till cure. (Khatoon, 2014; Dahal, 2019)	Antimicrobial (Ogundajo et al., 2021)
174	Enhydra fluctuans Lour (Asteraceae)	Leaf	Diarrhoea, Dysentery	Decoction of leaf is given orally twice daily after food till cure. (Das & Sharma, 2002; Megoneitso & Rao, 1983; Debbarma et al., 2017)	Antimicrobial (Ali et al., 2013)

175	<i>Equisetum diffusum</i> D. Don (Equisetaceae)	Root	Indigestion	2 tea-spoonful of root extract is given thrice a day for once a week. (Dahal & Borthakur, 2017; Daur & Hajra, 1980; Dahal, 2019)	Antibacterial (Thanh et al., 2019)
176	<i>Eriosema chinense</i> Baker (Fabaceae)	Bark	Dysentery	Decoction used in the treatment of dysentery. Dose take orally once daily after food. (Shilet al., 2014; Laloo & Hemalatha, 2011)	Antioxidant (Prasad et al., 2013)
177	<i>Eriosema</i> himalaicum Ohashi (Fabaceae)	Tuber	Dysentery	Raw tubers are chewed against dysentery. (Chhetri et al., 1992; Hynniewta, 2010; Sharma et al., 2014; Daur & Hajra, 1980)	Not repoeted
178	Eryngium foetidum L. (Apiaceae)	Whole plant	Diarrhoea, Dysenter y	Paste with cold water (1/2 cup) take twice daily till cure. (Sumitra, 2013; Marak, 2018; Mandal et al., 2013; Dahal, 2019; Naldarine & Lalnundanga, 2017; Chetry et al., 2018)	Antioxidant (Lingaraju et al., 2016)
179	Erythrina arborescens Roxb. (Fabaceae)	Leaves	Diarrhoea, Dysentery	Fresh leaves are crushed and made into paste. Two talespoon of dose with lukewarm water take once dally for 7 days. (Kar & Borthakur, 2008; Pfoze,	Antibacterial (Kaushal et al., 2020)

2012) A lime decoction of the bark is drunk to treat dysentery and Diarrhoea. diarrhea. (Ahmed & Borthakur, Antioxidant (Bushra et Eugenia jambolana Bark, 180 Dysentery, 2005; Changkija, 1999) al., 2007: Sultana et Lam. (Myrtaceae) Fruits Fruits are taken raw which help Indigestion al., 2007) in digestion. (Chhetri et al., 1992; Bora & Bora, 2020) Decoction of plant takes twice daily after food till cure. (Bhuyan, 1989; Das, 2003; Antimicrobial Euphorbia hirta L. Whole 181 Ngente, 2012; Dysentery Shankar & (Arrabasma et al., (Euphorbiaceae) plant Rawat, 2008; Devi, 2015; 2011) Dahal, 2019; Baidya et al., 2020) Useful in bile related problems and in digestive problems. One cup of decoction of plant taken Euphorbia strachevi twice daily after food till cure. Whole 182 Boissier Gastritis (Dahal & Borthakur, 2017; Singh Not repoeted plant (Euphorbiaceae) et al., 1989; Shil et al., 2014; Chettri & Sharma, 2011; Dahal, 2019; Baidya et al., 2020; Chhetri

Recent Advances in Folk Medicine Research in North East India

et al., 1992)

183	Fagopyrum esculentum Moench. (Polygonaceae)	Root	Stomach ulcer	Grain flour along with honey in lukewarm water taken in early morning to cure stomach ulcer. (Chettri & Sharma, 2011; Ahmed & Borthakur, 2005; Chetry et al., 2018; Rai & Sharma, 1994; Daur & Hajra, 1980; Deb, 1957; Dahal, 2019)	Antimicrobial (Zhao et al., 2018)
184	Ficus auriculata Lour. (Moraceae)	Fruits	Diarrhea, Dysentery	Bark juice (about ¹ / ₂ cup) taken twice daily against diarrhoea and dysentery. (Chhetri et al., 1992; Dahal, 2019)	Not repoeted
185	Ficus benghalensis Linn. (Moraceae)	Leaf	Diarrhoea, Dysentery	Powdered leaves mixed with curd and 50 ml of dosage prescribe orally thrice daily for 3 days. (Naldarine & Lalnundanga, 2017; Rao & Jamir, 1982; Vedet al., 2017; Jaiswal, 2010)	Antibacterial (Saxena et al., 2012)
186	Ficus benjamina L. (Moraceae)	Shoot	Dysentery	1/2 cup of decoction of tender shoot prescribe orally for 2-4 days after food. (Dahal, 2019)	Antioxidant (Jain et al., 2013)
187	Ficus glomerata Roxb. (Moraceae)	Bark	Dysentery, Diarrhoea	One cup of boiled extract of the bark is given twice daily till cure. (Nonibala, 2015)	Antioxidant (Irfan et al., 2011)
188	Ficus hispida Roxb.	Bark,	Diarrhoea	The boiled extract of fruit and	Antioxidant,

	ex Wall. (Moraceae)	Fruit		bark is prescribing once daily for two days. (Srivastava et al., 1987; Sumitra, 2013; Nonibala, 2015)	Antibacterial (Ramesh et al., 2018)
189	<i>Ficus palmata</i> Forss k.(Moraceae)	Leaves	Diarrhoea, Dysentery	Leaves cooked and taken as a remedy for carminative and stomach trouble. (Khatoon, 2014)	Antibacterial (Nasar et al., 2017)
190	Ficus pumila L. (Moraceae)	Fruit	Diarrhoea	The boiled extract of the fruit is given in diarrhea. (Sharma &Sharma, 2010; Nonibala, 2015; Sharma et al., 2014; Chetryet al., 2018)	Antibacterial (Maria et al., 2014)
191	<i>Ficus religiosa</i> L. (Moraceae)	Bark, Latex	Dysentery	Decoction taken orally 2-3 times daily till cure. (Sharma & Hazarika, 2018; Chhetri et al., 1992; Shankar & Rawat, 2008; Jamir et al., 2015; Gogoi et al., 2019; Das et al., 2008)	• Antibacterial (Prakashet al., 2017)
192	<i>Ficus squamosa</i> Rox b. (Moraceae)	Leaves	Indigestion	Decoction of young leaves (about 1/2 cup) given in indigestion. (Chhetri et al., 1992; Khatoon, 2014)	Antioxident (Saklani & Chandra, 2011)
193	Flacourtia jangomas (Lour.) Raeush. (Flacourtiaceae)	Fruit	Stomach ulcer	About once cup of decoction of fruit is given in stomach ulcer. (Sharma & Sharma, 2010;	Antioxident (Ahmad et al., 2020)

				Khatoon, 2014)	
194	Foeniculum vulgare Mill. (Apiaceae)	Fruit	Stomach ulcer	Two tablespoon of juice with halfcup of water is given in stomach ulcer. (Ved et al., 2017; Khatoon, 2014)	Antibacterial (Cantore et al., 2004)
195	Fragaria nilgerrensi s Schltdl. ex J. Gay (Rosaceae)	Whole plant	Dysentery, Diarrhoea	One cup of decoction twice daily till cure. (Mao, 1993; Chhetri, 2005; Das, 2003)	Not repoeted
196	<i>Garcinia cowa</i> Roxb. ex DC. (Clusiaceae)	Bark, Fruits	Dysentery	 The fruit is finely powdered after sun dried and one or two teaspoon of power mixed with one glass of cold water and take it in empty stomach. (Laloo et al., 2006; Rao, 1981; Bora & Bora, 2020; Gogoi et al., 2019; Borkataki, 2006; Gogoi, 1997; Changkija, 1999) Decoction (about ½ cup) of bark taken against hypertension and in stomach disorders. (Pfoze, 2012; Sharma & Sharma, 2010) 	Antioxident (Josephet al., 2005)

197	<i>Garcinia kydia</i> Roxb. (Clusiaceae)	Fruit	Constipati o, Dysentery	Fruits can be preserved sundried and during the off season dried fruits can be boiled with water and that juice can be taken orally twice a day after food. (Bora, 2001; Marak, 2018; Rao & Jamir, 1982)	Antioxident (Dutta et al., 2018)
198	<i>Garcinia</i> <i>lancaeafolia</i> Roxb. (Clusiaceae)	Fruit	Diarrhoea, Dysenter y	Half cup of fruit juice is given twice daily till cured. (Samati, 2006; Rout et al., 2012; Teron, 2011; Rai et al., 2010)	Antioxident (Policegoudraet al., 2012)
199	<i>Garcinia morella</i> (Gaertn.) Desv(Clusiaceae)	Fruit	Dysentery	Dry fruit curry consumed in dysentery. (Taluder & Gupta, 2014; Talukdar & Gupta, 2014; Das et al., 2013; Megoneitso and Rao, 1983; Khatoon, 2014)	Antioxident (Gogoi et al., 2017)
200	<i>Garcinia pedunculata</i> Roxb. (Clusiaceae)	Fruit	Constipati on, Dysentery	 Dry fruit is mixed with boiled rice water, salt and mustard oil. The mixture is given orally during trouble and given till cure. (Khatoon, 2014; Kar & Borthakur, 2008; Bora, 2016; Lalramnghinglova, 1998;Teron, 2011; 	Antioxident (Mudoi et al., 2012; Jayaprakashaet al., 2006)

Rethy et al., 2010) 2. ¹/₄ part dried fruit of Garcinia pedunculata is soaked in half cup (15-20 ml) water for few hours then mixed with salt & pseudostem water of Musa bulbisiana is given to dysentery. cure (Srivastava et al.. 2001; 1987; Bora, Bora. 2016: Sumitra. 2013). Garcinia Decoction of leaves boiled and Chronic Antioxident (Fu et al., 201 xanthochymus Hook. Leaf take twice daily till cure. 2012) dysentery (Konwar et al., 2020) f (Clusiaceae) Gaultheria Powdered leaf mixed with water Antioxidant. 202 fragrantissima Wall. Leaf Dysentery and 1 glass of these doges taken Antibacterial (Pandey (Ericaceae) orally till cure. (Jaiswal, 2010) et al., 2017) Rhizomes pounded and juice Globba clarkei Bake Rhizom Stomachac extract used for curing 203 Not repoeted he stomachache. (Samati, e (Zingiberaceae) 2006; Ved et al., 2017) Glochidion oblatum Stem, Fresh stem and roots extracts 204 Dysentery Not repoeted J. D. Hooker Root are taken orally till cure. (Pfoze,

	(Ranunculaceae)			2012; Gurumayum & Soram, 2014)	
205	Gossypium arboreum L. (Malvaceae)	Root, Leaf	Dysentery, Diarrhoea, Gastritis	Decoction of root and leaves useful in gastric irritation, dysentery and diarrhoea. (Rai & Sharma, 1994; Daur & Hajra, 1980; Gogoi, 1997; Dahal, 2019)	Antioxidant, Antibacterial (Annan & Houghton, 2008)
206	<i>Gynura bicolor</i> (Roxb. ex Willd.)DC. (Asteraceae)	Leaf	Gastritis, Diarrhoea	 Leaves along with the young stems is boiled with or without rice and is taken for treating gastritis. (Megoneitso & Rao, 1983; Majumdar & Dutta, 2007; Gurumayum&Soram, 2014; Sharma et al., 2014; Ranjana, et al., 2013; Lea1 & Limasenla, 2020; Pfoze, 2012; Daur & Hajra, 1980; Chhetri, 2005; Ahmed & Borthakur, 2005; Das, 2003) 	Antibacterial (Rozanoet al., 2017; Rozano, et al., 2017; Lu et al., 2012)

207	Hedychium coccineum Buch Ham. ex Sm. (Zingiberaceae)	Rhizom e	Gastritis	The shoots are eaten raw. (Kom et al., 2018)	Antioxidant (Ray et al.,2018)
208	Hedychium flavescens Carey ex Rosc (Zingiberaceae)	Rhizom e	Gastritis	About one cup of boiled extract of the tuber is mixed with honey and administered orally. (Sharma et al., 2014; Komet al., 2018)	Antioxidant (Ray et al., 2018)
209	Hedychium rubrum A.S Rao & D.M. Verma (Zingiberaceae)	Rhizom e	Diarrhoea, Dysentery	The boiled extract of rhizome (about 1 cup) is mixed with honey and administered orally. (Gurung, 2002; Kom et al., 2018)	Antioxidant (Hartatia et al., 2014)
210	Hedychium spicatum Sm. (Zingiberaceae)	Whole plant	Diarrhoea	Half cup of infusion is taken with warm water against diarrhoea till cure. (Kagyung et al., 2009; Mandal et al., 2013, Jamir et al., 20115; Dahal, 2019)	Antioxidant (Rawat et al., 2011)
211	Hedyotisauricularia L. (Rubiaceae)	Leaves	Diarrhoea, Dysentery	Decoction of leaves is used in diarrhoea and dysentery. (Megoneitso & Rao, 1983; Murtem & Chaudhry, 2016; Hynniewta, 2010; Kayang et al., 2005; Majumdar et al., 2006;	Antimicrobial (Ali et al., 1996)

Recent Advances in Folk Medicine Research in North East India

				Khatoon, 2014)	
212	Helianthus annus L. (Asteraceae)	Seed	Stomachac he	Seed mixed with hot water and take orally twice daily till cure. (Rai et al., 2010)	Antimicrobial (Adetunji et al., 2014)
213	<i>Heracleum wallichii</i> DC. (Umbelliferae)	Fruit	Diarrhoea, Dysentery	Fruits chewed against stomach disorders. (Daur & Hajra, 1980; Chhetri, 2005; Dahal, 2019)	Antioxidant, Antibacterial (Bahadori et al., 2016)
214	<i>Hibiscus</i> <i>cannabinus</i> L. (Malvaceae)	Leaf	Indigestion	Boiled extract of leaves is given once daily for a week in case of indigestion. (Sharma & Sharma, 2010; Khatoon, 2014)	Antioxidant (Mariod et al., 2012)
215	Hibiscus sabdariffa L. (Malvaceae)	Leaf	Dysentery	Leaf curry (about 1 glass) in dysentery. (Taluder & Gupta, 2014; Bora & Das, 2015; Gogoi, 1997; Gogoi et al., 2019; Talukdar & Gupta, 2014; Sumitra, 2013; Singh et al.,2015; Das & Singh, 2017;Teron, 2011; Zhasa et al., 2015)	Antibacterial (Abdallah, 2016)
216	Himalaiella deltoidea (DC.) Raab-Straube (Asteraceae)	Leaves	Gastritis, Stomachac he	Boil decoction of the plant with salt is prescribed twice daily for about 1-3 days. (Pfoze, 2012; Das & Sharma, 2002; Chhetri et al., 1992)	Not repoeted

217	<i>Hiptage</i> <i>benghalensis</i> (L.) Kurz (Malpighiaceae)	Root	Diarrhoea, Dysentery, Stomachac he	Decoction (about ¹ / ₂ cup) of the root is taken orally for stomachache; chewed in a raw form in diarrhoea and the powdered root bark mixed with water is use for dysentery. (Ngente, 2012; Ahmed & Borthakur, 2005)	Antibacterial (Murugan & Mohan, 2011)
218	<i>Hippophae</i> salicifolia D. Don (Elaeagnaceae)	Fruits	Constipati on, Stomachac he	Fruits juice used to treat constipation and stomachache. (Shil et al., 2014; Dahal, 2019)	Antioxidant, Antibacterial (Saikia & Handique, 2013)
219	<i>Holarrhena pubescens</i> Wall. ex G.Don (Apocynaceae)	Bark	Chronic dysentery	Bark crushed along with root of <i>Mimosa pudica</i> and mixed with a cup of warm water and decoction is given orally after breakfast till cure the disease. (Bora, 2016; Chhetri, 2007; Rai & Sharma, 1994; Debbarma et al., 2017; Changkija, 1999; Laloo & Hemalatha, 2011, Dahal, 2019; Dutta, 2012; Monlai, 2013; Ahmed & Borthakur, 2005; Naldarine & Lalnundanga, 2017; Das et al., 2009; Gogoi, 1997; Bhuyan,	Antibacterial (Chouhan. et al., 2017)

	Holboellia latifolia			1998; Teron, 2011; Choudhury, 1999) Boiled fruit is eaten orally.	Antimicrobial
220	Wall (Lardizabalaceae)	Fruit	Diarrhoea	(Devi, et al., 2011; Chase & Singh, 2013)	(Malewska et al., 2018)
221	<i>Houttuynia cordata</i> Thunb (Saururaceae)	Leaf, Root	Dysentery, Stomach disorder, Colic and bilious pain	 Paste of young branch of Mentha spicata along with the leaf of Houttuynia cordata and Psidium guajavais given orally in empty stomach till cure the disease. (Ahmed & Borthakur, 2005; Dahal, 2019; Bora, 2016; Kagyung et al., 2009; Singh et al., 2015; Das & Tag, 2005; Zhasa et al., 2016; Baidya et al., 2020; Guha et al., 2018) Roots and leaves are eaten raw to treat amoebic dysentery. (Ahmed, 2005; Changkija, 1999; Khongsai et al., 2011; Kar 	Antioxidant (Tianet al., 2011)

				 & Borthakur, 2008; Borkataki, 2006;Hynniewta, 2010; Monlai, 2013; Khatoon, 2014; Bhuyan, 1998; Gogoi, 1997; Tsering, 2017; Namsa et al., 20011; Chetry et al., 2018; Bora, 2001; Rao & Jamir, 1982; Sangtam et al., 2012). 3. Three teaspoonfuls of leaf juice mixed with little black pepper and is prescribe twice daily in a day to cure colic and bilious pain. (Khan & Yadava, 2010; Chhetri et al., 1992; Ahmed & Borthakur, 2005; Bora & Bora, 2020) 	
222	Hydrocotyle javanica Thunb. (Apiaceae)	Whole plant	Watery diarrhea	The whole plant is ground with water and the leaves of <i>Rubus</i> <i>hexogonus</i> and <i>Cymbopogon</i> species. This decoction taken for two days on empty stomach to cure watery diarrhea.(Ahmed,	Antimicrobial (Sivakumar et al., 2017)

				2005; Daur & Hajra, 1980)
223	Hydrocotyle sibthor pioides Lam. (Apiaceae)	Whole plant	Dysentery, Stomach pain	1. Leaf of Cajanuscajan, Acacia farnesiana, Desmodiumtrifloruman d 1. Leaf of Cajanuscajan, Accacia farnesiana, Desmodiumtrifloruman d 1. Leaf of Cajanuscajan, Accacia farnesiana, Desmodiumtrifloruman d 1. Leaf of Cajanuscajan, Accacia farnesiana, Desmodiumtrifloruman d 1. Leaf of Cajanuscajan, Hydrocotyle sibthorpio idesalong with the rhizome of Acorus calamus are mixed gently to prepared teblets. One tablet is given orally in empty stomach for 3 days. (Kar &Borthakur, 2008; Bora, 2016)
				 2008; Bora, 2016) 2. 10-25 ml juice with cow milk is given orally daily at morning in empty stomach for 3 days. (Salam et al., 2014; Borah et al.,
				2006; Talukdar & Gupta, 2014; Bora,

				2016; Lepchaet al., 2019)	
224	Hygrophila ringens (L.) R. Br. ex Spreng. (Acanthaceae)	Whole plant	Diarrhoea, Dysentery, Stomach ache	Once tea cupfull of fresh extract of whole plant taken orally for a week in treatment of stomach complaints. (Rai & Sharma, 1994; Singh et al., 1989; Khatoon, 2014)	Antimicrobial (Patra et al., 2009)
225	Hyptis suaveolens (L .) Poit. (Lamiaceae)	Root	Dysentery	A glassful of root decoction is given once daily for one week (Salam et al., 2014; Majumdar & Datta, 2006)	Antioxidant (Mishra et al., 2021; Gavani & Paarakh, 2008)
226	<i>Imperata cylindrica</i> Beauv. (Poaceae)	Rhizom e	Diarrhoea, Dysentery	Rhizome is crushed and soaked in water overnight, then drunk to relieve dysentery and diarrhea. (Das, 2003; Gurung, 2002; Changkija, 1999)	Antibacterial (Parkavi et al., 2012)
227	<i>Inula obtusifolia</i> A. Kerner (Asteraceae)	Shoot	Diarrhoea, Dysentery	Plant antiseptic, diuretic, expectorant and useful in gastrointestinal problems. (Ahmed & Borthakur, 2005; Dahal, 219)	Antimicrobial (Amin et al., 2013)
228	<i>Ipomea uniflora</i> Roem. & Schult. (Convulvulaceae)	Leaf	Dysentery	1 tablespoon twice a day of the aqueous extract is consumed daily to treat dysentery. (Maikhuri, 1993; Sharma &	Not repoeted

				Sharma, 2010)	
229	<i>Iris domestica</i> (L.) Goldblatt et Mabb. (Iridaceae)	Rhizom e	Chronic constipatio n	Decoction of rhizome used against chronic constipation. (Das, 2003; Rai & Sharma, 1994; Ahmed & Borthakur, 2005; Megoneitso & Rao, 1983; Rao & Jamir, 1982; Bhuyan, 1998; Dahal, 2019)	Antioxidant (Iwashina & Mizuno, 2020)
230	<i>Ixora coccinea</i> L. (Rubiaceae)	Root, Leaf	Dysentery	Leaf and root extract taken to cure dysentery. (Ahmed & Borthakur, 2005; Badola & Pradhan, 2013; Dahal, 2019)	Antioxidant, Antimicrobial (Muhammada et al., 2020)
231	<i>Ixora nigricans</i> R.Br (Rubiaceae)	Leaf	Dysentery, Colic problems	Infusion of the leaves is prescribed for dysentery & colic problems. (Devi et al., 2011; Rai et al., 2010)	Antioxidant, Antimicrobial (Annapurna et al., 2003)
232	Jasminum nervosum Lour. (Oleaceae)	Leaf	Stomachac he	Juice of leaf with half cup of cold water prescribe twice dailly till cure. (Shil et al., 2014; Rai et al., 2010)	Antimicrobial (Balkrishna et al., 2021)
233	<i>Jatropha curcas</i> Linn. (Euphorbiaceae)	Latex	Dysenter, Chronic dysentery	Latex is mixed with 125 ml goat milk and given orally in empty stomach for 3 days. (Bhuyan, 1998; Marak, 2018; Gogoi, 1997; Naldarine & Lalnundanga, 2017; Bora, 2016;	Antimicrobial (Rofida, 2015)

				T 2 011	
				Teron, 2011)	
234	<i>Justicia adhatoda</i> Linn. (Acanthaceae)	Leaves, Fruits	Indigestion	¹ / ₂ cup of decoction of fresh leaves, seeds and fruits is taken for indigestion till cure. (Hazarika et al., 2012; Gurumayum & Soram, 2014; Sumitra, 2013; Borah et al., 2006; Rao & Jamir, 1982; Das et al., 2009; Changkija, 1999; Bora, 2001)	Antibacterial (Sharma & Kumar, 2016)
235	<i>Kyllinga brevifolia</i> Rottb. (Cyperaceae)	Tubers	Blood dysentery	Fresh tubers are crushed and made into paste. Half teaspoon of dose takes orally once dally for 7 days. (Mao, 1993; Kar & Borthakur, 2008)	Not repoeted
236	Lantana camara L. (Verbinaceae)	Root	Diarrhoea, Dysentery	Root powder taken with water to cure stomach disorder. (Sharma et al., 2014; Sharma, et al., 2014; Dahal, 2019)	Antioxidant, Antibacterial (Patil & Kumbhar, 2017)
237	<i>Launaea</i> aspleniifolia Hook.f. (Asteraceae)	Root	Darrhoea.	Root juice taken orally in emply stomach once daily till cure. (Chhetri et al., 1992; Das & Sharma, 2002; Dahal, 2019)	Antibacterial (Cheriti et al., 2012)
238	Lagerstroemia micr ocarpa Wight (Lythraceae)	Bark	Stomachac he	Decoction of bark (about one cup) taken orally twice daily to get releafe from stomachache.	Not repoeted

				(Megoneitso & Rao, 1983)	
239	Lagerstroemia speciosa (Linn.) Pers. (Lythraceae)	Root, Bark	Diarrhoea, Dysentery	Infusion of bark (1/2 cup about) take orally twice daily till cure. (Sharma & Sharma, 2010; Rai et al., 2010)	Antibacterial (Ambujakshi et al., 2009)
240	<i>Leucas aspera</i> (Will d.) Link (Lamiaceae)	Leaf	Indigestion	10 ml of leaf juice per day given for five days in indigestion. (Taluder & Gupta, 2014; Debbarma et al., 2017; Das et al., 2008; Devi, 1013)	Antioxidant, Antibacterial (Chew et al., 2012)
241	Ligularia amplexicaulis DC. (Asteraceae)	Whole plant	Colic and bilious pain	Decoction used in the treatment of stomach ache and vomiting due to indigestion. Dose take orally after food. (Khan & Yadava, 2010; Chettri & Sharma, 2011; Tsering, 2017; Dahal, 2019)	Antibacterial (Joshi et al., 2018)
242	Lindera neesiana (Wall. ex Nees) Kurz (Lauraceae)	Fruit	Diarrhoea, Dysentery	¹ / ₂ cup of juice given in empty tomach daily for 3 days. (Chhetri, 2005; Devi, et al., 2011; Lepchaet al., 2019)	Antimicrobial, Antineuroinflammator y (Subedi et al., 2016)
243	<i>Litsea cubeba</i> (Lour.) Pers. (Lauraceae)	Stem, Leaves, Fruits	Diarrhoea, Dysentery	Pounded stem, leaves and fruits are eaten with 1 glass of water till cure against stomach disorder. (Kar & Borthakur, 2008; Namsa, et al., 20011;	Antibacterial (Li et al., 2014)

Recent Advances in Folk Medicine Research in North East India

				Mandal et al., 2013; Pfoze, 2012)	
244	<i>Litsea salicifolia</i> (Roxb. Ex Nees) Hook. F (Lauraceae)	Tender leaves	Diarrhoea, Dysentery	Leaf paste is taken twice a day with lukewarm water to cure loose motion (Das et al., 2009; Singh et al., 1989; Naldarine and Lalnundanga, 2017; Gogoiet al., 2019)	Antibacterial (Uddin et al., 2016)
245	<i>Lonicera japonica</i> T hunb. (Caprifoliaceae)	Bark, Leaves	Stomac ache, Diarrhea	Bark is cut into pieces and boiled with water. Decoction prescribe orally once daily till cure. (Singh et al., 1989; Lalruatfeli et al., 2019)	Antioxidant, Anti- inflammatory (Hsu et al., 2016; Hsu et al., 2016)
246	Lonicera macrantha (D.Don) Spreng. (Caprifoliaceae)	Leaves	Constipati on	Infusion of leaves is taken internally as an effective remedy against diarrhoea. (Megoneitso & Rao, 1983; Das & Sharma, 2002; Lalramnghinglova, 1998)	Antioxidant, Anti- inflammatory (Thanzami et al., 2013)
247	<i>Lycopodium</i> <i>clavatum</i> Linn. (Lycopodiaceae)	Root	Dysentery	Decoction of root (about one cup) take orally after food. (Vedet al., 2017; Chhetri, 2007)	Antibacterial (González-Alva, 2018)
248	<i>Lysimachia</i> parviflora Baker (Primulaceae)	Whole plant	Constipati on	Plant cooked and eaten as apitizer as it helps in digestion. (Chettri & Sharma, 2011; Chhetri et al., 1992; Shilet al.,	Antioxidant (Merecz- Sadowska et al., 2021)

				2014; Khatoon, 2014)	
249	<i>Mahonia</i> <i>napaulensis</i> DC. (Berberidaceae)	Bark	Diarrhoea, Dysentery	20 ml. of decoction of bark taken against diarrhoea and dysentery. (Das, 2003; Tsering, 2017; Dahal, 2019)	Antibacterial (He & Mu, 2015)
250	<i>Mangifera indica</i> Linn. (Anacardiaceae)	Bark, Seed, Fruit	Dysentery	 Decoction of bark take orally for 3-7 days after food. (Sharma & Hazarika, 2018; Gogoi et al., 2019; Gogoi, 1997; Kar & Borthakur, 2008; Nonibala, 2015; Marak, 2018; Myrchiang, 2020; Yuhlung & Bhattacharyya, 2016) Ripe fruit useful in constipation and cardiac debility. (Choudhury, 1999; Naldarine & Lalnundanga, 2017; Das et al., 2008). Powdered seed kernel used in chronic dysentery. (Ahmed & Borthakur, 2005; Borah et al., 2006; Teron, 2011; Nath, 2006; Dahal, 2019; Sangtamet al., 2012; Imchen& Jamir, 2011) 	Antibacterial, Antioxident (Ribeiro et al., 2008)

251	<i>Melastoma malabathricum</i> L. (Melastomaceae)	Leaf	Constipati on	About one cup of extract is drunk for stomach troubles and gastric problems. (Rethy et al., 2010; Dutta, 2012; Choudhury, 1999; Bora & Das, 2015; Nonibala, 2015; Kagyung et al., 2009)	Antioxident, Antibacterial (Susanti et al., 2007)
252	<i>Melodinus cochinchi nensis</i> (Lour.) Merr. (Apocynaceae)	Leaves	Diarrhoea	Paste of leaves mixed with a cup of warm water and taken twice daily. (Majumdar & Dutta, 2007; Kar & Borthakur, 2008)	Antibacterial (Yang et al., 2021)
253	<i>Mentha arvensis</i> Linn. (Lamiaceae)	Young shoot, Leaves	Diarrhoea	Fresh shoot juice with a pinch of common salt or a spoon of honey is given to diarrhoea patient. (Gurumayum & Soram, 2014; Khongsai et al., 2011; Sumitra, 2013; Das & Sharma, 2002; Dutta, 2012; Bora & Das, 2015; Das et al., 2008; Bora, 2001; Singh et al., 2015; Bharali et al., 2017; Hazarika et al., 2012)	Antibacterial (Biswas et al., 2014)
254	Mentha spicata Linn. (Lamiaceae)	Shoot	Dysentery, Constipati on	Paste of the leaf of <i>Houttuynia</i> cordata and <i>Psidium guajava</i> along with the young branch of	Antibacterial (Bellik & Ammar, 2017)

				<i>Mentha spicata</i> and a pinch of rice flour is given orally in empty stomach till cure the disease. (Devi, 2015; Nath, 2006; Nonibala, 2015; Jamir et al., 2012; Rao & Jamir, 1982; Dahal, 219; Bora, 2016)	
255	<i>Meyna laxiflora</i> Rob yns (Rubiaceae)	Dried fruits	Dysentery	Dry fruits are chewed to treat dysentery. (Gurumayum & Soram, 2014; Gurung, 2002)	Not repoeted
256	<i>Mikania micrantha</i> Kunth. (Asteraceae)	Leaf	Diarrhoea	Leaves are chewed and used to get relieved from diarrhea. (Kagyung et al., 2009; Ahmed, 2005; Dutta, 2012; Khatoon, 2014; Monlai, 2013; Changkija, 1999; Das et al., 2008; Rao & Jamir, 1982; Salam et al., 2014; Lalramnghinglova, 1998)	Antibacterial (Sahaet al., 2015)
257	<i>Mimosa pudica</i> Linn. (Fabaceae)	Root	Dysentery, Chronic dysentery	Root crushed along with bark of <i>Holarrhena pubescens</i> and mixed with a cup of warm water and decoction is given orally after breakfast till cure the disease. (Hazarika et al., 2012; Bora, 2016; Khongsai et al., 2011; Pfoze, 2012;Das et al.,	Antibacterial (Arokiyaraj et al., 2012)

				2008; Teron, 2011)	
258	<i>Molineria capitulata</i> (Lo ur.) Herb Herb. (Hypoxidaceae)	Leaf, Tuber	Diarrhoea, Dysentery	Fresh leaves and tuber ground to paste and mixed with 1 cup of cow urine and dose take orally to treat diarrhea and dysentery. (Deb, 1957; Maikhuri, 1993). Two teaspoon of paste of rhizome with lukewarm water taken orally till cure. (Gurung, 2002; Chase & Singh 2013).	Antimicrobial (Umaruet al., 2020)
259	<i>Momordica</i> <i>charantia</i> L. (Cucurbitaceae)	Fruits, Seed	Diarrhoea	Boiled fruit and seed take with rice as vegitabe. (Rai & Sharma, 1994; Tsering, 2017; Devi, 2015; Das, 2003; Deb, 1957; Murtem& Chaudhry, 2016)	Antioxidant (Wu & Ng, 2008)
260	<i>Moringa oleifera</i> L. (Moringaceae)	Fruit	Diarrhoea	Young fruit use as vegitable with rice. (Das, 2003; Monlai, 2013)	Antioxidant (Vongsak et al., 2013)
261	<i>Morus australis</i> Poir. (Moraceae)	Root	Diarrhoea, Dysentery	Root juice taken in hypertension and also useful in diarrhoea. (Khan & Yadava, 2010; Megoneitso & Rao, 1983; Chhetri et al., 1992; Dahal, 2019)	Antioxidant (Imran et al., 2010)
262	Mucuna pruriens	Root	Diarrhoea,	Decoction of root taken orally	Antioxidant (Yadav et

	(L.) Dc. (Fabaceae)		Dysentery	in empty stomach till cure. (Mao, 1993; Srivastava et al., 1987; Majumdar & Datta, 2006; Hynniewta & Bora, 1997; Dahal, 219)	al., 2017)
263	<i>Murraya koenigii</i> (L .) Spreng. (Rutaceae)	Root, Leaf	Gastritis, Constipati on	 Decoction of root taken to cure gastritis and constipation. Leaf juice taken against indigestion and dysentery. (Bora, 2001; Sumitra, 2013; Bora & Das, 2015; Dahal, 2019; Sharma et al., 2014; Choudhury, 1999) Raw or cooked leaf extract given in indigestion. (Chhetri et al., 1992; Shil et al., 2014; Taluder & Gupta, 2014) 	Antimicrobal (Arulselvan & Subramanian, 2007)
264	Musa bulbisiana Colla. (Musaceae)	Pseudo stem, Fruit	Constipati on, Dysentery	1. ¹ / ₄ part dried fruit of <i>Garcinia pedunculata</i> is soaked in half cup (15-20 ml) water for	Antioxidant (Uthpala & Raveesha, 2019)

265	<i>Musa paradisiaca</i> Linn. (Musaceae)	Fruit	Diarrhoea	Dahal, 2019).1. Crushed raw fruit mixed with curd is taken orally 2-3 times daily till cure. (Jaiswal,
				few hours then mixed with salt & pseudo- stem water of <i>Musa</i> <i>bulbisiana</i> is given to cure dysentery. (Bora, 2016; Gogoi et al., 2019; Marak, 2018; Gogoi, 1997; Dutta, 2012; Bhuyan, 1998; Rao & Jamir, 1982; Chetry et al., 2018; Nath, 2006; Borkataki, 2006) 2. Dried fruit powder taken with water in dysentery. (Bhuyan, 1998; Das, 2003;

				and a pinch of black salt prescribe 2 times in a day. (Nonibala, 2015; Dahal, 2019; Laloo&Hemalatha, 2011; Singh et al., 2015; Chhetri et al., 1992; Sangtam et al., 2012; Das & Dutta Choudhury, 2012;Imchen & Jamir, 2011; Rout et al., 2012;	
266	<i>Musa velutina</i> Wendl. & Drude (Musaceae)	Stem	Blood dysentery	Kagyung et al., 2009) 3-4 tablespoon of stem juice takes orally twice dily till cure. (Sharma et al., 2014; Ranjana et al., 2013; Kar & Borthakur, 2008)	Antioxidant (Jayakumari et al., 2018)
267	<i>Mussaenda glabrata</i> (Hook.f.) Hutch. ex Gamble (Rubiaceae)	Leaf	Diarrhoea	Tender leaves are cooked with fish and is prescribed in diarrhoea. (Chhetri et al., 1992; Khatoon, 2014)	Antibacterial (Manasa et al., 2021)

268	<i>Myrica esculenta</i> Buch-Ham ex D. Don (Myricaceae)	Bark	Diarrhoea, Dysentery	Fruit juice in raw condition is preserved in airtight container and 2 teaspoons ofdosageaa take orally thrice daily after food. (Sharma et al., 2014; Rai & Sharma, 1994; Laloo et al, 2006; Zhasa et al., 2015; Yakang et al., 2013; Ahmed, 2005; Hynniewta, 2010)	Antioxidant (Kabra et al., 2019)
269	<i>Myrica nagi</i> Thunb. (Myricaceae)	Bark	Blood dysentery	Stem bark in powdered form is mixed with a glass of water and 1 drop of lemon juice added, the mixture is taken against blood dysentery. (Marak, 2018; Pfoze, 2012;Hynniewta, 2010)	Antioxidant (Prashar & Patel, 2020)
270	Neonauclea purpure a (Roxb.) Merr.(Rubiaceae)	Fruits	Stomachac he	Fruits consumed during stomachache. (Mao, 1993; Badola & Pradhan, 2013)	Not reported
271	Neopicrorhiza scrop hulariiflora (Pennell) D.Y.Hong (Plantaginaceae)	Root	Diarrhoea, Dysentery	One teaspoon of dry root powder mixed in a tea cup of lukewarm water and is taken once daily for two days. (Kar & Borthakur, 2008)	Antimicrobial (Rokaya et al., 2020)
272	Nepenthes khasiana Hook. f. (Nepenthaeeae).	Leaves	Stomach disorder	Juice (about ¹ / ₂ cup) from unopened pitcher is used for stomach disorder. (Samati,	Antimicrobial (Dhamecha et al., 2016)

				2006; Sharma & Sharma, 2010)	
273	<i>Nephrolepis</i> <i>auriculata</i> (L.) Trimen (Davalliaceae)	Tuber	Indigestion	Root extract is given 2 tea- spoonful thrice a day for one week. (Gurung, 2002; Dahal, 2019; Chhetri et al., 1992)	Antimicrobial (Yi et al., 2019)
274	Nyctanthes arbortristis L. (Oleaceae)	Leaf, Flower	Intestinal worms	One teaspoon of leaf or flower juice for three days is given to children in empty stomach to expel common worms. (Debbarma et al., 2017; Ranjana, et al., 2013; Talukdar & Gupta, 2014; Singh et al., 1989; Taluder& Gupta, 2014. Saikiaet al., 2010)	Antimicrobial (Dasgupta & de, 2007)
275	Ocimum americanum L. (Lamiaceae)	Leaves	Constipati on.	Extract of leaves mixed with honey are used in bleeding piles and constipation. (Srivastava et al., 1987; Majumdar & Datta, 2006; Khatoon, 2014)	Antimicrobial (Paridaet al., 2014)
276	Ocimum basilicum Linn. (Lamiaceae)	Root and Leaf	Dysentery	Paste is given orally in empty stomach for 3 days. (Debbarma et al., 2017; Bora, 2016; Leal & Limasenla, 2020; Marak, 2018; Naldarine & Lalnundanga, 2017; Devi, 2015; Khatoon, 2014; Naldarine &	Antimicrobial (Ahmed, et al., 2019; Bernstein et al., 2009; Kaurinovicet al., 2011)

Recent Advances in Folk Medicine Research in North East India

				Lalnundanga, 2017; Jamir & Tsurho, 2016; Nonibala, 2015)	
277	Ocimum sanctum Linn. (Lamiaceae)	Leaves	Blood dysentery	Leaves crust along with the seed of <i>Capsicum frutescens</i> and aerial part of <i>Drymaria cordata</i> and dose is pescribe orally once daily till relief of symptoms. (Das & Dutta Choudhury, 2012; Namsa et al., 20011; Bora, 2016).	Antimicrobial (Hussain et al., 2001)
278	<i>Oenanthe javanica</i> (Bl.) DC ssp. <i>stolonifera</i> Wall (Apiaceae)	Whole plant	Gastritis	Extract of the plant with salt help in digestion. (Pfoze, 2012; Khatoon, 2014; Sharma & Sharma, 2010; Hynniewta, 2010)	Antioxidant (Bhaigyabati et al., 2017; Lu & Li, 2019)
279	<i>Oldenlandia</i> <i>corymbosa</i> L. (Rubiaceae)	Whole plant	Dysentery	Infusion taken orally 2-3 times daily. (Singh et al., 1989; Mao, 1993; Sharma & Hazarika, 2018; Sharma & Pegu, 2011)	Antimicrobial (Datta et al., 2019)
280	<i>Oroxylum indicum</i> Vent. (Bignoniaceae)	Bark, Root	Dysentery	250 ml infusion of the bark of <i>Oroxylum indicum</i> and <i>Alstonia</i> <i>scholaris</i> is given orally at morning in empty stomach for till cure. (Bora, 2016; Das & Dutta Choudhury, 2012; Shankar & Rawat, 2008; Pfoze,	Antimicrobial (Kumar et al., 2010)

				2012; Salam et al., 2014; Singh et al., 2015; Murtem & Chaudhry, 2016) Root bark juice is taken orally two to three times daily. (Kar & Borthakur, 2008; Bora, 2001; Monlai, 2013; Bhuyan, 1989; Jaiswal, 2010; Gurumayum & Soram, 2014; Khongsai et al., 2011a; Lalramnghinglova,	
				1998; Marak, 2018; Baidya et al., 2020; Naldarine & Lalnundanga, 2018)	
281	<i>Oryza sativa</i> Linn. Var. bora (Poaceae)	Fruit	Dysentery, Diarrhoea	Infusion of <i>Sida cordifolia</i> mixed with <i>Oryza sativa</i> Linn. var. bora and 250 ml of curd. orally once daily morning for 3 days. (Rao & Jamir, 1982; Megoneitso & Rao, 1983; Ahmed & Borthakur, 2005; Bora, 2016). Paste of the leaf of <i>Houttuynia</i> <i>cordata</i> and <i>Psidium guajava</i> along with the young branch of <i>Mentha spicata</i> and a pinch of rice flour is given orally in	Antioxident (Premakumara et al., 2013)

				empty stomach till cure the	
				disease. (Bora, 2016).	
282	<i>Osbeckia crinata</i> Benth. Ex Naudin (Melastomaceae)	Leaf	Diarrhea, Dysentery	2-6 teaspoon of leaf paste is used to treat diarrhea and dysentery. (Rai & Sharma, 1994; Yakang et al., 2013; Rao & Jamir, 1982; Devi, 2013; Kayang et al., 2005; Laloo & Hemalatha, 2011)	Antioxidant (Lawarence & Murugan, 2017)
283	Osbeckia nepalensis Hook. (Melastomaceae)	Leaves and Roots	Gastrict	Plant juice taken in empty stomach to cure indigestion. (Dahal, 2019)	Antioxidant (Tiwary et al., 2017)
284	<i>Oxalis corniculata</i> Linn. (Oxalidaceae)	Whole plant	Dysentery	Whole plant is ground into paste together with <i>Drymaria cordata</i> and <i>Centella asiatica</i> ; juice extracted from the paste is given till cure.(Neogi, 1989; Das & Singh 2017; Das et al., 2013;Hynniewta, 2010; Ahmed, 2005; Kayanget al., 2005; Lea1 &Limasenla, 2020; Gogoi, 1997; Marak, 2018; Khatoon, 2014; Pfoze, 2012; Badola & Pradhan, 2013; Baidya et al., 2020; Das et al., 2008; Zhasaet al., 2015; Chhetri et al., 1992;	Antioxidant, Antimicrobial (Raghavendra et al., 2006)

				Chetryet al., 2018; Talukdar & Gupta, 2014; Devi, 2015; Borkataki, 2006; Naldarine & Lalnundanga, 2017; Yakang et al., 2013; Bharali et al., 2017; Imchen & Jamir, 2011).	
285	<i>Paedariafoetida</i> Linn. (Rubiaceae)	Leaf	Diarrhea, Dysentery	Half cup of juice of the leaf given orally to cure dysentery. (Laloo & Hemalatha, 2011;Myrchiang et al., 2020; Guha et al., 2018; Lea & Limasenla, 2020; Khongsai et al., 2011; Kagyung et al., 2009; Kar & Borthakur, 2008; Gurumayum & Soram, 2014; Hynniewta, 2010; Borah et al., 2006; Talukdar & Gupta, 2014; Sarma & Devi, 2017; Goswami et al., 2009; Monlai, 2013; Shankar & Rawat, 2008; Tsering, 2017; Pfoze, 2012; Gogoi, 1997; Bora, 2001; Marak, 2018; Das & Singh, 2017; Naldarine &	Antioxidant , Antimicrobial (Uddinet al., 2007)

				Lalnundanga, 2017; Kala, 2005; Chetry et al., 2018; Borkataki, 2006; Khatoon, 2014; Nath, 2006; Chhetri et al., 1992; Murtem & Chaudhry, 2016)	
286	Paris polyphylla Sm. (Melanthiaceae)	Rhizom e	Stomach ulcers	Fresh rhizome is eaten raw for stomach ulcers. (Pfoze, 2012; Sumitra, 2013; Chhetri et al., 1992; Khan & Yadava, 2010; Sharma & Sharma, 2010; Salam, et al., 2014)	Antioxidant (Lepcha et al., 2019)
287	<i>Parkia javanica</i> (La m.) Merr. (Fabaceae)	Fruits	Diarrhoea, Dysentery	Fruits consumed as curry with rice. (Singh et al., 2015; Singh et al., 1989; Rao & Jamir, 1982;Debbarma et al., 2017)	Antibacterial (Saha et al., 2018)
288	<i>Parkia timoriana</i> Merr. (Fabaceae)	Bark, Ttwig,P ods	Diarrhoea, Dysentery	Decoction of bark, pods & twigs is taken orally against diarrhoea & dysentery. (Lalramnghinglova, 1998; Sumitra, 2013; Rai et al., 2010; Devi, 2015;Zhasa et al., 2015; Sangtam et al., 2012; Rao & Jamir, 1982; Jamir et al., 2015; Sharma, et al., 2014;Pfoze, 2012)	Antioxidant (ReshmiSinghaet al., 2021)

289	Parochetus commun is D. Don (Fabaceae)	Whole plant	Diarrhoea	Juice is extracted and about one cup of its dose take orally till cure. (Ahmed &Borthakur, 2005; Myrchianget al., 2020)	Not repoeted
290	Passiflora edulis Sims (Passifloraceae)	Fruit	Dysentery	Half cup of juice is given twice daily, till cured. (Ahmed, 2005; Sangtam et al., 2012; Zhasa et al., 2015; Rai & Sharma, 1994; Gurung, 2002; Singh et al., 2015; Chhetri et al., 1992; Hynniewta, 2010; Pfoze, 2012)	Antioxidant (Rudnicki et al., 2007)
291	<i>Pedicularis</i> siphonantha D. Don (Scrophulariaceae)	Whole plant	Dysentery, Stomach pain	Half cup of decoction once daily for 3-6 days in empty stomach. (Ranjana, et al., 2013; Dahal, 2019)	Antibacterial (Frezza et al., 2019)
292	Pentapanax leschenaultii (DC.) Seemann (Araliaceae)	Flowers	Dysentry	Infusion of flowers taken 2 time in a day for about one or two days. (Gurung, 2002; Shilet al., 2014; Dahal, 2019)	Antibacterial (Bandivdekar & Moodbidri, 2002)
293	Perilla frutescens (L.) Britton. (Lamiaceae)	Whole plant	Gastric problems	Extract (about ½ cup) take orally twice daily after food till cure. (Chettri & Sharma, 2011; Das, 2003; Rao & Jamir, 1982; Changkija, 1999)	Antioxidant (Lee et al., 2013)

Recent Advances in Folk Medicine Research in North East India

294	Persicaria capitata (Buch Ham. ex D.Don) H. Gross (Polygonaceae)	Whole plant	Dysentery, Stomach pain	Infusion taken in empty stomach 2 time in a day for two days. (Srivastava et al., 1987; Singh et al., 1989; Dahal, 2019)	Antibacterial (Han et al., 2018)
295	Persicaria vivipara (L.) RonseDecr. (Polygonaceae)	Root	Dysentery	Root juice taken orally twice daily in empty stomach for one week. (Sharma & Sharma, 2010; Chhetri et al., 1992; Dahal, 2019)	Not repoeted
296	Phlogacanthus thyrs iflorus Nees (Acantheceae)	Leaf, Flower	Dysentery	Juice extract with one cup of lukewarm water is prescribe orally after food till cure. (Dahal, 2019; Gurumayum & Soram, 2014; Debbarma et al., 2017; Hynniewta, 2010; Das, 2003; Teron, 2011; Dutta, 2012; Khatoon, 2014).	Antimicrobial (Kumar et al., 2017)
297	Phoenix sylvestris (L.) Roxb. (Arecaceae)	Latex	Diarrhoea, Dysentery	The fresh gum with ¹ / ₂ cup of lukewarm water and one pinch of salt take orally till cure. (Khatoon, 2014).	Antioxident (Jain et al., 2018)

Recent Advances in Folk Medicine Research in North East India

298	Phyllanthus emblica L. (Phyllanthaceae)	Root	Diarrhoea, Dysentery Diarrhoea,	 cure diarrhoea and dysentery. (Nath, 2006; Monlai, 2013; Tsering, 2017; Lalramnghinglova, 1998; Bhuyan, 1998; Choudhury, 1999; Dahal, 2019; Jamir &Tsurho, 2016; Sangtam et al., 2012) 2. Two teaspoon fruit extract given twice daily for five days in indigestion. (Taluder & Gupta, 2014; Gogoi et al., 2019; Rao & Jamir, 1982; Sharma et al., 2014; Pfoze, 2012) The root is boiled with milk and taken in digestive troubles. 	Antioxident (Liu et al., 2008).
299	Phyllanthus fraternu s G.L. Webster (Phyllanthaceae)	Whole plant	Constipati on	(Pfoze, 2012; Bora & Das, 2015; Jamir et al., 2012; Bora, 2001)	Antimicrobial (Sailaja & Setty, 2006)
300	<i>Phyllanthus</i> <i>parvifolius</i> Ham. (Phyllanthaceae)	Whole plant	Diarrhoea, Dysentery	Half cup of leaf juice is given twice daily, till cured. (Khan, 2005; Sharma et al., 2014;	Not repoeted

				Laloo et al., 2006)	
301	Physalis minima Linn. (Solanaceae)	Root	Dysentery	Root paste along with the fruit of <i>Piper nigrum</i> and mixed with water and given orally in empty stomach for 1-2 days. (Bora, 2016; Ahmed & Borthakur, 2005; Kagyung et al., 2009)	Antioxidant (Banothuet al., 2017; Singh & Prakash, 2014)
302	<i>Physalis peruviana</i> Linn. (Solanaceae)	Leaves	Stomachac he, Dysentery	The leaves are taken raw or boiled and the decoction is taken as vegetable. (Ahmed and Borthakur, 2005; Gurumayum and Soram, . (Pfoze, 2012; Ranjana, et al., 2013; Srivastava et al., 1987)	Antioxidant (Wu et al., 2006; Cueva et al., 2017)
303	Picrorhiza kurrooa Royle ex Benth. (Scrophulariaceae)	Rhizom e	Diarrhoea, Dysentery, Stomachac he	Dried rhizome soaked overnight in water and one cup of dose taken during stomach ache, diarrhea and dysentery. (Gurung, 2002; Dahal & Borthakur, 2017a; Daur & Hajra, 1980; Murtem & Chaudhry, 2016)	Antioxidant (Krupashree et al., 2014)
304	Pimpinella hastata C.B. Clarke	Leaves	Gastric trouble	Leaves extract (about one cup) is taken to get relief from gastric trouble. (Mao, 1993; Khatoon, 2014).	Not repoeted

	(Apiaceae)				
305	Piper betle Linn. (Piperaceae)	Petiole, Leaf	Chronic dysentery	 Ripe fruit of <i>Citrus</i> paradisiMacf. is taken & create a small hole where petiole is placed inside the fruit and fruit is placed inside the burning tuh. After totally cooked one fruit is given daily at morning in empty stomach up to 10 days. (Bora, 2016). Leaves are eaten raw which help in digestion. (Dutta, 2012; Bora & Bora, 2020; Hynniewta& Bora, 1997; Das & Dutta Choudhury, 2010). 	Antioxidant, Antimicrobial (Dasgupta & De, 2004)
306	<i>Piper longum</i> Linn. (Piperaceae)	Fruit	Stomach ache	Powdered dried roots taken with water serve as vermifuge in children, relieves from stomach ache. (Bora & Das, 2015; Badola & Pradhan, 2013; Jamir & Tsurho, 2016; Nath, 2006; Dahal, 2019; Kar & Borthakur, 2008)	Antioxidant, Antimicrobial (Aziz et al., 2018)
307	Piper nigrum Linn.	Fruit	Dysentery	1. Root paste of Physalis	Antioxidant,

	(Piperaceae)			 <i>minima</i> along with the fruit, mixed with water and given orally in empty stomach for 1-2 days. (Bora, 2016; Borah et al., 2006; Hynniewta & Bora, 1997). 2. Fruits of <i>Piper nigrum</i> crushed gently with root of <i>Polygonum barbatum</i>. Paste is mixed with hot water 150 ml and filtered. Filtrate is given orally once daily till cure. (Sharma & Sharma, 2010; Das, 2003; Sharma et al., 2014; Dahal, 2019; Bora, 2016). 	Antimicrobial (Zarai et al., 2013)
308	Plantago asiatica su bsp. erosa (Wall.) Z.Yu Li (Plantaginaceae)	Tender shoots	Constipati on	Tender shoots is cooked and taken as a remedy for carminative and stomach trouble. (Kala, 2005; Khan, 2005)	Antioxidant (Ahna et al., 2018)
309	<i>Plantago erosa</i> Wall. (Plantaginaceae)	Root	Indigestion	One cup of root juice taken to cure indigestion. (Srivastava et al., 1987; Devi, 2015; Salam, et al., 2014; Dahal, 2019)	Antioxidant (Bearaet al., 2009)

310	Plumbago zeylanica Linn. (Plumbaginaceae)	Root, Bark		Root and bark decoction is taken orally 2-3 times daily to treat diarrhea. (Choudhury, 1999; Nonibala, 2015; Zhasa et al., 2015; Maikhuri, 1993)	Antimicrobial (Rajakrishnan et al., 2017)
311	Pogostemon benghal ensis (Burm.f.) Kuntze (Lamiaceae)	Leaf	Diarrhoea	One tea cup of fresh leaf juice take orally thrice daily for 7 days. (Deb, 1957; Sharma, et al., 2014; Kar &Borthakur, 2008)	Antimicrobial (Thoppil et al., 2014)
312	Potentilla fulgens Wall. (Rosaceae)	Root	Dysentery	Decoction of root taken orally once daily till cure. (Mao, 1993; Das, 2003; Das & Sharma, 2002; Khan, 2005; Chase & Singh, 2013)	Antioxidant (Jaitak et al., 2010)
313	Polycarpon prostratum (Forrsk.) Asch. & Schweinf. Ex Asch (Caryophyllaceae)	Whole plant	Diarrhoea	Half cup of juice takes orally twice daily for about 7 days. (Dahal & Borthakur, 2017; Chhetri, 2005; Ahmed & Borthakur, 2005; Debbarma et al., 2017)	Antimicrobial (Chandra & Rawat,2015)
314	Polygonum barbatum Linn. (Polygonaceae)	Root	Diarrhoea	Root of <i>Polygonum barbatum</i> and fruits of <i>Piper nigrum</i> crushed gently. Paste is mixed with hot water 150 ml and filtered. Filtrate is given orally	Antioxidant (Shen et al., 2018)

				once daily till cure. (Ranjana, et al., 2013; Bora, 2016)	
315	Polygonum molle D. Don (Polygonaceae)	Leaves	Diarrhoea	The leaf is crushed and ¹ / ₂ cup of dose prescribe till cure. (Majumdar & Dutta, 2007; Ranjana et al., 2013; Lepcha et al., 2019)	Not repoeted
316	Polygonum orientale Linn. (Polygonaceae)	Leaves	Diarrhoea, Dysentery	Fresh leaves are boiled with or without rice and serve the patient for quick relief. (Chhetri, 2005; Gurumayum & Soram, 2014; Singh et al., 1989; Gurumayum&Soram, 2014).	Antimicrobial (Chiu et al., 2018; Wei et al., 2009)
317	Polygonum perfoliatum Linn. (Polygonaceae)	Leaf, Root	Dysentery	Crushed leaves and roots mixed with water and taken for about one week. (Khan & Yadava, 2010; Mao, 1993)	Antimicrobial (Lei et al., 2013)
318	Polygonum posumbu BuchHam. ex D. Don (Polygonaceae)	Leaves	Diarrhoea	The leaves cooked with the fish <i>Puntius phutunio</i> is prescribed to cure diarrhoea due to malnutrition and menstrual disorder (Ranjana, et al., 2013; Ahmed &Borthakur, 2005; Khatoon, 2014).	Antimicrobial (Ishwori et al., 2014)

319	Ponerorchischusua (D. Don) Soo (Orchidaceae)	Tuber	Diarrhoea, Dysentery	Boiled decoction take orally twice daily for 1-4 days. (Dahal, 2019)	Not repoeted
320	Portulaca oleracea L. (Portulacaceae)	Stem and Leaves	Stomachac he	Stem and leaves are taken as vegetable with boied rice. (Rai & Sharma, 1994; Deb, 1957; Kagyunget al., 2009)	Antioxidant (Erkan, 2012)
321	Prunus armeniaca L. (Rosaceae)	Fruits	Stomach disorders	Water extract of the crushed fruit with salt is given in colic and stomach disorders. (Khatoon, 2014; Sharma et al., 2014; Bora, 2001).	Antimicrobial (Jaya &Lamba, 2012)
322	<i>Psidium guajava</i> Linn. (Myrtaceae)	Leaf	Dysentery, Stomach disorder, Blood dysentery	Paste of the leaf of <i>Houttuynia</i> cordata and <i>Psidium guajava</i> along with the young branch of <i>Mentha spicata</i> and a pinch of rice flour is given orally in empty stomach till cure the disease. (Kayang et al., 2005; Das & Dutta Choudhury, 2012; Bora, 2016; Bora & Bora, 2020; Debbarmaet al., 2017; Yuhlung& Bhattacharyya, 2016; Sharma & Pegu, 2011; Kar &Borthakur, 2008; Sumitra, 2013; Borah et al., 2006; Gogoi,	Antimicrobial, Antioxident (Bose& Chatterjee, 2016)

Recent Advances in Folk Medicine Research in North East India

1007. Jamin at al 2012.	
1997; Jamir et al., 2012;	
Majumdar et al., 2006; Nath,	
2006; Khatoon, 2014; Teron,	
2011; Marak, 2018; Das et al.,	
2008; Dutta, 2012; Sumitra,	
2013; Choudhury, 1999; Rethy	
et al., 2010; Sarma & Devi,	
2017; Imchen & Jamir, 2011;	
Jamir et al., 2012)	
Young twigs of Viscum album	
and Psidium guajava crushed	
gently with bark of Spondias	
<i>pinnata</i> . Filtered juice	
prescribed with water in empty	
stomach daily at morning for 3	
days. (Chhetri et al., 1992;	
Chhetri et al., 1992; Hynniewta,	
2010; Bora, 2016; Lea &	
Limasenla, 2020; Kagyung et	
al., 2009; Sharma & Sharma,	
2010)	
Leaves are ground with the	
peels of raw mango and bark of	
Rubus ellipticus or with the	
leaves of Passiflora edulis and	
rhizome of Curcuma longa and	

				the juice obtained from these mixtures are given twice daily after food till cured. (Ahmed, 2005; Gurumayum & Soram, 2014; Ahmed & Borthakur, 2005; Myrchiang et al., 2020; Pfoze, 2012)	
323	Pterocephalushooke ri (C.B. Clarke) Diels (Caprifoliaceae)	Shoot	Diarrhoea, Dysentery	Infusion of aerial part taken to cure diarrhoea and dysentery. (Shilet al., 2014; Dahal, 2019)	Antimicrobial (Yanget al., 2020)
324	<i>Punicagranalum</i> Lin n. (Onagraceae)	Fruit, Leaf	Dysentery, Indigestion	Decoction of leaf is given orally twice daily after food till cure. Fruit juice take orally after food. (Yuhlung& Bhattacharyya, 2016; Das et al., 2008; Nonibala, 2015; Khatoon, 2014; Naldarine&Lalnundanga, 2017; Gogoi, 1997; Das et al., 2013; Sumitra, 2013; Marak, 2018; Nath, 2006; Borkataki, 2006; Das, 2003; Pfoze, 2012)	Antimicrobial, Antioxident (Celik et al., 2009)
325	<i>Quercus</i> <i>serrata</i> Thunb. (Fagaceae)	Fruit	Diarrhoea, Dysentery	Ripe fruit are chewed and used to get relieved from diarrhea and dysentery. (foze, 2012)	Antimicrobial (Taib et al., 2020)

326	Raphanus sativus L. (Brassicaceae)	Root	Diarrhoea	Soup (about one cup) prapered from formanted radish is useful against diarrhoea. (Srivastava et al., 1987; Samati, 2006; Dahal, 2019)	Antioxident (Goyeneche et al., 2015)
327	Rauvolfia serpentina (L.) Benth. ex Kurz (Apocynaceae)	Root	Dysentery	1 inch of root of <i>Rauvolfia</i> serpentina grind into powder. Added little amount of water in it and taken 2 teaspoonsful thrice daily for 2 days will recover from dysentery. (Mao, 1993; Marak, 2018; Naldarine & Lalnundanga, 2017; Bhuyan, 1998)	Antimicrobial (Divyanair et al.,2013)
328	<i>Rheum nobile</i> Hook. f. (Polygonaceae)	Rizome	Dysentery	Decoction (about one cup) of rhizome taken against dysentery. (Ved et al., 2017; Dahal, 2019)	Antimicrobial (Guptaet al., 2017)
329	<i>Rhododendron</i> <i>arboreum</i> Sm. (Ericaceae)	Bark, Flowers	Diarrhoea, Dysentery	Once cup of decoction of flower take orally after food till cure. (Marak, 2018; Lepcha et al., 2019; Dutta, 2012; Tsering, 2017; Badola & Pradhan, 2013; Dahal, 2019; Sumitra, 2013; Naldarine & Lalnundanga, 2017; Zhasa et al., 2015;	Antibacterial (Chauhan et al., 2016)

				Samati, 2006)	
330	<i>Rhus semialata</i> Murr. (Anacardiaceae)	Fruit	Diarrhea, Dysentery	Ripe fruits are either boiled or eaten raw to relieve from diarrhea and dysentery. (Ahmed, 2005; Gurumayum & Soram, 2014; Lea1 & Limasenla, 2020; Kagyung et al., 2009; Gurumayum & Soram, 2014; Pfoze, 2012)	Antimicrobial, Antioxident (Bose & Maity, 2010)
331	Rhus succedanea Gamble (Anacardiaceae)	Fruit	Dysentery	A cup of fruit juice is given twice daily, till cured. (Laloo et al., 2006; Singh et al., 1989; Gurumayum & Soram, 2014)	Antimicrobial, Antioxident (Surveswaran et al., 2007)
332	<i>Rohdea nepalensis</i> (Raf.) N.Tanaka (Asparagaceae)	Flower	Diarrhoea, Dysentery	Fresh inflorescence is directely consumed once daily for three days. (Rao & Jamir, 1982; Daur & Hajra, 1980; Kar &Borthakur, 2008)	Not repoeted
333	Rubus moluccanus auct non Linn. (Rosaceae)	Root	Pectic ulcer, Chronic dysentery	Juice given orally with cow milk in empty stomach for 4-5 days. (Sharma et al., 2014; Ahmed & Borthakur, 2005; Sharma & Sharma, 2010; Bora, 2016)	Antioxident (Lee et al., 2012)

334	Rubia manjith Roxb. ex Fleming (Rubiaceae)	Roots	Diarrhoea	Root juice is taken twice a day with lukewarm water. (Samati, 2006;Yakanget al., 2013; Dutta, 2012; Gogoiet al., 2019)	Not repoeted
335	<i>Rubus ellipticus</i> Sm. (Rosaceae)	Fruit, Root, Stem	Diarrhoea, Dysentery	Half a cup of juice taken for two days on empty stomach. (Samati, 2006; Ahmed, 2005; Lea1 & Limasenla, 2020; Pfoze, 2012; Tsering, 2017; Sumitra, 2013; Rout et al., 2012)	Antioxident (Sharma & Kumar, 2011)
336	Rubus niveus Thunb. (Rosaceae)	Fruit	Diarrhoea, Dysentery	Ripe fruit are chewed and used to get relieved from diarrhea. (Chetryet al., 2018; Pfoze, 2012;Dahal&Borthakur, 2017, 2017a)	Antioxident (Muniyandiet al., 2019)
337	Rumex acetosella L. (Polygonaceae)	Leaves	Diarrhoea, Dysentery	Two teaspoon of fresh juice of leaves take oraly twice daily for 7 days. (Dahal & Borthakur, 2017a; Singh et al., 1989; Kar & Borthakur, 2008)	Antimicrobial (Wegiera et al., 2011)
338	Rumex vesicarius L. (Polygonaceae)	Shoots	Dysentery	Half a cup of juice taken for two days on empty stomach. (Sharma et al., 2014)	Antimicrobial (El- Bakryet al., 2013)
339	Saccharum officinarum Linn. (Poaceae)	Stem	Dysentery	1-2 teaspoon of the mixture of the juice of sugarce and <i>Citrus</i> <i>medica</i> ispescribed orally for 2-	Antioxident (Duarte- Almeida et al., 2011)

				3 times daily. (Megoneitso &	
				Rao, 1983)	
340	Sapindus mukorossi Gaertn. (Sapindaceae)	Fruit	Constipati on	Half cup of decoction of one fruit take orally for 2-4 days in empty stomach. (Pfoze, 2012; Dahal & Borthakur, 2017, 2017a; Gurung, 2002; Das & Sharma, 2002)	Antibacterial (Dinda et al., 2017)
341	Sarcochlamy spulcherrima (Roxb.) Gaud. (Urticaceae)	Leaves	Diarrhoea, Dysentery	Curry of young leaves is believed to cure diarrhea, dysentery and also used as digestive. (Sharma et al., 2014)	Antioxident (Paul et al.,2010)
342	Saussurea gossypiph ora D.D. (Asteraceae)	Flower	Diarrhoea, Dysentery	One cup of decoction of flower taken twie daily after food against stomach disorders. (Vedet al., 2017)	Not repoeted
343	<i>Scoparia dulcis</i> Linn. (Scrophulariaceae)	Shoot	Stomach disorders	The decoction of the plant is used as an anthelmintic for infants of age 6 months to 1 year. (Ngente, 2012; Shilet al., 2014; Das & Choudhury, 2010; Dahal, 2019)	Antibacterial (Nahannu et al., 2018)
344	<i>Senna alata</i> (L.) Roxb. (Fabaceae)	Leaf	Diarrhoea, Dysentery	Aout ¹ / ₂ cup of leaf decoction twice daily till cure. (Hazarika et al., 2012)	Antibacterial (Sundaramsugumar et al., 2016)

345	Senna obtusifolia (L.) H.S. Irwin & Barneby (Fabaceae)	Fruit	Diarrhoea, Dysentery	Half cup of decoction of fruit take orally once dally after food for three days. (Majumdar & Dutta, 2007; Chhetri et al., 1992; Kar &Borthakur, 2008)	Antibacterial (Maoet al., 2019)
346	<i>Shorea robusta</i> Gaertn. (Dipterocarpaceae)	Leaves	Dysentery	About one cup of juice of tender leaf taken against dysentery. (Dahal, 2019)	Antimicrobial (Mukherjee et al., 2013)
347	Sida cordifolia Linn. (Malvaceae)	Roots	Dysentery	Infusion of <i>Sida cordifolia</i> mixed with <i>Oryza sativa</i> Linn. var. bora and 250 ml of curd. Take this ixture orally once daily morning for 3 days. (Megoneitso & Rao, 1983; Bora, 2016)	Antimicrobial (Dhalwal et al., 2005)
348	Siegesbeckia orientalis L. (Asteraceae)	Root	Indigestion	Root paste with one cup of lukewarm water taken against indigestion. (Das, 2003; Dahal, 2019)	Antimicrobial (Sasikumar et al.,2007)
349	Silene nigrescens (Edgew.) Majumdar (Caryophyllaceae)	Flower, Root	Indigestion	Decoction of leaf is given orally twice daily after food till cure. (Gurung, 2002; Dahal & Borthakur, 2017)	Not repoeted
350	Sinopodophyllum he xandrum (Royle) T.S.Ying	Root	Diarrhoea, Dysentery	About ¹ / ₂ to 1 cup of decoction of root take orally after food. (Pandey et al., 1991; Deb, 1957;	Antimicrobial (Wanga et al., 2018)

	(Berberidaceae)			Singh et al., 1989; Mandal et al., 2013)	
351	<i>Smilax aspera</i> L. (Smilacaceae)	Whole plant	Dysenter y	20 ml juice take orally twice daily for about 3 days. (Samati, 2006; Ahmed & Borthakur, 2005; Majumdar et al., 2006; Lepcha et al., 2019; Dahal, 2019)	Not repoeted
352	<i>Solanum anguivi</i> La m. (Solanaceae)	Fruits	Diarrhoea, Dysentery	Fruit is cook as dish and consumed for dysentery and diarrhea. (Debbarma et al., 2017)	Antioxident (Elekofehinti et al., 2013)
353	Solanum spirale Rox b. (Solanaceae)	Fruit	Gastric	Warm decoction of fruit is used in stomach troubles and gastric problems. (Daur & Hajra, 1980; Kagyung et al., 2009)	Antioxident (Keawsa- ard et al., 2012)
354	<i>Solanum torvum</i> SW. (Solanaceae)	Leaf	Indisetion	Decoction of leaf is prescribing for indisetion after food till cure. (Dutta, 2012; Das & Tag, 2006; Khongsai et al., 2011)	Antioxident (Gandhi et al., 2011)
355	Sonchus asper (L.) Hill (Asteraceae)	Shoot	Stomachac he, Gastritis	Decoction take orally once daily for 2-4 days in empty stomach. (Sinha, 1996; Pfoze, 2012; Sharma & Sharma, 2010)	Antimicrobial (Ali et al., 2010)
356	Sonchus wightianus	Roots	Diarrhoea	Root extract is given 2 tea- spoonful thrice a day for one	Antimicrobial (Bolleddu et al., 2018)

	DC. (Asteraceae)			week. (Shilet al., 2014; Gurung, 2002; Kar & Borthakur, 2008)	
357	Spilanthes paniculate Wallich ex. DC. (Asteraceae)	Leaves	Diarrhea, Dysentery	Decoction of leaf is given orally twice daily till cure. (Das & Dutta Choudhury, 2010; Sharma et al., 2014; Choudhury, 1999; Sharma & Pegu, 2011; Das & Dutta Choudhury, 2012; Majumdar &Dutta, 2007; Pfoze, 2012)	Antimicrobial (Dias et al., 2012)
358	<i>Spinacia oleracea</i> L. (Lauraceae)	Tender leaves	Indigation	Tender leaves use as vegetable with rice during indigation. (Gogoi et al., 2019)	Antioxidant (Hussain et al., 2016)
359	Spondias pinnata (Linn.f.) Kurz. (Sapindaceae)	Bark	Dysentery	Bark along with the young twigs of <i>Viscum album</i> and <i>Psidium guajava</i> is crushed gently. Filtered juice given with water in empty stomach daily at morning for 3 days. (Laloo et al., 2006; Lalramnghinglova, 1998; Ahmed & Borthakur, 2005; Dahal, 2019; Bora, 2001; Chhetri et al., 1992; Bora, 2016; Sharma & Sharma, 2010)	Antibacterial, Antioxidant (Jain & Hossain, 2014; Hazra et al., 2009)
360	<i>Stellaria media</i> (L.) Villars	Shoot	Constipati on,	Boiled aeial parts of <i>Stellaria media</i> are mixed with 3-4 bulbs	Antibacterial, Antioxidant (Solomon

	(Caryophyllaceae)		Dysentery	of garlic and kept overnight. Filtered dose prescribes daily morning for 3-4 days or till relief of symptoms. (Singh et al., 1989; Bora, 2016)	& Oyebamiji, 2020)
361	Stemona tuberosa Lour. (Stemonaceae)	Root, Stem	Gastric trouble	Root/stem of <i>Stemona tuberosa</i> crushed along with the root of <i>Asparagus racemosus</i> and juice is prescribing orally to stop diarrhoea. (Ahmed & Borthakur, 2005; Rao & Jamir, 1982; Hynniewta & Bora, 1997; Srivastava et al., 1987; Bora, 2016)	Antibacterial (Chung et al., 2003)
362	<i>Stephania glabra</i> (Roxb.) Miers (Menispermaceae)	Tuber	Diarrhoea, Dysentery	Pounded tuber taken with water to cure diarrhoea and dysentery. (Das, 2003; Rai & Sharma, 1994; Chhetri et al., 1992; Nonibala, 2015; Srivastava et al., 1987; Dahal, 2019; Zhasa et al., 2015)	Antimicrobial (Semwal et al., 2010)
363	<i>Sterculia villosa</i> Roxb.ex Sm. (Sterculiaceae)	Root Bark	Stomach disorders	Juice of root bark taken to cure blood dysentery and also useful in stomach disorders. (Sharma & Sharma, 2010; Das et al., 2008; Ranjana, et al., 2013;	Antioxidant (Haque et al., 2014)

				Deb, 1957; Hynniewta, 2010; Majumdar & Datta, 2006)	
364	Swertia bimaculate Hook.f. & Thomson ex C.B. Clarke (Gentianaceae)	Stem, Leaf	Gastritis	Aerial part of the plant is boiled in water and taken for gastritis. (Dahal & Borthakur, 2017, 2017a; Das, 2003; Daur & Hajra, 1980; Lea1 &Limasenla, 2020)	Antimicrobial (Das et al., 2013)
365	<i>Swertia chirayita</i> H. Karsten (Gentianaceae)	Whole plant	Dysentery, Stomachac he	Infusion of plant drunk once daily till cure against stomach disorders. (Dahal & Borthakur, 2017; Salam et al., 2014; Dahal, 2019) The whole plant is crushed and soaked in water overnight and then used as a tonic. (Badola & Pradhan, 2013; Changkija, 1999)	Antimicrobial (Awasthil et al., 2006; Dutta Gupta & Karmakar, 2017)
366	Swertia hookeri C.B. Clarke (Gentianaceae)	Root	Diarrhoea, Dysentery	Two tablespoon of fresh juice of roots take oraly once daily for five days. (Das, 2003; Singh et al., 1989; Majumdar & Dutta, 2007; Kar & Borthakur, 2008)	Antimicrobial (Pant et al., 2000)
367	Swertia multicaulis D. Don (Gentianaceae)	Whole plant	Diarrhoea, Dysentery	Infusion of whole plant taken against diarrhoea and dysentery. (Das, 2003; Ahmed &	Not repoeted

				Borthakur, 2005; Dahal, 2019; Chhetri et al., 1992)	
368	Symplocos racemose Roxb. (Symplocaceae)	Bark	Diarrhoea	Half a cup of juice taken for two days on empty stomach. (Laloo et al., 2006)	Antimicrobial (Wakchaure et al., 2011)
369	<i>Syzygium cumini</i> (L.) Skeels. (Myrtaceae)	Bark, Seed	Dysentery	Powdered form is take along with half cup of hot water in empty stomach till cured. (Bhuyan, 1998; Gogoi, 1997; Sumitra, 2013; Choudhury, 1999; Borah et al., 2006; Chhetri et al., 1992; Nath, 2006;Srivastava et al., 1987; Khongsai et al., 2011; Das et al., 2008; Rao & Jamir, 1982; Megoneitso & Rao, 1983; Jamir et al., 2012)	Antimicrobial, Antioxident (Sari et al., 2012)
370	<i>Tacca integrifolia</i> K er Gawl. (Dioscoreaceae)	Root	Diarrhoea, Dysentery	Fresh root decoction along with salt is used for dysentery and diarrhea. (Kagyung et al., 2009).	Antimicrobial (Ahmed et al., 2019)
371	<i>Taxus wallichiana</i> Zucc (Taxaceae)	Young shoot	Diarrhoea	Decoction (one cup) prescribe orally for about one week. (Ranjana, et al., 2013; Shilet al., 2014; Pandey et al., 1991)	Antimicrobial (Adhikari & Pandey, 2019)
372	<i>Terminalia arjuna</i> (Roxb.) W t.et Arn.	Bark	Diarrhoea, Dysentery	Decoction is used in diarrhoea and dysentery (about 5 ml thrice	Antioxidant (Sultana et al., 2007)

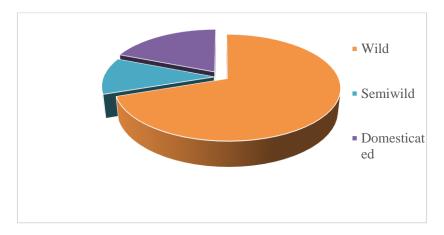
	(Combretaceae)			daily till cure). (Sumitra, 2013; Choudhury, 1999;Gogoi, 1997)	
373	<i>Terminalia bellirica</i> (Gaertn.) Rox. (Combretaceae)	Fruits	Diarrhoea, Dysentery	The fruits are chewed in stomach upsets and stomach dysfunction. (Lalramnghinglova, 1998; Dutta, 2012; Monlai, 2013; Sarma & Devi, 2017; Borah et al., 2006; Zhasa et al., 2015; Ahmed & Borthakur, 2005; Tsering, 2017; Chhetri, 2007)	Antioxidant, Anti- inflammatory (Guptaet al., 2021)
374	<i>Terminalia chebula</i> Retz. (Combretaceae)	Fruit	Constipati on	Decoction of fruit with one table spoon of juice of rhizome of turmeric take twice daily after food till cured. (Lalramnghinglova, 1998; Khongsai et al., 2011; jeevaet al., 2006; Dutta, 2012; Das & Tag, 2005; Taluder & Gupta, 2014; Megoneitso & Rao, 1983; Tsering, 2017; Borah et al., 2006; Das & Dutta Choudhury, 2012;Naldarine & Lalnundanga, 2017; Rethy et al., 2010)	Antioxidant (Naik et al., 2004)

375	<i>Terminalia citrina</i> Roxb. ex Flem. (Combretaceae)	Fruit	Stomach ache, Dysentery	Decoction of fruit with one table spoon of juice of rhizome of turmeric take twice daily after food till cured. (Das & Dutta Choudhury, 2012; Dutta, 2012)	Antioxidant, Antimicrobial (Narhari et al., 2016)
376	<i>Tetracera sarmentos</i> <i>a</i> (L.) Vahl (Dilleniaceae)	Bark	Stomachac h	Decoction of bark taken orally for stomachach. (Megoneitso & Rao, 1983; Rai et al., 2010)	Antimicrobial (Lima et al., 2014)
377	<i>Tetradium</i> <i>fraxinifolium</i> (Hook. f.) T.G. Hartley (Ranunculaceae)	Fruits	Dysentery, Gastritis	Fruits powder along with lukewarm water is given to cure dysentery and gastritis. (Megoneitso & Rao, 1983; Mao, 1993; Lepcha et al., 2019)	Not repoeted
378	<i>Thalictrum</i> <i>foliolosum</i> DC. (Ranunculaceae)	Whole plant	Chronic acidity, Diarrhoea, Dysentery	The whole plant is boiled or eaten raw for chronic acidity, diarrhoea and dysentery. (Majumdar & Dutta, 2007; Pfoze, 2012; Megoneitso & Rao, 1983; Ranjana, et al., 2013; Kar & Borthakur, 2008)	Antibacterial (Pandey et al., 2018; Joshi & Sati, 2014)
379	Thysanolaena latifol ia (Roxb. ex Hornem.) Honda (Poaceae)	Roots	Gastro- intestinal worms	One cup of decoction once daily for 3-5 days. (Pfoze, 2012; Sharma & Sharma, 2010; Khan & Yadava, 2010)	Antioxidant, Antibacterial (Hoque et al., 2016)

380	<i>Tinospora cordifolia</i> (Willd.) Hook. f. & Thoms. (Menispermaceae)	Leaf, Bark, Root	Diarrhoea, Dysentery	Decoction of leaves, bark and root bark in equal amounts is taken orally thrice daily. (Bora, 2001; Monlai, 2013; Sumitra, 2013; Choudhury, 1999; Jaiswal, 2010; Murtem& Chaudhry, 2016).	Antimicrobial (Prince & Menon, 1999)
381	<i>Toxicodendron hook</i> <i>eri</i> (K.C. Sahni& Bahadur) C.Y. Wu & T.L. Ming (Anacardiaceae)	Fruits	Dysentery	Two glass of infusion of fruits take orally twice daily for three days. (Kar &Borthakur, 2008; Sharma et al., 2014)	Not repoeted
382	Trichosanthes dioica Roxb. (Cucurbitaceae)	Root	Diarrhoea, Dysentery	Root extract is given 2 tea- spoonful thrice a day for one week. (Kagyung et al., 2009).	Antimicrobial (Bhattacharya & Kantihaldar, 2012)
383	Trigonella foenum- graceum L. (Fabaceae)	Seed	Stomach pain, Constipati on	Powdered seeds is given during night for 2 days for stomach pain & constipation. (Gurung, 2002; Khatoon, 2014; Hynniewta & Bora, 1997; Chhetri et al., 1992)	Antioxident (Radini et al., 2018)
384	Tupistra nutans Wall. ex Lind. (Asparagaceae)	Flower	Dysentery	Inflorescence eaten as vegetable. (Ranjana, et al., 2013; Dahal, 2019)	Antimicrobial (Chettri et al., 2020)

385	<i>Urena lobata</i> L. (Malvaceae)	Leaves	Dysentery, Gastritis	Infusion of leaves taken against dysentery and gastritis till cure. (Chettri & Sharma, 2011; Zhasaet al., 2015; Sharma, et al., 2014; Dahal, 2019)	Antimicrobial (Purnomo et al., 2018)
386	Urtica dioica Linn. (Urticaceae)	Whole plant	Diarrhoea, Dysentery	¹ / ₂ cup of juice of plant is prescribing after food. (Devi, et al., 2011; Gurung, 2002; Pandey et al., 1991)	Antioxidant, Antimicrobial, Antiulcer (Gülçin et al., 2004)
387	Verbena officinalis L. (Verbenaceae)	Leaves	Stomachac he	10-20 ml juice is given orally at morning in empty stomach for 3 days. (Das, 2003; Pfoze, 2012)	Antibacterial (Casanovaet al., 2008; Mengisteet al., 2014)
388	Veratrilla baillonii Franchet (Gentianaceae)	Root	Diarrhoea, Dysentery	Roots ground with water and filter. The filtrate is prescribes orally given till cure. (Majumdar & Dutta, 2007; Singh et al., 1989; Dahal, 2019)	Antibacterial (He et al., 2020)
389	<i>Vigna unguiculata</i> (L.) Walp. (Fabaceae)	Laves	Stomach pain	Boiled leaves (1 cup) are eaten to destroy worms in the stomach. (Mao, 1993; Khatoon, 2014)	Antibacterial (Garcia et al., 1986)
390	Viscum album Linn. (Loranthaceae)	Shoot	Dysentery	Young twigs of Viscum album and Psidium guajava crushed gently with bark of Spondia spinnata. Filtered juice prescribed with water in empty	Antimicrobial (Hussain et al., 2011)

				stomach daily at morning for 3 days. (Sharma et al., 2014; Mao, 1993; Bora, 2016)	
391	<i>Vitex trifolia</i> L. (Verbenaceae)	Leaves	Constipati on	The decoction of leaves with honey is given against constipation. (Konwaret al., 2020; Khatoon, 2014)	Antimicrobial (Mary & Banu, 2015)
392	Woodfordia fruticos a (L.) Kurz (Lythraceae)	Fresh flowers	Blood dysentery	Decoctio of fresh flowers are taken once daily till cure. (Kar & Borthakur, 2008; Chettri & Sharma, 2011; Sharma et al., 2014; Ahmed & Borthakur, 2005; Dahal, 2019)	Antimicrobial (Arya et al., 2015)
393	Wrightia antidysente rica (L.) R.Br. (Apocynaceae)	Bark	Dysentery	¹ / ₂ kg of bark is to be boiled in 1 litre of water till the solution becomes brownish, cooled it down and filtered it with fine and clean cloth. The extracted juice can be taken orally at 1 teaspoonful daily after food. (Das & Sharma, 2002; Nath, 2001; Marak, 2018)	Antioxidant, Antimicrobial (Ramalakshmi et al., 2012; Nirmali et al., 2015)
394	Zanthoxylum acanthopodium DC. (Rutaceae)	Fruits	Dysentery	Pawder along with 1 cup of water take orally for 3 days. (Dahal, 2019; Das, 2003; Tsering, 2017; Devi, 2015;	Antimicrobial (Ranawat et al., 2010)


Recent Advances in Folk Medicine Research in North East India

Lepcha et al., 2019; Jamir et al., 2015; Das & Tag, 2005). Three to five seed's fleshy covers are chewed and taken for stomached, stomach disorder and expulsion of gas from the stomach. (Kar & Borthakur, Zanthoxylum 2008; Guha et al., 2018; Singh Antimicrobial (Negi et Gastrict, 395 armatum DC Fruits et al., 1989; Gurumayum & Dysentery al., 2012) Soram, 2014). (Rutaceae) Infusion of seed along with Allium sativum prescribe orally twice daily till cure. (Singh et al., 1989; Majumdar & Dutta, 2007; Kagyung et al., 2009) Decoction (about two cup) once daily till cured. (Myrchiang et *Zanthoxylum oxyphy* Fruit. Diarrhoea. al., 2020; Mao, 1993; Gurung, Antimicrobial (Wang 396 llum Edgew. 2002; Singh et al., 1989; et al., 2021) Leaves Dysentery (Rutaceae) Chhetri et al., 1992; Majumdar & Dutta. 2007) Infusion taken in empty Zanthoxylum Leaves. stomach in worm infection of Antimicrobial Stomach nitidum (Roxb.) DC 397 the gastrointes-tinal tract of (Chakthong et stem, infection (Rutaceae) children.(Sharma & Sharma. al.,2019) bark 2010; Sharma & Pegu, 2011;

Recent Advances in Folk Medicine Research in North East India

				Gogoi et al., 2019)	
398	Zephyranthes carinata Herb. (Amaryllidaceae)	Bulb	Stomach ulcers	Decoction of bulb taken orally twice daily after food against stomach disorder. (Dahal, 2019)	Antibacterial (Manoj et al., 2013)
399	Zingiber officinale Rosc. (Zingiberaceae)	Rhizom e	Stomachac he	Freshly collected rhizome decoction is geven to get relief from stomachache. About one cup of dose twice daily till cure. (Namsa et al., 2011; Das, 2003; Kagyung et al., 2009; Sangtam et al., 2012).	Antimicrobial (Zancan et al., 2002)
400	Zingiber purpureum Rosc. (Zingiberaceae)	Rhizom e	Stomachac h, Diarrhoea	Chakma tribe use rhizome (about one cup) to cure stomachache & diarrhoea. (Daur & Hajra, 1980; Chhetri, 2005; Rai et al., 2010)	Antimicrobial (Basu & Tripura, 2021)

Recent Advances in Folk Medicine Research in North East India

Recent Advances in Folk Medicine Research in North East India

Fig. 9.1. Representing the percentage of habit of plant species.

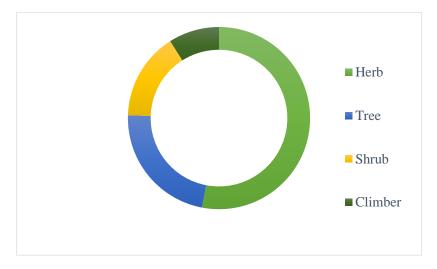


Fig. 9.2. Representing the numbers most and least parts used.

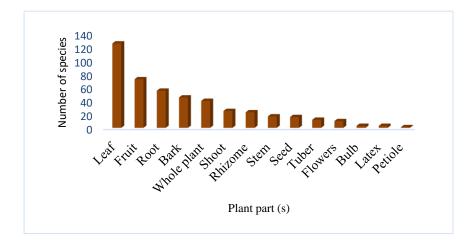


Fig. 9.3. Use frequency (number of species) of different plant parts.

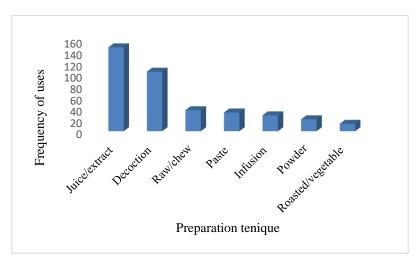


Fig. 9.4. Use frequency of remedy preparation techniques.

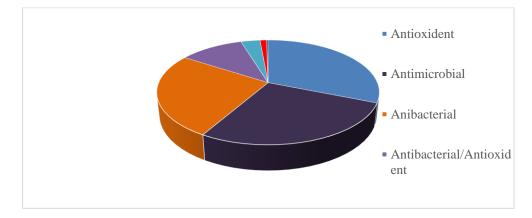


Fig. 9.5. Phytochemical Constituent of medinal plants use in gastrointestinal disorders.

Discussion

Herbal medicines are important in primary health care systems in India and thus have been widely studied. However, studies on specific disease types are still lacking except for a few on anthelmintic (Jain, 2013), diarrhea and dysentery (Vineeta et al., 2018) and gastrointestinal disorders (Thakur et al., 2020). Here, we reviewed the literature and documented plant species used in North east India to treat different disorders related to the digestive system. We focused on gastrointestinal disorders because many people die each year in India due to gastrointestinal related diseases such as diarrhea, dysentery and cholera (Siddalinga & Vidyasagar, 2013). Similar documentations on use of plant parts for gastrointestinal disorders reported from other regions also (Jalal & Garkoti 2013; Sharma et al., 2010; Korkmaz et al., 2016). The most frequently utilized plant parts are leaves, bark, roots, branches, stem, fruits and seeds (Shukla & Chakravarty 2012; Alagesaboopathi 2014; Mondal & Samanta 2014). Additionally, some plant species have medicinal value in their flowers, rhizomes, tubers and heart-wood. In some cases, the whole plant including the rootswas utilized (Shukla & Chakravarty 2012). Most of the ethnobotanical studies confirmed that the leaves are the major portion of the plant used in the treatment of diseases (Ignacimuthu et al., 2008; Choudhury et al., 2012). The prevalence of these gastrointestinal ailments is likely due to malnutrition, poor hygiene, and lack of clean drinking water, as is the case in India (Dey & De, 2012). Notwithstanding the importance of addressing the public health issues at the root of gastrointestinal disorders, it is as crucial to improve our understanding of how these ailments can be treated. Medicinal plants are part of the solution.

Conclusion

Gastrointestinal infections are causing great health loss in almost all developing countries. Due to low income status and lack of modern health facilities people of North East region still using medicinal plants for stomach related disorders. This review on herbal medicines for stomach disorders indicates that till today traditional practitioners play an important role in health care system among traditional communities of North East India and these communities possess a good knowledge of herbal drugs. This compilation on ethnomedicinal information on stomach disorders ended up with enlisting 400 species of plants which were used to treat stomach diseases/disorders in different states of North East India. Majority of the plants included in this study occur in the wild habitat of foothills of Himalaya, while few of them are cultivated or planted (eg: Allium sativum, Ananas comosus, Mangifera indica, Hibiscus sabdariffa, Curcuma longa, Zingiber officinale, Benincasa hispida, Cucumis sativus, Cucurbita maxima, Trichosanthes dioica, Garcinia spp., Ocimum spp., Mentha spp., Piper spp., Musa spp.) in home-gardens for daily use and for economic-benefits. The local people use some of these plants judiciously by way of sun drying and use them by preparing decoctions or infusions as per need throughout the year. From this research, it can be concluded Acorus calamus, Aegle marmelos, Asparagus racemosus, Centella asiatica, Drymaria cordata, Garcinia spp, Houttuynia cordata, Mangifera indica, Oroxylum indicum, Oxalis corniculata, Paedaria foetida and Psidium guajava recorded to possess high Use Values and Fidelity levels and thus are more important plants as per curing various GI disorders. The family Asteraceae is of great importance for GI ailments, followed by Fabaceae, Lamiaceae, Zingiberaceae and Poaceae. There is more need of research data to authenticate homogeneity of traditional knowledge regarding the use of particular plant species to treat a particular GI ailment. Leaves and fruits are always the most important parts along with bark and roots for preparation of drugs. Although some species are commonly used but may not be still clinically proven. It was also found that pharmacological and phytochemical constituent of some species use in

gastrointestinal disorder in North east region still not reported. So there will be a great chances to find out the active compounds of these herbal medicine and develop new drugs. Medicinal plants play an important role in providing knowledge to the researchers in the field of ethnopharmacology. This compilation of herbal medicine of Gastrointestinal disorder might help the researchers for further critical exploration of medicinal plants present in North East India and development of novel drugs.

References

- Abdallah, E.M. 2016. Antibacterial activity of *Hibiscus sabdariffa* L. calyces against hospital isolates of multidrug resistant *Acinetobacter baumannii*. *Journal of Acute Disease*, 5(6): 512-516.
- Abirami, A., Nagarani, G. & Siddhuraju, P.2014. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Science and Human Wellness, 3(1):16-25.
- Adedayo, A.C., Oboh, G.,Oyeleye, S.I., Ejakpovi, I.I., Boligon, A.A. &Athayde, M.L. 2015. Blanching alters the phenolic constituents and *in vitro* antioxidant and anticholinesterases properties of fireweed (*Crassocephalum crepidioides*). *Journal of taibah university medical sciences*,10(4): 419-426.
- Ademiluyi, A.O., Oboh, G., Aragbaiye, F.P., Oyeleye, I.&Ogunsuyi, O.B. 2015. Antioxidant properties and in vitro α-amylase and α-glucosidase inhibitory properties of phenolics constituents from different varieties of *Corchorus* spp. *Journal of Taibah University Medical Sciences*, 10(3): 278-287
- Adetunji, C.O., Olatunji, O.M., Ogunkunle, A.T.J., Adetunji, J.B. & Ogundare, M.O.2014. Antimicrobial Activity of Ethanolic Extract of *Helianthus annuus*. Stem. Sikkim Manipal University Medical Journal, 1(1): 79-88
- Adhikari, P. & Pandey, A. 2019. Phosphate solubilization potential of endophytic fungi isolated from *Taxus wallichiana* Zucc. Roots. *Rhizosphere*, 9:2-9
- Adhikari, P.P. & Paul, S.B. 2018. History of Indian traditional medicine: a medical inheritance. Asian Journal of Pharmaceutical and Clinical Research,11(1):421-426
- Ahmed, A.A. & Borthakur, S.K. 2005. Ethnobotanical Wisdom of the Khasis (HynniewTreps) of Meghalaya. Bishen Singh Mahendra Pal Singh. Dehradun, India, p. 114-147
- Ahmed, A.F., Attia, F.A.K., Liu, Z., Li, C., Wei, J. & Kang, W. 2019. Antioxidant activity and total phenolic content of essential oils andextracts of sweet basil (*Ocimum basilicum L.*) plants. *Food Science and Human Wellness*, 8: 299-305

- Ahmad, F., Taj, M.B., Ramzan, M., Ali, H., Ali, A., Adeel, M., Iqbal, H.N.M. & Imran, M. 2020. One-pot synthesis and characterization of in-house engineered silver nanoparticles from *Flacourtiajangomas* fruit extract with effective antibacterial profles. *Journal of Nanostructure in Chemistry*,11:131-141
- Ahmad, R. S., Hussain, M.B., Sultan, T.M., Arshad, M.S., Waheed, M., Shariati, O.A., Plygun, S. &Hashempur, M.H. 2020. Biochemistry, Safety, Pharmacological Activities and Clinical Applications of Turmeric: A Mechanistic Review. Evidence-Based Complementary and Alternative Medicine, <u>https://doi.org/10.1155/2020/7656919</u>
- Ahmed, S., Rakib, A., Islam, M.S. & Khanam, M. 2019. In vivo and in vitro pharmacological activities of *Tacca integrifolia* rhizome and investigation of possible lead compounds against breast cancer through in silico approaches. *Clinical Phytoscience*, 5(13):1-13
- Ahna, J.H., Joa, Y.H., Kima, S.B., Turka, A., Ohb, K.Y., Hwanga, B.Y., Leeb, K.Y. & Lee, M.K. 2018. Identification of antioxidant constituents of the aerial part of *Plantagoasiatica* using LC–MS/MS coupled DPPH assay. *Phytochemistry Letters*, 26:20-24
- Akowuah, G.A., Zhari, I., Norhayati, I. & Mariam, A. 2006. HPLC and HPTLC densitometric determination of andrographolides and antioxidant potential of Andrographis paniculate. Journal of Food Composition and Analysis, 19(2-3):118-126
- Alagesaboopathi, C. 2014. Medicinal plants used by tribal and non-tribal people of Dharmapuri district, Tamil Nadu, India. *International Journal of Current Research in Bioscience and Plant Biology*, 1:64-73
- Alam, A. & Singh, V. 2021. Composition and pharmacological activity of essential oils from two imported *Amomum subulatum* fruit samples. *Journal of Taibah University Medical Sciences*, 16(2):231-239
- Al-Aamri, M.S., Al-Abousi,N.M., Al-Jabri,S.S., Alam, T. & Khan, A.S. 2017. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of *Citrus aurantifolia* L. leaves grown in Eastern Oman. *Journal* of *Taibah University Medical Sciences*, 13(2):108-112
- Aldi, A.A., Dillasamola, D., Larakhansa, Y.A. &Badriyya, E. 2021. Immunostimulatory Activities of PegaganEmbun (*Hydrocotyle sibthorpioides* Lam.) in White Male Mice. *Pharmacognosy Journal*, 13(2): 368-375
- Ali, A.M., Mackeen, M.M., El-sharkawy, S.H., Hamid, J.A., Ismail, N.H., Ahmad, F.B.H. & Lajis, N.H. 1996. Antiviral and Cytotoxic Activities of Some Plants

Used in Malaysian Indigenous Medicine, Pertanika. *Journal of Tropical Agriculture Science*, 19(2/3):129-136

- Ali, E.A.S. 2017. The pharmacological potential of *Dactyloctenium aegyptium* a review. *Indo American Journal of Pharmaceutical Sciences*, 4(01):153-159
- Ali, M.R., Billah, M.M., Mahadi, H.M.& Dewan, S.M.R. (2013). Enhydra fluctuans Lour: A Review. Research Journal of Pharmacy and Technology, 6(9):927-929
- Ali, R., Khan, R.A., Khan, M.R. & Sahreen, S. 2010. Antimicrobial and phytotoxic screening of various fractions of *Sonchus asper*. *African journal of biotechnology*, 925(25):3883-3887
- Al-Reza, S.M., Rahman, A., Sattar, M.A., Rahman, M.O. & Fida, H.M. 2010. Essential oil composition and antioxidant activities of *Curcuma* aromaticaSalisb. Food and Chemical Toxicology, 6(48):1757-1760
- Amabirami, A., Nagarani, G. & Siddhuraju, P. 2014. *In vitro* antioxidant, antidiabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Science and Human Wellness, 3(1):16-25
- Ambujakshi, H.R., Surendra, V., Haribabu, T. & Goli, D. 2009. Antibacterial activity of leaves of *Lagerstroemia speciosa* (L.) Pers. *Journal of Pharmacy Research*, 2(6):1028
- Amin, S., Kaloo, Z.A., Singh, S. & Altaf, T. 2013.Medicinal importance of genus Inula- a review. International Journal of Current Research and Review, 05 (02):20-26
- Anh, D.D., Lopez, A.L., Thiem, V.D., Grahek, S.L., Duong, T.N., Park, J.K., Kwon, H.J., Favorov, M., Hien, N.T. & Clemens, J.D. 2011. Use of oral *Cholera caccines* in an outbreak in Vietnam: a case control study. *PLoS Neglected Tropical Diseases*, 5:e1006
- Annan, K. & Houghton, P.J.2008. Antibacterial, antioxidant and fibroblast growth stimulation of aqueous extracts of *Ficusasperifolia* Miq. and *Gossypium arboreum* L., wound-healing plants of Ghana. *Journal of Ethnopharmacology*, 119(1):141-144
- Annapurna, J., Pisipati, A., Kumar, A. & Ramakrishna, S.V. 2003. Antimicrobial activity of *Ixora coccinea* leaves. *Fitoterapia*, 74(3):291-3
- Arokiyaraj, S., Sripriya, N., Bhagya, R., Radhik, B., Pramee, L. &Udayaprakash, N.K. 2012. Phytochemical screening, antibacterial and free radical scavenging effects of Artemisia nilagirica, Mimosa pudica and Clerodendrum

siphonanthus- An in-vitro study. Asian Pacific Journal of Tropical Biomedicine, 2(2):S601-S604

- Arrabasma, A.B.U., Zakaria, Z., Yogalatha, L. & Sasidharan, S. 2011. Antioxidant activity and phytochemical screening of the methanol extracts of *Euphorbia hirta* L. *Asian Pacific Journal of Tropical Medicine*, 4(5): 386-390
- Arulmozhi, S., Mazumder, P.M., Lohidasan, S. & Thakurdesai, P. 2010. Antidiabetic and antihyperlipidemic activity of leaves of *Alstonia scholaris* Linn. R.Br. *European Journal of Integrative Medicine*, 2:23-32
- Arulselvan, P. & Subramanian, S.P. 2007. Beneficial effects of *Murraya koenigii* leaves on antioxidant defense system and ultra-structural changes of pancreatic β-cells in experimental diabetes in rats. *Chemico-Biological Interactions*, 165(2):155-164
- Arya, A., Al-obaidi, M.M.J., Bintikarim, R., Taha, R., han, A.K., Nayiarshahid, Sayem, A.S., Yenglooi, C., Mustafa, M.R., Alimohd, M. & Mohdali, H.2015. Extract of *Woodfordia fruticosa* flowers ameliorates improves hyperglycemia, oxidative stress and β-cell function in streptozotocin-nicotinamide induced diabetic rats. Journal of Ethnopharmacology, 175(4):229-240
- Arya, D., Goel, S., Shinde, P., Joshi, G.C., Sharma, O.R. & Sharma, S.K. 2017. *Dysoxylum binacteriferum* Hook. F.: A promising herbal drug used in folk medicine by tharu community of uttarakhand. World Journal of *Pharmaceutical Research*, 9(6): 296-301
- Aslam, M.S. & Ahmad, M.S. 2016. Analgesic and Antiinflammatory Activity of Genus Aconitum: A Phytochemical and Ethnopharmacological Review. Recent Advances in Biology and Medicine, 2:94-112
- Astiti, N.P.A., Sudirga, S.K. & Ramona, Y. 2018. Antioxidant activity of methanol extract of star fruit leaves (*Averrhoa carambola* L.), a raw material for balinese traditional food (lawar). Int. *Journal of Pharmaceutical Sciences and Medicine*, 3(11):1-6
- Atabaki, N., Shaharuddin, N.A., Ahmad, S.A., Nulit, R. & Abir, R. 2020. Assessment of Water Mimosa (*Neptunia oleracea* Lour.) Morphological, Physiological, and Removal Efficiency for Phytoremediation of Arsenic-Polluted Water. *Plants*, 9:2-24
- Athinarayanan, J., Subbarayan, V., Ahmedqasem, P. &Alshatwi, A.A. 2018.*Borassus flabellifer* biomass lignin: isolation and characterization of its antioxidant and cytotoxic properties. *Sustainable Chemistry and Pharmacy*, 10:89-96

- Awasthil, A.K., Bishtl G.S. &Anroop, B. 2006. In vitro antimicrobial activity of Swertachirata. IndianJournal of Natural product, 21(2):27
- Ayodele, O.O., Onajobi, F.D. &Osoniyi, O. 2019. In vitro anticoagulant effect of *Crassocephalum crepidioides* leaf methanol extract and fractions on human blood. *Journal of Experimental Pharmacology*, 11:99-107.
- Aziz, N.S., Sofian-seng, N.S. & Mustapha, W.A.W. 2018. Functional Properties of Oleoresin extracted from white Pepper (*Piper nigrum* L.) retting waste water. *Sains Malaysiana*, 47(9): 2009-2015
- Bahadori, M.B., Dinparast, L. & Zengin, G. 2016. The Genus Heracleum: A Comprehensive Review on Its Phytochemistry, Pharmacology, and Ethnobotanical Values as a Useful Herb. Comprehensive Reviewsin Food Science and Food Safety, 15:1018-1039
- Baidya, S., Thakur, B. & Devi, A. 2020. Ethnomedicinal plants of the sacred groves and their uses by Karbi tribe in Karbi Anglong district of Assam, Northeast India. *Indian Journal of Traditional Knowledge*, 19(2): 277-287
- Balasubramanian, A., Bhattacharjee, M., Sakthivel, M. K., Thirumavalavan, M., Madhavan, T., Kumarnagarajan, S., Palaniyandi, V. & Raman, P. 2018. Isolation, purification and characterization of proteinaceous fungal α-amylase inhibitor from rhizome of *Cheilocostus speciosus* (J. Koenig) C.D. Spech. *International Journal of Biological Macromolecules*, 11(1): 39-51
- Balkrishna, A., Rohela, A., Kumar, A. & Kumar, A. 2021. Mechanistic insight into antimicrobial and antioxidant potential of *Jasminum species*: a herbal approach for disease management. *Plants*, 10(6):1089
- Bandivdekar, A.H. & Moodbidri, S.B. 2002. Spermicidal activity of seed oil of Pongamia glabra. Journal of Reproductive Systems, 48:9-13
- Banik, B., Sahu, N., Chetia, N., Saikia, M. & Boruah P. 2017. Evaluation of antioxidant and antimicrobial activity of *Carica papaya* (Amita) leaf extracts. *Current trends in pharmaceutical research*, 4(1):61-25
- Banothu, V., Adepally, U. & Lingam, J. 2017.In vitro total phenolics, flavonoids contents, antioxidant and antimicrobial activites of various solvent extracts from the medicinal plant *Physalis minima* Linn. *International Journal of Pharmacy and Pharmaceutical Sciences*, 3(9):192-198
- Basu, S. & Tripura, K. 2021. Differential sensitivity of Allium cepa L. and Viciafaba L. to aqueous extracts of Cascabela thevetia (L.) Lippold. South African Journal of Botany, 139:67-78

- Beara, I., Lesjak, M.M., Jovin, E.D. & Bekvalac, K. 2009. Plantain (*Plantago L.*) Species as Novel Sources of Flavonoid Antioxidants. *Journal of Agricultural* and Food Chemistry, 57(19): 9268-9273.
- Bellik, Y.& Ammar, S.S.M. 2017. In vitro synergistic antioxidant activity of honey-Mentha spicata combination. Journal of Food Measurement and Characterization, 11(1): 1-8.
- Benites, J., Ybañez-Julca, R.O., Ganoza-Yupanqui, M.L., Mantilla-Rodríguez, L., Zavala, E., Velasquez-Arevalo, S., Gajardo, S., Morales, B., Albuquerque, R.D.D.G.D., Rocha, L. & Martinez, J. 2019. Antioxidant effect and chemical composition of *Ananascomosus* (L.) Merr. peels from Peruvian Northern. *Boletin Latinoamericanoydel Caribe de PlantasMedicinales y Aromaticas*, 18(6):577-585
- Bernstein, N., Kravchik, M. &Dudai, N. 2009. Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (*Ocimum basilicum*) in relation to alterations of morphological development. *Annals of Applied Biology*, 156:167-177
- Bhaigyabati, T., Devi, P.G., Devi, N.R. & Bag, G.C. 2017. Antioxidant activity, total phenolic and total flavonoid content of *Oenanthe javanica* Blume (DC) collected from Imphal west district. *International Research Journal of Pharmacy*, 8(6): 63-68.
- Bhandari, G.P., Dixit, S.M., Ghimire, U. & Maskey, M.K. 2009. Outbreak investigation of diarrheal diseases in Jajarkot. *Journal of Nepal Health Research Council*, 7:66-68
- Bharali, R., Bharali, L., Borkotoky, D. & Singh R.K. 2017. Ethno medicinal plants used in traditional health care by Chakhesang tribe of Phek district. *Bulletin of Environment, Pharmacology and Life Sciences*, 6(1): 46-49
- Bhardwaj, P., Naryal, A., Thakur, M.S., Aggarwal, N.K., Saxena, S., Chaurasia, O.P. &Kumar, R.2020. Comparative antioxidant, antibacterial, and GC-MS analysis of methanol extract's fractions and isolation of luteolin from leaves of trans-Himalayan Codonopsis clematidea. Journal of Drug Delivery and Therapeutics.144:112046
- Bhattacharjee, I., Chatterjee, S.K., Chatterjee, S. & Chandra, G. 2006. Antibacterial potentiality of Argemone mexicana solvent extracts against some pathogenic bacteria. Memórias do Instituto Oswaldo Cruz, 101(6): 645-648.

- Bhattacharya, S. & Kantihaldar, P.2012. Ameliorative effect *Trichosanthes dioica* root against experimentally induced arsenic toxicity in male albino rats. *Environmental toxicology and pharmacology*, 33(3): 394-402.
- Bhunia, D. & Kumar, A. 2012. Mondal Antibacterial Activity of Alpinia L. (Zingiberaceae) from Santal and Lodha Tribal Areas of Paschim Medinipur District in Eastern India. Advances in bioresearch, 3(1):54-63
- Bhuyan, T.C. 1998. Studies on ethnobotany of dimasaKacharis of North Cachar hills district of Assam with special reference to medicinal plants. Ph.D. Thesis, Institute of Rain & Moist Deciduous Forests Research, Jorhat, Assam. Department of Botany, Gauhati University, Assam, India.
- Bhuyan, D.K. 1989. *Medicinal flora of Lohit district of Arunachala Pradesh with special reference to ethnobotany*. Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Billah, M.M., Islam, R., Hajera Khatun, H., Parvin, S., Islam, E., Islam, S.M.A. & Mia, A.A. 2013. Antibacterial, antidiarrhoeal and cytotoxic activities of methanol extract and its fractions of *Caesalpinia bonducella* (L.) Roxb leaves. *Complementary and Alternative Medicine*, 13(101):1-7
- Bisht, R. & Bhattacharaya, S. 2013. Phytochemical and antibacterial screening of root extracts of *Abroma augusta* Linn. *Der Pharmacia Sinica*, 4(3):75-79.
- Biswas, K. 1956. Common medicinal plants of Darjeeling and Sikkim Himalaya, Govt Press, Kolkata.
- Biswas, N.N., Saha, S. & KhademAli, M.2014. Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of *Mentha arvensis* L. *Asian Pacific Journal of Tropical Biomedicine*, 4(10): 792-797.
- Badola, H.K. & Pradhan, B.K. 2013. Plants used in healthcare practices by Limboo tribe in South-West of Khangchendzonga Biosphere Reserve, Sikkim, India. *Indian Journal of Traditional Knowledge*, 12: 355-369.
- Bolleddu, R., Ghosal, S., Paria, D., Dutta, S., Jayram Hazra, J. & Chatterjee, R. 2018.
 Establishment of Quality Parameters for Leaf, Stem and Root of Sonchus wightianus DC. through Pharmacognostical Standardization.
 International Journal of Pharma Research and Health Sciences, 6(1): 2290-2294
- Bopda, O.S.M., Longo, F., ThierryNdzana Bella, T.N., Aedzah, P.M.O., Taïwe, G.S., Bilanda, D.C., Lembatom, E.N., Kamtchouing, P. &Dimo. T. 2014. of Kalanchoe Antihypertensive activities of the aqueous extract *pinnata* (Crassulaceae) in high salt-loaded Journal rats. of *Ethnopharmacology*, 153(2): 400-407.

- Bose, D. & Chatterjee, S. 2016. Biogenic synthesis of silver nanoparticles using guava (*Psidium guajava*) leaf extract and its antibacterial activity against *Pseudomonas aeruginosa*. *Applied Nanoscience*. 6: 895-901
- Bose, S.K. & Maity, S. 2010. Antimicrobial potential of *Rhus semialata* Murr. against bacterial diarrhoea. Journal of pure and applied microbiology, 4(2):879-882.
- Bora, A., Bora, C. & Dutta, C. 2016. Ethno-medicinal plants used for the treatment of common diseases by the people of Lakhimpur district, Assam. *Journal of Natural Product* and *Plant Resources*, 6(2): 6-12
- Bora, C. 2001. *Ethnobotany of lower Subansiri district of Nishi Tribe of Arunachal Pradesh, India*.Ph.D. Thesis,Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Bora, D., Mehmud, S., Das, K.K. & Medhi, H. 2016. Report on folklore medicinal plants used for female health care in Assam (India). *International Journal of Herbal Medicine*, 4(6):04-13
- Bora, D., Mehmud, S., Das, K.K. & Medhi, H. 2016. Report on medicinal plant practices for dysentery, diarrhoea and cholera in different parts of Assam, India. *Journal of Medicinal Plants Studies*, 4(6): 208-212.
- Bora, R. & Das, A.K. 2015. An Inventory of Ethnomedicinal Plants Among the Rabha Tribe Residing Nearby Chandubibeel of Kamrup District (Assam). International Journal for Innovative Research in Science & Technology, 1(12):126-129
- Borah, A., Paw, A., Gogoi, R., Loyingb R., Sarma, N., Munda, S., Pandey, S.K. & Lal, M. 2019. Chemical composition, antioxidant, anti-inflammatory, antimicrobial and in-vitro cytotoxic efficacy of essential oil of *Curcuma caesia* Roxb. leaves: An endangered medicinal plant of North East India. *Industrial Crops & Products*, 129: 448-454
- Borah, P.K., Gogoi, P., Phukan, A.C. & Mahanta, J. 2006. Traditional medicine in the gastrointestinal disease in upper Assam. *Indian Journal of Traditional Knowledge*, 5(4): 510-512
- Borah, S. & Bora, A. 2020. Ethno Medicinal Plants Used for the Treatment of Common Diseases by the Deori Community People of Lakhimpur District, Assam. Universal Journal of Plant Science, 8(3):39-46
- Borkataki, S. 2006. *Ethnobotany of tea garden and ex teagarden communities of Nagaon district Assam.* Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.

- Bushra S., Anwar, F. & Przybylski, R. 2007. Antioxidant activity of phenolic components present in barks of *Azadirachtaindica*, *Terminalia arjuna*, *Acacia nilotica*, and *Eugenia jambolana* Lam. trees. *Food Chemistry*, 104:1106-1114
- Cantele, C., Bertolino, M., Bakro, F., Giordano, M., Małgorzata, J. & Cardenia, V. 2020. Antioxidant Effects of Hemp (*Cannabis sativa* L.) Inflorescence Extract in Stripped Linseed Oil. *Antioxidants*, 9(11):1-18
- Cantore, P.L., Iacobellis, N.S., Marco, A.D., Capasso, F. & Senatore, F. 2004. Antibacterial Activity of *Coriandrum sativum* L. and *Foeniculum vulgare* Miller Var. *vulgare* (Miller) Essential Oils. *Journal of Agricultural and Food Chemistry*, 52:7862-7866
- Celik, I., Temur, T. & Isik, I. 2009. Hepatoprotective role and antioxidant capacity of pomegranate (*Punicagranatum*) flowers infusion against trichloroacetic acidexposed in rats. *Food and Chemical Toxicology*, 47(1): 145-149
- Chakraborty, M., Bala, A. & Haldar, P.K. 2017. Flavonoid Enriched Fraction of *Campylandra aurantiaca* attenuates carbon tetrachloride induced oxidative dnadamage in mouse peritoneal macrophages in animal model. *Current Drug Discovery Technologies*, 14: 270-276
- Chandra, S., Saklani, S. & Mishra, A.P. 2013. In vitro Antimicrobial Activity of Garhwal Himalaya Medicinal Plant Dioscorea deltoidea Tuber. International Journal of Herbal Medicine, 1 (4): 67-70
- Changkija, S. 1999. Folk Medicinal Plants of the Nagas in India. *Asian Folklore Studies*, 58:205-230
- Chase, P. & Singh, O.P. 2013. Ethnomedicinal Plants used by Angami tribe of nagaland, India. *Indian Journal* of *Tropical Biodiversity*, 21(1&2): 29-42
- Chauhan, P., Singh, S., Sharma, R.K. & Easwari, T.S. 2016. Anti-bacterial activity of *Rhododendron arboreum* plant against *Staphylococcus aureus*. Annals of *Horticulture*, 9(1): 92.
- Cheriti, A., Belboukhari, M., Belboukhariand, N. & Djeradi, H. 2012. Phytochemical and biological studies on *Launaea* Cass.genus (Asteraceae) from *Algerian Sahara*. *Current Topics in Phytochemistry*, 11: 67-80.
- Chetry, L.B., Basar, K., Taye, K., Taka, T., Tsering, J. & Wangpan T. 2018. Medicinal plants used against gastrointestinal disorders among the Adi Tribe of Eastern Himalaya. *Nebio*, 9(1):93-101.
- Chhetri, D.R. 2007. Medicinal plants scenario in Darjeeling Himalayas: Conservation and cultivation as alternative crop. *Indian Forester*. 665-678 <u>http://dspace.cus.ac.in/jspui/handle/1/3904</u>

- Chettri, N. & Sharma, E. 2011. Non-Timber Forest Produce: Utilization, distribution and status in the Khangchendzonga Biosphere Reserve, Sikkim, India. Biodiversity of Sikkim- Exploring & Conserving a Global hotspot. IPR, Government of Sikkim, Gangtok.
- Chhetri, D.R. 2005. Ethnomedical plants of the Khangchendzonga National Park, Sikkim, India. *Ethnobotany*, 17:96-103.
- Chhetri, R.B., Kataki S.K. & Boissya, C.L. 1992. Ethnobotany of some Ichthyotoxic plants on Meghalaya, North Eastern India. *Journal of Economic and Taxonomic Botany*, 10: 285-288
- Chettri, U., Kumari, S., Sharma, S. & Chettri, B. 2020. A Review on Potential Anti-Microbial and Therapeutic Properties of Himalayan Plant *Tupistra nutans* (Nakima). *International Journal of Pharmaceutical Sciences Review and Research*, 64(1): 109-113
- Choudhury, S., Sharma, P., Dutta Choudhury, M. & Dutt Sharma, G. 2012. Ethnomedicinal plants used by Chorei tribes of Southern Assam, North Eastern India. Asian Pacific Journal of Tropical Disease, S141-S147.
- Choudhury, M.D. 1999. *Ethnomedico botanical aspects of Reang tribe of Assam: A comprehensive study.* Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Casanova, E., García-Mina, J.M. & Calvo, M.I. 2008. Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods for Human Nutrition, 63:93-97
- Chakthong, S., Ampaprom, R., Inparn, S., Phetkul, U., Chusri, S. & Limsuwan, S. 2019. New alkylamide from the stems of *Zanthoxylum nitidum*. *Natural product research*,33(2): 153-161
- Chandra, S. &Rawat, D.S. (2015). Medicinal plants of the family *Caryophyllaceae*: a review of ethno-medicinal uses and pharmacological properties. *Integrative Medicine Research*, (3):123-131
- Chanwitheesuk, A., Teerawutgulrag, A. & Rakariyatham, N. 2005. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. *Food Chemistry*, 92(3): 491-497
- Chaveerach, A. Sudmoon, R. & Tanee, T. 2017. Interdisciplinary researches for potential developments of drugs and natural products. *Asian Pacific Journal of Tropical Biomedicine*, 7(4): 378-384.
- Chew, A.L., Jessica, J.J.A. & Sasidharan, S. 2012. Antioxidant and antibacterial activity of different parts of *Leucas aspera*. Asian Pacific Journal of Tropical Biomedicine, 2(3):176-180.

- Chiu, Y.J., Chou, S.C., Chiu, C.S., Kao, C.P., Wu, K.C., Chen, C.J., Tsai, J.C. & Peng, W.H. 2018. Hepatoprotective effect of the ethanol extract of *Polygonum orientale* on carbon tetrachloride-induced acute liver injury in mice. *Journal of Food and Drug Analysis*, 26(1): 369-379.
- Choudhury, A., Marbaniang, B., Sutnga, I. & Hazarika, G. 2020. Pharmacognostic and preliminary phytochemical screening of *Trachyspermum khasianum* H. Wolff. *Indian Journal of Natural Products and Resources*, 11(2):101-109.
- Chowdhury, M.R., Chowdhury, K.H., Hanif, N.B., Sayeed, M.A., Mouah, J., Mahmud, I., Kamal, A.T.M.M., Chy, M.N.D. & Adnan, M. 2020. An integrated exploration of pharmacological potencies of *Bischofia javanica* (Blume) leaves through experimental and computational modeling. *Heliyon*, 6(9): 1-12.
- Chouhan, A.S., Mathur, K., Manoj, G. & Yadav, S.K. 2017. *Holarrhena pubescens* Wall Ex.Don: A review on ethnobotanical, phytochemical and pharmacological profile. *Indian Journal of Drugs*, 5(2): 71-77.
- Chung, H.S., Hon, H. & But, P.P. 2003. Antitussive Activity of *Stemona* alkaloids from *Stemona tuberosa*. *Planta Medica*, 69(10): 914-920.
- Cueva, M.B.R., León, R.A.T., López, M.M., Yanchaliquín, A., Morejón, I.FB. & Salguero, H.S. 2017. Antibacterial Effects of Uvilla (*Physalis peruviana* L.) extracts against *Listeria* spp. Isolated from Meat in Ecuador. *International Journal of Current Microbiology and Applied Sciences*, 6(4):1146-1153.
- Dahal, S. 2019. *Studies on Traditional Medicinal Plants of Sikkim*. Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Dahal, S. & Borthakur, S.K. 2017. Medicinal Plants Genetic Resources of Kyongnosla Alpine Sanctuary, Sikkim, India. *International Journal of Current Research*, 9(8): 5627-5628.
- Dahal, S., Sharma, T.P. & Borthakur, S.K. 2017a. Database on medicinal plants of Tamze Medicinal Plants Conservation Area (MPCA) of Sikkim Himalaya, India. *NeBIO*, 8:38-44.
- Danapur, V. & Venugopal, R.B. 2019. Pharmacognostic Studies on Curcuma Longa International Journal of Pharmacognosy and Chinese medicine, 3(2):1-5.
- Das, A.K., Choudhury, M.R. & Sharma, G.C. 2013. Medicinal Plants used by Koch Rajbangshi of North Salmara Subdivision, Bongaigaon, Assam, India. Our nature, 11(10):45-53.
- Das, A.K. & Tag, H. 2006. Ethnomedicinal studies of the Khampti Tribe of Arunachal Pradesh, *Indian Journal of Traditional knowledge*, 5(3):317-322.

- Das, A.K., Dutta, B.K. & Sarma, G.D. 2008. Medicinal plants used by different tribes of cachar district, Assam. *Indian Journal of Traditional Knowledge*, 7(3):446-454.
- Das, A.K. & Sharma, G.D. 2002. Ethno-medicinal plants used by Barman & Manipuri Community, Cachar District, Assam. *Journal of Economic and Taxonomic Botany*, 27(2):421-429.
- Das, D.M. & Singh, N. 2017. Medicinal value of indigenous foods consumed by the bodo people of Baksa district of Assam (India). *International Journal of Recent Scientific Research*, 8(11):21374-21377.
- Das, H.B., Majumdar, K., Dutta, B.K. & Roy, D. 2009. Ethnobotanical uses of some plants of Tripuri and Reang tribes of Tripura. *Natural Product Radiance*, 8(2):172-180.
- Das, J., Thapa, S., Pradhan, D., Thorat, S.S. & Talukdar, N.C. 2013. Intra-specific genetic diversity, phytochemical analysis and antioxidant activities of a potential Himalayan swertia (*Swertiabimaculata* Hook. f. & Thomas.). *Industrial Crops and Products*, 49: 341-347.
- Das, N., Goshwami, D., Hasan, M.S., Mahmud, Z.A. & Raihan, S.Z. 2016. Evaluation of antioxidant, antimicrobial and cytotoxic activities of *Terminalia citrina* Leaves. *Journal of Pharmacy Research*, 10(1): 8-15.
- Das, N.J., Saikia, S.P., Sarkar, S. & Devi, K. 2006. Medicinal plants of North Kamrup district of Assam used in primary health care system. *Indian Journal of Traditional Knowledge*, 5(4):487-493.
- Das, S. & Dutta Choudhury, M. 2010. Plants used against Gastro-Intestinal disorders and as Anti Hemorrhagic by three Tribes of North Tripura District, Tripura, India: A Report. *Ethnobotanical Leaflets*, 14:467-478.
- Das, S., Khan, M.L., Rabha, A. & Bhattacharjya, D.K. 2009. Ethnomedicinal plants of Manas National park, Assam, North East India. *Indian Journal of Traditional Knowledge*, 8(4): 514-517.
- Das,S. & Dutta Choudhury, M. 2012. Ethnomedicinal uses of some traditional medicinal plants found in Tripura, India. *Journal of Medicinal Plants Research*, 6(35): 4908-4914.
- Das, S.S., Maiti, A. & Rai, S.K. 2003. Traditional uses of plants among the urban population of Gangtok-Sikkim. *Journal of Economic and Taxonomic Botany*, 27(2): 317-324.
- Dasgupta, N. & De, B.2007. Antioxidant activity of some leafy vegetables of india: a comparative study. *Food Chemistry*, 101(2): 471-474.

- Dasgupta, N. &De, B. 2004. Antioxidant activity of *Piper betle* L. leaf extract in vitro. *Food Chemistry*, 2(88): 219-224.
- Daur, D.P. & Hajra, P.K. 1980. Observation on Ethnobotany of die Monpas of Kameng District Arunachal Pradesh. In S.K Jain (ed.) Glimpses of Indian Ethnobotany, 107-114. Oxford & IBH Publ. Co., New Delhi.
- Deb, D.B. 1957. Study of flora of Manipur. Bulletin of the Botanical Society of Bengal. Calcutta, 11(1): 151-224.
- Deba, F., Xuan, T.D., Yasuda, M. & Tawata, S. 2008. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from *Bidenspilosa* Linn. var. *Radiata*. *Food Control*, 19(4): 346-352
- Debbarma, M., Pala, N.A., Kumar, M. & Bussmann, R.W. 2017. Traditional knowledge of medicinal plants in tribes of Tripura in Northeast, India. *African Journal of Traditional, Complementary and Alternative Medicines*, 14(4):156-168.
- Devi, M.H. 2013. Macrophytes of KeibulLamjao National park Manipur with special reference to ethnobotanical notes. Ph.D. Thesis, Department of Life Science & Bioinformatics, Har Gobind Khorana School of Life Sciences, Assam University, Silchar, Assam, India.
- Devi, M.R. 2015. Ethnobotanical studies of the Kabui and Monsang Naga tribes of Manipur State. Ph.D. Thesis, Department of Ecology and Environment Science, E.P Odum School of Environmental Sciences, Assam University, Silchar, Assam, India.
- Devi, M.R., Singh, P.K. & Dutta, B.K. 2011a. Ethnobotanical plants of Kabui Naga tribe of Manipur, India. *Pleione*, 5(1):115-128.
- Dey, A. & De, J.N. 2012. Ethnobotanical survey of Purulia district, West Bengal, India for medicinal plants used against gastro intestinal disorders. *Journal of Ethnopharmacology*, 143:68-80.
- Dhalwal, K., Deshpande, Y.S., Purohit, A.P. & Kadam, S.S. 2005. Evaluation of the Antioxidant Activity of *Sidacordifolia*. *Pharmaceutical Biology*, 9(43):754-761.
- Dhamecha, D., Jalalpure, S. &Jadhav, K. 2016. Nepentheskhasiana mediated synthesis of stabilized gold nanoparticles: characterization and biocompatibility studies. Journal of Photochemistry and Photobiology B: Biology, 154:108-117.
- Dhungel, S., Joshi, P. &Pant, D. 2016. Antioxidant and antibacterial activities of fruit extracts of *Berberis* species from Nepal.*Botanica orientalis-journal of plant science*, 10: 6-11.

- Dias, A.M.A., Santos, S.P.,Seabra, I.J., Júnior, R.N.C., Braga, M.E.M. & Sousa, H. C. D. 2012. Spilanthol from *Spilanthesacmella* flowers, leaves and stems obtained by selective supercritical carbon dioxide extraction. *The Journal of Supercritical Fluids*, 61: 62-70.
- Dinda, G., Dipankar, H., Mitra, A., Pal, N., Vázquez, C.V. & Quintela, M.A.L. 2017. Study of the antibacterial and catalytic activity of silver colloids synthesized using the fruit of *Sapindus mukorossi. New Journal of* Chemistry, 41:10703-10711
- Diningrat, D.S., Risfandi, M., Harahap, N.S., Sari, A.N., Kusdianti & Siregar, H.K. 2020. Phytochemical Screening and Antibacterial Activity *Coixlacryma-jobi* Oil. *The Korean Society for Plant Biotechnology*, 47:100-106
- Divyanair, V., Panneerselvam, R., Gopi, R. & Hong-bo, S. 2013. Elicitation of pharmacologically active phenolic compounds from *Rauvolfiaserpentina* Benth. Ex. Kurtz. *Industrial Crops and Products*, 45: 406-415
- Dohare, S., Shuaib, M. & Naquvi, K.J.2011. In-vitro antioxidant activity of Asparagus racemosus roots. International Journal of Biomedical Research, 4(4):228-235.
- Duarte-Almeida, J.M., Salatino, A., Genovese, M.I. & Lajolo, F.M. 2011. Phenolic composition and antioxidant activity of culms and sugarcane (*Saccharum* officinarum L.) products. Food Chemistry, 2(125):660-664
- Duh, P., TU, Y.Y. & YEN, G.C. 1999. Antioxidant activity of water extract of harngjyur (*Chrysanthemum morifolium* Ramat).Lwt - food science and technology, 32(5): 269-277.
- Dutta, B. 2012. Ethnobotany of the Deories of Assam with special reference to phytochemical survey of some folklore medicinal plants. Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Dutta, D., Hazarika, P., Dutta, N.B. & Hazarika, P. 2018. Nutraceutical properties and antioxidant activity of *Garcinia kydia*Roxb., fruit found in Assam, India.*European Journal of Biomedical and Pharmaceutical Sciences*, 5(1): 573-578.
- Datta, S., Sinha, K., Bhattacharjee, S. & Seal, T. 2019. Nutritional composition, mineral content, antioxidantactivity and quantitativeestimation of water solublevitamins and phenolics by RP-HPLC in some lesser used wildedible plants. *Heliyon*, 5:1-37.
- Dutta Gupta, S. & Karmakar, A. 2017. Machine vision based evaluation of impact of light emitting diodes (leds) on shoot regeneration and the effect of spectral

quality on phenolic content and antioxidant capacity in *Swertiachirata.Journal* of *Photochemistry and Photobiology B: Biology*, 174:162-172.

- Duraipandiyan V. & Ignacimuthu, S. 2007. Antibacterial and antifungal activity of *Cassia fistula* L.: An ethnomedicinal plant. *Journal of Ethnopharmacology*, 112: 590-594.
- Ekor M. 2014. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. *Frontiers in Pharmacology*, 4:177.
- El-Bakry, A.A., Mostafa, H.A.M. & Alam, E.A. 2013. Antibacterial and antioxidant activities of seedlings of *Rumex vesicarius* L. (Polygonaceae). *Journal of Medicinal Plant Research*, 7(29): 2158-2164.
- Elekofehinti, O.O., Kamdem, J.P., Bolingon, A.A., Athayde, M.L., Lopes, S.R., Waczuk, E.P., Kade, I.J., Adanlawo, I.G. & Rocha, J.B.T. 2013. African eggplant (*Solanum anguivi* Lam.) fruit with bioactive polyphenolic compounds exerts *in vitro* antioxidant properties and inhibits Ca²⁺-induced mitochondrial swelling. *Asian Pacific Journal of Tropical Biomedicine*, 3(10):757-766.
- Emekaa, E.E., Ojiefoha, O.C., Aleruchi, C., Hassana, L.A., Christiana, O.M., Rebeccac, M., Darea, E.O. & Temitope, A.E. 2014. Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (*Ananascomosus*). *Micron*, 57:1-5.
- Erkan, E. 2012. Antioxidant activity and phenolic compounds of fractions from *Portulaca oleracea* L. *Food Chemistry*, 133(3): 775-781.
- Fatimah, I. & Aftrid, Z.H.V.I. 2019. Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (*Amaranthus Tricolor* L.) leaf extract. *Green Chemistry Letters and Reviews*, 1(12): 25-30
- Fisher, D. 2009. *Cholera in Zimbabwe*. Annals of the Academy of Medicine, Singapore. 38: 82.
- Frezza, C., Venditti, A., Toniolo, C., Vita, D.D., Serafini, I., Ciccòla, A., Franceschin, F., Ventrone, A., Tomassini, T., Foddai, S., Guiso, M., Nicoletti, M., Bianco, A. &Mauro, S. 2019. *Pedicularis* L. Genus: Systematics, Botany, Phytochemistry, Chemotaxonomy, Ethnopharmacology, and Other. *Plants*, 8(306): 1-26.
- Fu, M., Feng, H.J., Yu, C., De-bin, W. & Yang, G.Z.2012. Antioxidant activity of *Garcinia xanthochymus* leaf, root and fruit extracts *in vitro*. *Chinese Journal* of *Natural Medicines*, 10(2): 129-134.

- Gandhi, G.R.,Gnacimuthu, S. & Paulraj, M.G. 2011. *Solanum torvum* Swartz. fruit containing phenolic compounds shows antidiabetic AND antioxidant effects in streptozotocin induced diabetic rats. *Food and chemical toxicology*, 49(11):2725-2733.
- Garcia, J.A., Hille, J. & Goldbach, R. 1986. Transformation of cowpea *Vigna unguiculata* cells with an antibiotic resistance gene using a ti-plasmid-derived vector. *Plant Science*, 44: 37-46.
- Gavani, U. & Paarakh, P.M. 2008. Antioxidant Activity of *Hyptissuaveolens* Poit. *International Journal of Pharmacology*, 4:227-229.
- Ghimire, B.K., Seong, E.S., Kim, E.H., Ghimeray, A.K., Yu, C.Y., Ghimire, K. & Chung, I.M. 2011. A comparative evaluation of the antioxidant activity of some medicinal plants popularly used in Nepal. *Journal of Medicinal Plants Research*, 5(10): 1884-1891.
- Giamperi, L., Fraternale, D., Bucchini, A. &Ricci, D. 2004. Antioxidant activity of *Citrus paradisi* seeds glyceric extract. *Fitoterapia*,2(74): 221-224.
- Gogoi, A. 1997. *Ethnobotany of the tai Ahoms of upper Assam*. Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Gogoi, M., Barooah, M.S. & Dutta, M. 2020. Use of medicinal plants in traditional health care practices by tribes of Dhemaji district, Assam, India. *International Journal of Herbal Medicine*, 7(5):01-06.
- Gogoi, N., Gogoi, A., Neog, B. & Baruah, D. 2017. Antioxidant and hepatoprotective activity of fruit rind extract of Garcinia morella (Gaertn.) Desr. *Indian Journal* of Natural Products and Resources. 8(2):132-139.
- González-Alva, P.2018. Antibacterial Activity of Homeopathic Medications Lycopodium clavatum and Arsenicum album Against Periodontal Bacteria. Odovtos - International Journal of Dental Sciences, 20(2):71-79.
- Goswami, P., Soki, D., Jaishi, A., Das, M. & Sarma, H.N. 2009. Traditional healthcare practices among the Tagin tribe of Arunachal Pradesh. *Indian Journal of Traditional knowledge*, 8(1):127-30.
- Goyal, P., Chauhan, A. & Kaushik, P. 2009. Laboratory Evaluation of Crude Extracts of *Cinnamomumtamala* for Potential Antibacterial Activity. *Lectronic Journal* of Biology, 5(4):75-79.
- Goyeneche, R., Roura, S., Ponce, A., Vega-Gálvez, A., Quispe-Fuentes, I., Uribe, E. & Scala, K.D. 2015. Chemical characterization and antioxidant capacity of red radish (*Raphanus sativus* L.) leaves and roots. *Journal of Functional Foods*, 16:256-264.
- Grilo, C.M. 2006. Eating and weight disorders, Psychology Press, New York, 256.

- Guha, A., Chowdhury, S., Noatia, K. & Sen, D. 2018. Underutilized Plants of Tripura used as spices and ethnomedicinal purpose by manipuri community. *International Journal of Agriculture, Environment and Biotechnology*, 11(3):459-467.
- Gülçin, I., Küfrevioglu, O.I., Oktay, M. & Büyükokuroglu, M.E. 2004. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (*Urticadioica* L.). *Journal of Ethnopharmacology*, 90: 205-215.
- Gupta, A., Kumar, R., Ganguly, R., Singh, A.K., Rrana, H.K. & Pandey, A.K. 2021. Antioxidant, anti-inflammatory and hepatoprotective activities of *Terminalia bellirica* and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity. *Toxicology Reports*,8: 44-52.
- Gurnani, N., Gupta, M., Mehta, D. & Mehta, B.K. 2016. Chemical composition, total phenolic and flavonoid contents, and *in vitro* antimicrobial and antioxidant activities of crude extracts from red chilli seeds (*Capsicum frutescensL.*). *Journal of Taibah University for Science*, 4(10): 462-470.
- Gurumayum, S. & Soram, J.S. 2014 Some Anti-diarrhoeic and Anti-dysenteric Ethnomedicinal plants of Mao Naga Tribe Community of Mao, Senapati District, Manipur. *International Journal of Pure & Applied Bioscience*, 2(1):147-155.
- Gurung, B. 2002. *The Medicinal Plants of the Sikkim Himalaya*. Maples, Chakung, West Sikkim.
- Gupta, R.K., Bharati, L., Shakya, K.S., Regmi, B.K., Bajracharya, G.B. & Jha, R.M. 2017. In vitro and in vivo pharmacologicalo activities of the extracts of *Rheum nobile* Hook. F. &Thomsonrhizomes. *Indian journal of Natural Products and resources*, 8(3): 230-239.
- Habib, M.R., Aziz, M.A. & Karim, M.R. 2010. Inhibition of ehrlich's ascites carcinoma by ethyl acetate extract from the flower of *Calotropis gigantea* L. in mice. *Journal of applied biomedicine*. 8(1):47-54.
- Hafeezlaghari, A., Memon, S., Nelofar, A., Khan, K.M. & Yasmin, A. 2011. Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of *Chenopodium album*. *Food chemistry*, 126(4):1850-1855.
- Han, P., Huang, Y., Xie, Y., Yang, W., Xiang, W., Hylands, P.J. & Quigley, C.L. 2018. Metabolomics reveals immunomodulation as a possible mechanism for the antibiotic effect of *Persicariacapitata* (Buch.-Ham. ex D. Don) H.Gross. *Metabolomics*, 14(91):1-9.
- Haque, S.S., Rashid, M.M., Prodhan, M.A., Noor, S. & Das, A. 2014. In vitro evaluation of antimicrobial, cytotoxic and antioxidant activities of Crude

methanolic extract and other fractions of *Sterculia villosa* barks. *Journal of Applied Pharmaceutical Science*, 4(03):035-040.

- Hartatia, R., Sugandaa, A.G. &Fidriannya, I. 2014. Botanical, Phytochemical and Pharmacological Properties of *Hedychium* (Zingiberaceae) - A Review. *Procedia Chemistry*, 13:150-163
- Hatware, K.V., Sharma, S., Patil, K., Shete, M., Karri, S. & Gupta, G.2018. Evidence for gastroprotective, anti-inflammatory and antioxidant potential of methanolic extract of *Cordia dichotoma* leaves on indomethacin and stress induced gastric lesions in wistar rats.*Biomedicine & Pharmacotherapy*, 103: 317-325.
- Hazarika, I., Geetha, K.M., SivakamiSundari, P. &Madhu, D. 2019. Acute oral toxicity evaluation of extracts of *Hydrocotyle sibthorpioides* in Wister albino Rats as per OECD 425 TG. *Toxicology Reports*, 6: 321- 328.
- Hazarika, I., Mukundan, G.K., Sundari, P.S. &Laloo, D. 2021. Journey of *Hydrocotylesibthorpioides* Lam.: From traditional utilization to modern therapeutics-A review. *Phytotherapy Research*, 35:1847-1871.
- Hazra B.,Biswas, S. &Mandal, N. 2009. Antioxidant and free radical scavenging activity of Spondiaspinnata. BMC Complementary and Alternative Medicine, 8(1): 63.
- He, C.J., Ma, L.Q., Iqbal, M.S., Huang, X.J., Li, J., Yang, G.J & Ihsan, A. 2020. *Veratrillabaillonii* franch exerts anti-diabetic activity and improves liver injury through irs/pi3k/akt signaling pathways in type 2 diabetic *db/db* mice. *Journal* of functional foods, 75:10420.
- He, J.M. & Mu, Q. 2015. The medicinal uses of the genus Mahonia in traditional Chinese medicine: An ethnopharmacological, phytochemical and pharmacological review. *Journal of Ethnopharmacology*, 4(175):68-683.
- Heinrich, M., Rimpler, H. & Barrera, N.A. 1992. Indigenous phytotherapy of gastrointestinal ailments in a low land mixcommunity (Oaxaca, Mexico): Ethnopharmacologic evaluation. *Journal of Ethnopharmacology*, 36(1): 63-80.
- Hoque, N., Sohrab, M.H., Debnath, T. & Rana, M.S. 2016. Antioxidant, antibacterial and cytotoxic activities of various extracts of *Thysanolaena maxima* (Roxb) Kuntze available in Chittagong hill tracts of Bangladesh. *International Journal* of Pharmacy and Pharmaceutical Sciences, 7(8):168-172.
- Hsu, H.F., Hsiao, P.C., Kuo, T.C., Chiang, S.T., Chen, S.L., Chiou, S.J., Ling, X. H., Liang, M. T., Yicheng, W. & Houng, J.Y. 2016. Antioxidant and antiinflammatory activities of *Lonicera japonica* Thunb. var. *sempervillosa* hayata flower bud extracts prepared by water, ethanol and supercritical fluid extraction techniques.*Industrial crops and products*, 89: 543-549.

- Hussain, M.A., Khan, M.Q., Hussain, N. & Habib, T. 2011. Antibacterial and antifungal potential of leaves and twigs of *Viscum album L. Journal of Medicinal Plants Research*, 5(23): 5545-5549.
- Hussain, E.H.M.A., Jamil, K. & Rao, M. 2001. Hypoglycaemic, hypolipidemic and antioxidant properties of tulsi (*Ocimum sanctum* Linn.) on streptozotocin induced diabetes in rats. *Indian Journal of Clinical Biochenlistl*, 16(2):190-194.
- Hussain, P.R., Suradkar, P., Javaid, S. &Akram, H. 2016. Sadaf Parvez Influence of postharvest gamma irradiation treatment on the content of bioactive compounds and antioxidant activity of fenugreek (*Trigonella foenum-graceum* L.) and spinach (*Spinacia oleracea* L.) leaves. *Innovative Food Science and Emerging Technologies*, 33: 268-281.
- Ignacimuthu, S., Ayyanar, M. & Sankarasivaraman, K. 2008. Ethnobotanical study of medicinal plants used by Paliyartribals in Theni district of Tamil Nadu, India. *Fitoterapia*, 79(8): 562-568.
- Irfan, Y., Khan, Y.& Kumar H.S. 2011. Studyon anti-oxidant activity of unripe fruit of *Ficusglomerata* (Roxb.) using *in-vitro* models. *Free Radicals and Antioxidants*. 1(4): 69-74.
- Husain, N. & Kumar, A. 2015. Antioxidant Activity of Root of Achyranthes aspera and its Comparison with Melatonin in Recovery of Oxidative Stress. International Journal of Science and Research, 9(4): 881-884.
- Hynniewta, S.R. 2010. *Ethnobotanical Studies in Khasi Hills, Meghalaya*. Ph.D. Thesis, North Eastern Hill University, Shillong, Meghalaya, India.
- Hynniewta, S.R. & Kumar, Y. 2008. Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. *Indian Journal of Traditional Knowledge*, 7: 581-586.
- Imchen, K., & Jamir, N.S. 2011. Ethnomedicinal plants used by the Phom Naga tribe in Longleng district of Nagaland, India. *Pleione*, 5(1): 77-82.
- Imran, M., Khan, H., Shah, M. &Khan, R. 2010. Chemical composition and antioxidant activity of certain *Morus*species. *Journal of Zhejiang University Science*, 11(12): 973-980.
- Ishwori, L., Talukdar, A.D., Singh, P.K., Dutta Choudhury, M. & Nath, D. 2014. Antibacterial activity of some selected plants traditionally used as medicine in Manipur. *African Journal of Biotechnology*, 13(13):1491-1495.
- Islam, M.N., Kabir, M.S.H., Kader, S.M.A. & Hasan, M. 2016. Total phenol, total flavonoidcontent and antioxidant potential of methanol extract of

Boehmeriaplatyphylla D Don leaves. Chinese Journal of Natural Medicines, 5(5): 334-344.

- Iwashina, T. & Mizuno, T. 2020. Flavonoids and Xanthones from the Genus Iris: Phytochemistry, Relationships with Flower Colors and Taxonomy, and Activities and Function. Natural Product Communications, 15(10): 01-35.
- Jain, A., Ojha, V., Kumar, G., Karthik, L. & Rao, K.V.B. 2013. Phytochemical Composition and Antioxidant Activity of Methanolic Extract of *Ficusbenjamina* (Moraceae) Leaves.*Research Journal of Pharmacy and Technology*, 6(11): 1184-1189.
- Jain, P., Singh, S., Singh, S.K., Verma, S.K., Kharya, M.D. & Solanki, S. 2013. Anthelmintic potential of herbal drugs. *International Journal of Research and Development in Pharmacy and Life Sciences*, 2(3): 412-427
- Jain, P., Jain, S., Sharma, S. & Paliwal, S. 2018. Diverse application of *Phoenix* sylvestris: a potential herb. *Agriculture and Natural Resources*, 52(2): 107-114.
- Jain, P. & Hossain, K.F., Rashid, M.T. & Reza, H.M. 2014. Antioxidant and antibacterial activities of *Spondiaspinnata*Kurz. Leaves. *European Journal of Medicinal Plants*, 4(2):183-195
- Jaiswal, V. 2010. Cultures and ethnobotany of Jaintia tribal community of Meghalaya, Northeast India- A mini review. *Indian journal of traditional knowledge*, 9: 38-44.
- Jaitak, V., Sharma, K., Kalia, K., Kumar, N., Singh, H.P., Kaul, V.K. & Singh, B. 2010. Antioxidant activity of *Potentilla fulgens*: An alpine plant of western Himalaya. *Journal of Food Composition and Analysis*, 23:142-147.
- Jalal, J.S. & Garkoti, S.C. 2013. Medicinal plants used in the cure of stomach disorders in Kumaon Himalaya, Uttarakhand, India. Academia Journal of Medicinal Plants, 1(7): 116-121.
- Jaleel, C.A., Gopi, R., Lakshmanan, G.M.A. & Panneerselvam, R. 2006. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in *Catharanthus roseus* (L.) G. Don. *Plant Science*, 171(2): 271-276.
- Jamir, H.K., Tsurho, K. & Zhimomi, A. 2015. Some indigenous medicinal plants and its uses in Zunheboto district, Nagaland, *International Journal of Development Research*, 5(8): 5195-5200.
- Jamir, N.S. 2006. Indigenous knowledge of medicinal plants in the state of Nagaland. In: Proceeding on Horticulture for sustainable income and protection, 2: 677-683.

- Jamir, N.S., Lanusunep & Pongener, N. 2012. Medico-herbal medicine practiced by the Naga tribes in the state of Nagaland (India). *Indian Journal of Fundamental* and Applied Life Sciences, 2(2): 328-333.
- Jayakumari, S.R., Thiyagarajan, R., Devi, S., Loganayaki, S. & Abinaya A.K. 2018. Review on a herbal anticoagulant - Indian *Musa species*. *Drug Invention Today*, 10(3): 395-399.
- Jayaprakasha, G.K., Negi, P. & Jena, B.S. 2006. Antioxidative and antimutagenic activities of the extracts from the rinds of *Garcinia pedunculata*. *Innovative Food Science & Emerging Technologies*. 7(3): 246-250.
- Jaya, S. & Lamba, H.S. 2012. Antimicrobial activity of fruits of *Prunus armeniaca* (L.). Journal of Drug Delivery & Therapeutics, 2(4):163-166.
- Jayawardana, S., Hettiarachchi, C. & Gooneratne, J. 2021. Antimicrobial Properties of Ethanolic and Methanolic Extracts of Finger millet (*Eleusine coracana* (L.) Gaertn.) Varieties Cultivated in Sri Lanka. *International Journal of Multidisciplinary Studies*, 7(1): 78-94.
- Jeeva, S., mishra, B.P., Venugopal, N., Kharlukhi, L. & Laloo, R.C. 2006. Traditional knowledge and biodiversity conservation in the sacred groves of Meghalaya. *Indian journal of traditional knowledge*, 5(4): 563-568.
- Johnson, M., Wesely, E.G., Kavitha, M.S. & Uma, V. 2011. Antibacterial activity of leaves and inter-nodal callus extracts of *Mentha arvensis* L. Asian Pacific Journal of Tropical Medicine, 3(4):196-200.
- Joseph, G.S., Jayaprakasha, G.K., Selvi, A.T., Jena, B.S. & Sakariah, K.K. 2005. Antiaflatoxigenic and antioxidant activities of *Garcinia extracts*. *International Journal of Food Microbiology*, 101:153-160.
- Joshi, D., Nailwal, M., Mohan, L. & Melkani, A.B. 2018. Ligularia amplexicaulis (wall.) DC. Essential oil composition and antibacterial activity. Journal of Essential Oil Research, 30(3): 189-196.
- Joshi, R.K.2016. Acorus calamus Linn.: phytoconstituents and bactericidal property. World Journal of Microbiology and Biotechnology, 32(10):1-7.
- Joshi, S. & Sati, S.C. 2014. Screening of antibacterial potentiality of *Thalictrum foliolosum* leaves extracts. *Novus Natural Science Research*, 3(1):1-7.
- Kabra, A., Sharma, R., Hano, C.& Kabra, R.2019. Phytochemical composition, antioxidant, and antimicrobial attributes of different solvent extracts from *Myrica esculenta* Buch.-Ham. ex. D. Don leaves. *Biomolecules*, 9(8): 357.
- Kagyung, R., Gajurel, P.R., Retht, P. & Singh, B. 2009. Ethnomedicinal plants used for gastro-intestinal disease by *Adi* tribes of Dehang-Debang Biosphere

Reserve of Arunachal Pradesh. *Indian Journal of Traditional knowledge*, 9(3): 496-501.

- Kala, P.C. 2005. Ethnomedicinal botany of the Apatani in the Eastern Himalaya region of India. *Journal of Ethnobiology and Ethnomedicine*, 1:11
- Kar, A. & Borthakur, S.K. 2008. Medicinal plants used against dysentery, diarrhoea and cholera by the tribe of erstwhile Kameng district of Arunachal Pradesh. *Natural Product Radiance*, 7(2): 176-181.
- Kar, P., Dutta, S., Chakraborty, A.K., Roy, A., Sen, S., Kumar, A., Lee, J., Chaudhuri, T.K. & Sen, A. 2019. The antioxidant rich active principles of *Clerodendrum* sp. controls haloalkane xenobiotic induced hepatic damage in murine model. *Saudi Journal of Biological Sciences*, 26(7):1539-1547.
- Karuna, D.S., Dey, P., Das, S., Kundu, A. & Bhakta, T. 2018. In vitro antioxidant activities of root extract of Asparagus racemosus Linn. Journal of traditional and complementary medicine, 8(1):60-65.
- Kasper, D.L., Braunwald, E., Hauser, S., Longo, D., Jameson, J.L. & Fauci, A.S. 2005. *Harrison's principles' of internal medicine*, (McGraw- Hill medical publishing division, New York) 1746-1762.
- Kaur, R. & Arora, S. 2009. Chemical constituents and biological activities of *Chukrasia tabularis* A. Juss.-A review. *Journal of Medicinal Plant Research*, 3(4):196-216.
- Kaurinovic, B., Popovic, M., Vlaisavljevic, S. & Trivic, S. 2011. Antioxidant Capacity of Ocimum basilicum L. and Origanum vulgare L. Extracts. Molecules, 16(9): 7401-7414.
- Kaushal, A., Sharma, M., Navneet & Sharma, M. 2020. Ethnomedicinal, phytochemical, therapeutic and pharmacological review of the genus *Erythrina. International Journal of Botany Studies*. 5(6): 642-648.
- Kayang, H., Kharbuli, B., Myrboh, B. & Syiem, D. 2005. Medicinal Plants of Khasi Hills of Meghalaya, India. Acta Horticulture, 1: 675-680.
- Keawsa-ard, S., Natakankitkul, S., Liawruangrath, S. & Teerawutgulrag, A. 2012. Anticancer and antibacterial activities of the isolated compounds from *Solanum spirale* Roxb. leaves. *Chiang mai journal of science*, 39(3): 445-454.
- Kedia S. & Ahuja V. 2017. Epidemiology of Inflammatory Bowel Disease in India: The Great Shift East. *Inflammatory Intestinal diseases*, 2: 102-115.
- Khan, M.H. & Yadava, P.S. 2010. Herbal remedies of asthma in Thoubal district of Manipur in Northeast India. *Indian Journal of Natural Products and Resources*, 1(1): 80-84.

- Khan, M.R. & Omoloso, A. D. 2008. Antibacterial and antifungal activities of Angiopterisevecta. *Fitoterapia*, 79(5): 366-369.
- Khumbongmayum, A.D., Khan, M.L. & Tripathi, R.S. 2005. Ethnomedicinal plants in the sacred grooves of Manipur. *Indian Journal of Traditional Knowledge*, 4: 21-32.
- Konwar, T., Hazarika, P.P. & Bora, R.L. 2020. Traditional use of some Ethnomedicinal plants by Ahom community in Chengalijan village of Dibrugarh district, Assam, India. *Plant Archives*, 20(2): 8050-8058.
- Kuete, V., Teponno, R.B., Mbaveng, A.T. & Tapondjou, A.L. 2012. Antibacterial activities of the extracts, fractions and compounds from *Dioscoreabulbifera*. *BMC Complementary and Alternative Medicine*, 12(1): 228.
- Khan, H.M. 2005. *Study of Ethnobotanical plants in Thoubal District of Manipur*. Ph.D. Thesis, Manipur University, Imphal, Manipur, India.
- Khan, M.H. & Yadava, P.S. 2010. Herbal remedies of asthma in Thoubal district of Manipur, Northeast India. *Indian Journal of Natural products and Resources*, 1(1): 80-84.
- Khatun, A., Rahman, M., Kabir, S. & Akter, M.N. 2013. Phytochemical and pharmacological properties of the methanolic extract of *Ardisia humilis*Vahl. 4(1): 38-41.
- Khatoon, R. 2014. Ethnobotanical study of the Kom tribe of Manipur India. Ph.D. Thesis, Department of Ecology and Environment Science, E.P Odum School of Environmental Sciences, Assam University, Silchar, Assam, India.
- Khongsai, M., Saikia, S.P. & Kayang, H. 2011. Ethnomedicinal plants used by different tribes of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 10(3): 541-546.
- Kilani-Jaziri, S., Bhouril, W., Skandranil, I., LimemL, I., Chekir-GhediraK, L. & Ghedir, K. 2011. Phytochemical, antimicrobial, antioxidant and antigenotoxic potentials of *Cyperusrotundus*extracts. *South African Journal of Botany*, 3(77): 767-776.
- Lawrence, R. &Lawrence, K. 2011. Antioxidant activity of garlic essential oil (Allium Sativum) grown in north Indian plains. Asian Pacific Journal of Tropical Biomedicine, 1(1):S51-S54
- Kima, D.I., Leeb, S.H., Choia, J.H., Lillehojb, H.S., Yud, M.H. & Lee, G.S. 2008. The butanol fraction of *Ecliptaprostrata* (Linn) effectively reduces serum lipid levels and improves antioxidant activities in CD rats. *Nutrition Research*, 28: 550-554.

- Kim, D.I., Lee, S.H., Choi, J.H., Lillehoj, H.S., Yu, M.H. & Lee, G.S. 2008. The butanol fraction of *Ecliptaprostrata* (linn) effectively reduces serum lipid levels and improves antioxidant activities in cd rats. *Nutrition Research*,28(8): 550-554.
- Kishor, A., Pokhrel, H., Maharjan, L., Bhattarai, B., Tirtha, P.K., Shrestha, M. & Gyawali, R. 2011. Comparative Study of Antibacterial and Cytotoxic Activity of Two Nepalese Medicinal Plants- *Allium wallichii*Kunth and *Allium sativum* L. *International Journal of Pharmaceutical & Biological Archives*, 2(5): 1539-1543.
- Krishnaraj, M., Manibhushanrao, K. & Mathivanan N. 2008. Antibacterial activity of crude rhizome extract of *Curcuma caesia*Roxb.*Procedia - Social and Behavioral Sciences*, 12(3): 280-282.
- Krupashree, K., Kumar, K.H., Rachitha, P., Jayashree, G.V. & Khanum, F. 2014. Chemical composition, antioxidant and macromolecule damage protective effects of *Picrorhiza kurroa* Royle ex Benth. *South African Journal of Botany*,94: 249-254.
- Kumar, M.B.S., Kumar, M.C.R., Bharath, A.C., Kumar, H.R.V., Kekuda, T.R.P., Nandini, K.C., Rakshitha, M.N. & Raghavendra, H.L. 2010. Screening of selected biological activities of *Artocarpuslakoocha*Roxb. (moraceae) fruit pericarp. *Journal of Basic and Clinical Pharmacy*, 4(1): 239-245.
- Kumar, P.P.N.V., Pammi, S.V.N., Kolluc, P., Satyanarayana, K.V.V. & Shameem, U. 2014. Green synthesis and characterization of silver nanoparticles using *Boerhaavia diffusa* plant extract and their antibacterial activity. *Industrial Crops and Products*, 52: 562-566.
- Kota, S., Govada, V.R. &Verma, M.K. 2017. An investigation into phytochemical constituents, antioxidant, antibacterial and anti-cataract activity of *Alternanthera sessilis*, a predominant wild leafy vegetable of south india. *Biocatalysis and Agricultural Biotechnology*, 10:197-203.
- Kom, L.E., Tilotama, K., Singh, T.D., Rawat, A.K.S. & Thokchom, D.S. 2018. Ethno-medicinal plants used by the Kom community of Thayong village, Manipur. *Journal of Ayurvedic and Herbal Medicine*, 4(4): 171-179.
- Kontogianni, V.G., Tomic, G., Nikolic, I., Nerantzaki, A.A., Sayyad, N., Grujicic, S.S., Stojanovic, I., Gerothanassis, I.P. & Tzakos, A.G. 2013. Phytochemical profile of Rosmarinus officinalis and *Salvia officinalis* extracts and correlation to their antioxidant and anti-proliferative activity. *Food Chemistry*, 1(136): 120-129

- Korkmaz, M., Karakus, S., Ozcelik, H. & Selvi, S. 2016. An ethnobotanical study on medicinal plants in Erzincan, Turkey. *Indian Journal of Traditional Knowledge*, 15:192-202.
- Köse, L.P.,Gülçin, İ., Gören, A.C.,Namiesnik, J., Ayala, A.L.M. & Gorinstein, S. 2015. LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (*Alpinia officinarum* Hance) rhizomes. *Industrial Crops and Products*,74: 712-721.
- Kumar, A., Bidyapani, T., Digvijay, S., Sharma, N.R. & Mohan, A. 2017. Study of phytochemical compositions of leaves extracts of *Phlogacanthusthyrsiformis*, its antibacterial and silver nanoparticle derived cell cytotoxicity on HeLa cell line. *Journal of Pharmacy Research*, 11(12): 1513- 1517.
- Kumar, B.S.A., Lakshman, K., Nandeesh, R., Kumar, P.A.A., Manoj, B., Kumar, V. & Shekar, D.S. 2011. *In vitro* alpha-amylase inhibition and *in vivo* antioxidant potential of *Amaranthus spinosus* in alloxan-induced oxidative stress in diabetic rats. *Saudi Journal of Biological Sciences*, 18(1):1-5
- Kumar, R.S., Sivakumar, T., Sundaram, R.S., Sivakumar, P., Nethaji, R., Gupta, M. & Mazumdar, U.K. 2006. Antimicrobial and Antioxidant Activities of *Careyaarborea*Roxb. Stem Bark. *Iranian journal of pharmacology & therapeutics*, 1(5): 35-41.
- Kumar, R.A., Rajkumar, V., Guha, G. & Mathew, L. 2010. Therapeutic Potentials of Oroxylumindicum Bark Extracts. Chinese Journal of Natural Medicines, 8(2): 0121-0126.
- Kumar, S., Kumar, V. & Prakash, O. 2011.Antidiabetic, hypolipidemic and histopathological analysis of *Dilleniaindica* (L.) leaves extract on alloxan induced diabetic rats.*Asian Pacific Journal of Tropical Medicine*, 5(4): 347-352.
- Kumari, A., Yadav, S.K., Pakade, Y.B., Kumar, V., Singh, B., Chaudhary, A. &Chandrayadav, S. 2011. Nanoencapsulation and characterization of *Albizia chinensis* isolated antioxidant quercitrin on pla nanoparticles. *Colloids and Surfaces B: Biointerfaces*, 82(1): 224-232.
- Kumari, E.V.N. & Krishnan, V. 2016. Antimicrobial activity of *Alternanthera sessilis*(L) R. Br. Ex. DC and *Alternanthera philoxeroides* (Mart). Griseb. World Journal of Research and Review, 3(3): 78-81.
- Lalawmpuii, L. & Tlau, L. 2021. *Begonia roxburghii*: A potentially important medicinal plant. *Science vision*, 1(21): 22-25.
- Laloo, R.C., Kharlukhi, S., Jeeva, S. & Mishra, B.P. 2006. Status of medicinal plants in the disturbed and the undisturbed sacred forest of Meghalaya, Northeast

India: Population structure and regeneration efficacy of some important species. *Current Science*, 90: 225-232.

- Lalramnghinglova, H. 1998. *Studies on plants of ethnobotanical importance in the tropical wet evergreen forests of Mizoram*. Ph.D. Thesis, Forestry Department, North Eastern Hill University, Shillong, Meghalaya, India.
- Lalramnghinglova, H. 2003. State-of-the-Art Report on Ethno medicines and their plant resources in Mizoram. Ethnomedicime of North East India, processing of National seminar on traditional knowledge based on herbal medicines and plant resources of North East India, protection, utilization and conservation, Guwahati, Assam, 2001, Singh, G., Singh, H.B. and Mukherjee, T.K., National Institute of Science Communications and Information Research.
- Laloo, D. & Hemalatha, S. 2011. Ethnomedicinal plants used for diarrhea by tribals of Meghalaya, Northeast India. *Pharmacognosy Reviews*, 5(10): 147-154.
- Lalruatfeli, Kakoti, B.B. & Deka, K. 2019. Home grown Ethnomedicinal plants of Mizoram: A review. *International Journal of Research in Pharmacy and Pharmaceutical Sciences*, 4(3): 21-25.
- Lama, Y.C., Ghimire, S.K. & Aumeeruddy-Thomas, Y. 2001. Medicinal Plants of Dolpo: Amchis' Knowledge and Conservation. Kathmandu, Nepal: Worldwide Fundfor Nature Conservation (WWF) Nepal.
- Lawarence, B. & Murugan, K. 2017. Comprehensive Evaluation of Antioxidant Potential of Selected *Osbeckias*pecies and their in vitro Culture, Purification and Fractionation. *Pharmacognosy Journal*, 9(5): 674-682.
- Lea, N. & Limasenla. 2020. Traditional knowledge of medicinal plants used by the Chakhesang Naga tribe in Phek District of Nagaland, India. *Pleione*, 14(2): 237-247
- Lee, J., Dossett, M. & Finn, C.E. 2012. *Rubus*fruit phenolic research: The good, the bad, and the confusing. *Food Chemistry*, 4(130): 785-796.
- Lee, J.H., Park, K.H., Lee, M.H., TaeKim, H., Seo, W.D., Kim, J.Y., Baek, I.U., Jang, D.S. & Ha, J.T. 2013. Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (*Perilla frutescens*) cultivars. *Food Chemistry*, 136(2): 843-852.
- Lei, J., Yao, N. &Wang, K.W. 2013. Phytochemical and chemotaxomic study on Polygonum perfoliatum L.Biochemical Systematics and Ecology, 48: 186-188.
- Lepcha, D.W., Chhetri, A. & Chhetri, D.R. 2019. Antioxidant and cytotoxic attributes of *Paris polyphylla* smith from sikkimhimalaya. *Pharmacognosy journal*, 11(4): 705-711.

- Lepcha, T.T., Pradhan, P., Gaira, K.S., Badola, H.K., Shahid, M. & Singh, M. 2019. Ethnomedicinal use of plants by Bhutia Tribe in Sikkim Himalaya. *Proceedings of 1st Himalayan Researchers Consortium*, 1: 71-78.
- Liu, W., Wang, J., Zhang, J., Z., Xie, Z.,Slavin, M. & Gao, X.2014. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctiumlappa L. International Journal of Biological Macromolecules, 65: 446-453.
- Lima, C.C., Lemos, R.P.L. & Conserva, C.M. 2014. Dilleniaceae family: an overview of its ethnomedicinal uses, biological and phytochemical profile. *Journal of Pharmacognosy and Photochemistry*, 3(2): 181-204.
- Liu, X., Cui, C., Zhao, M., Wang, J., Luo, W., Yang, B. & Jiang, Y. 2008. Identification of phenolics in the fruit of emblica (*Phyllanthus emblica* L.) and their antioxidant activities. *Food Chemistry*, 109: 909-915.
- Li, W.R., Shi, Q.S. & Qing, L. 2014. Antibacterial activity and kinetics of *Litseacubeba* oil on *Escherichia coli*. *PLoS ONE*, 9(11):e110983.
- Lingaraju, D.P., Sudarshana, M.S., Mahendra, C. & Ra, K.P. 2016. Phytochemical screening and antimicrobial activity of leaf extracts of *Eryngium foetidum* L. (Apiaceae).*Indo American Journal of Pharmaceutical Research*, 2(6): 4339-4344.
- Loizzo, M.R., Pugliese, A., Bonesi, M., Menichini, F. & Tundis, R. 2015. Evaluation of chemical profile and antioxidant activity of twenty cultivars from *Capsicum annuum*, *Capsicum baccatum*, *Capsicum chacoense* and *Capsicum chinense*: a comparison between fresh and processed peppers. *LWT - Food Science and Technology*, 64(2): 623-631.
- Lu, C.H., Yang, C.H., Chang, W.L., Chang, Y.P. & Wu, C.C. 2012. Hsieh, S.L. Development of beverage product from *Gynura bicolor* and evaluation of its antioxidant activity.

Genomic Medicine, Biomarkers and Health Sciences, 4(4):131-135.

- Luan, Y., Ili, Y., Yue, X., Cao, Y., Xiang, E., Mao, D. & Xiong, Z. 2019. Metabonomics of mice intestine in *Codonopsis foetens* induced apoptosis of intestine cancer cells. *Saudi Journal of Biological Sciences*, 26(5): 1003-1010.
- Lu, C. & Li, X. 2019. A Review of *Oenanthe javanica* (Blume) DC. as Traditional Medicinal Plant and Its Therapeutic Potential. *Evidence-Based Complementary* and Alternative Medicine, 3:1-17
- Lu, C.H., Yang, C.H., Chang, W.L., Chang, P.Y., Wu, C.C. & Hsieh, S.L. 2012. Development of beverage product from *Gynura bicolor* and evaluation of its

antioxidant activity. *Genomic Medicine, Biomarkers, and Health Sciences*, 4(4): 131-135.

- Madikizela, B., Ndhlala, A.R., Finnie, J.F. & Van Staden, J. 2012. Ethno pharmacological study of plants from Pondolan used against diarrhea. *Journal of Ethnopharmacology*, 14(1): 61-71.
- Mahida, Y. & Mohan, J.S.S. 2006. Screening of Indian Plant Extracts for Antibacterial Activity. *Pharmaceutical Biology*, 44(8): 627-631.
- Maikhuri, R.K. & Gangwar, A.K. 1993. Ethnobiological notes on the Khasi and Garo tribes of Meghalaya, Northeast India. *Economic Botany*, 47: 345-357.
- Malewska, T., Kichu, M., Barnes, B.C., Cheung, W.L., Brophy, J.J., Imchen, I., Vemulpad, S. & Jamie, J.F. 2018. Antimicrobial properties of plants of Chungtia village used customarily to treat skin related ailments: From antimicrobial screening to isolation of active compounds. *Academia Journal of Biotechnology*, 6(10):144-162.
- Mamidala, E. & Prasad, G.R. 2013. phytochemical and antimicrobial activity of *Acmellapaniculata* plant extracts. *Journal of Bio Innovation*, 2(1):17-22.
- Manandhar, N.P. 2002. Plants and people of Nepal, Timber Press, Portland, USA.
- Manasa, D.J., Chandrashekar, K.R., Kumar, M., Niranjana & Navada, K.M. 2021. *Mussaendafrondosa* L. mediated facile green synthesis of Copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations. *Arabian Journal of Chemistry*, 6(14):1-16.
- Mandal, P., Misra, T.K. &Basu, P.K. 2009. In vitro antioxidant potential of *Astilberivularis* rhizome. *Canadian journal of pure and applied science*, 193: 649-654.
- Mandal, M., Paul, S., Uddin, M.R. & Monadal, M. 2016. In vitro antibacterial potential of *Hydrocotylejavanica*Thunb.*Asian Pacific Journal of Tropical Disease*, 6(1): 54-62.
- Mandal, D., Panda, A.K. & Rana, M. 2013. Medicinal Plants Used in Folk Medicinal Practice Available in Rich Biodiversity of Sikkim. *Environment and Ecology*, 31(3A):144-149.
- Mao, A.A. 1993. A premilinary report on the folklore botany of Mao Nagas of Manipur (India). *Ethnobotany*, 5(1 & 2):143-147.
- Mao, R., Li, W., He, Z., Bai, Z., Xia, P., Liang, Z. &Liu, Y. 2019. Physiological, transcriptional, and metabolic alterations in spaceflight-subjected Senna obtusifolia. Plant Physiology and Biochemistry, 139: 33-43.

- Majumdar, K., Saha, R., Datta, B.K. & Bhakta, T. 2006. Medicinal plants prescribed by different tribal and non-tribal medicine men of Tripura state. *Indian Journal of traditional knowledge*. 5(4): 559-562.
- Majumdar, K. & Dutta, B.K. 2006. A study on Ethnomedicinal usage of plants among the folklore herbalists and Tripuri medical practitioners: Part-II. *Natural Product Radiance*, 6(1): 66-73.
- Majumdar, K. & Dutta, B.K. 2007. A study on Ethnomedicinal usage of plants among the folklore herbalists and Tripuri medicinal practitioners. Part I. *Natural Product Radiance*, 6(1): 66-73.
- Manoj, K.S., Machavarapu, M. & Vangalapati, M. 2013. Antibacterial activity of methanolic extracts of *Zephyranthes candida*. *Asian journal of pharmaceutical* and clinical research, 6: 112-113.
- Marak, N.M. 2018. Ethno medicinal plants in west Garo hills district in Meghalaya. Ph.D. Thesis, Department of Forestry school of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, India.
- Maria, N., Ribeiro, G. & Ingridy, S. R. 2014. Phytochemical profile and antioxidant and antimicrobial activities of hydroethanolic extracts of *Ficuspumila*. African Journal of Microbiology Research, 8(28): 2665-2671.
- Mariod, A., Ibrahim, R.M., Ismail, M. & Ismail, N. 2012. Antioxidant activity of phenolic extracts from kenaf (*Hibiscus Cannabinus*) seedcake. *Grasas y Aceites*, 63(2):167-174.
- Mary, R.N.I. & Banu, N. 2015. Screening of antibiofilm and anti-quorum sensing potential of *Vitex trifolia* in *Pseudomonas aeruginosa*. *International Journal of Pharmacy*, 7(8): 242-245.
- Medak, B. & Singha, L.B. 2018. Trace elements and antioxidant activity of six wild edible plants that are widely consumed by ethnic tribes of Arunachal Pradesh, India. *Indian Journal of Aegriculture*, 52(1): 85-88.
- Medeiros, J.M.R.D., Macedo, M., Contancia, J.P., Nguyen, C., Cunningham, G. & Miles, D.H. 2000. Antithrombin activity of medicinal plants of the Azores. *Journal of Ethnopharmacology*, 72(1-2):157-165.
- Megoneitso & Rao, R.R. 1983. Ethnobotanical studies in Nagaland: Sixty-two medicinal plants used by AngamiNagas. *Journal of economic and taxonomic botany*, 4 (1): 167-172.
- Mengiste, B., Yesufn, J.M. & Getachew, B. 2014. In-vitro antibacterial activity and phytochemical analysis of leaf extract of *Verbena officinalis*. *International journal of pharmacognosy*, 1(12): 774-779.

- Merecz-Sadowska, A., Sitarek, P., Kucharska, K., Kowalczyk, T., Zajdel, K., Nski, T.C. & Zajdel, R. 2021. Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. *Antioxidants*, 10(726):1-26.
- Miranda, M., Maureira, H. & Katia, R. & Vega-Gálvez, A. 2009. Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of *Aloe vera* (*Aloe Barbadensis* Miller) gel. *Journal of Food Engineering*, 91: 297-304.
- Mishra, V.K., Passari, A., Vanlalhmangaihi, K. & Kumar, N.S. 2015. Antimicrobial and antioxidant activities of *Blumealanceolaria* (Roxb.). *Journal of Medicinal Plant Research*, 9(4): 84-90.
- Mistry, K., Mehta, M., Mendpara, N., Gamit, S. & Shah, G. 2010. Determination of Antibacterial Activity and MIC of Crude Extract of *Abrusprecatoryus* L. *Advanced Biotech*, 2(10):15-27.
- Mishra, P., Sohrab, S. & Mishra, S.K. 2021. A review on the phytochemical and pharmacological properties of *Hyptissuaveolens* (L.) Poit.*Future Journal of Pharmaceutical Sciences*,7(65):1-11.
- Mishra, S., Srivastava, S., Tripath, R.D., Govindarajan, R., Kuriakose, S.V. & Prasad, M.N.V. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in *Bacopa monnieri* L. *Plant Physiology and Biochemistry*, 44(1): 25-37.
- Mojab, F., Kamalinejad, M., Ghaderi, N. & Vahidipour, H.R. 2003. Phytochemical Screening of Some Species of Iranian Plants. *Iranian Journal of Pharmaceutical Research*, 2(2): 77-82.
- Mondal, T. & Samanta, S. 2014. An ethnobotanical survey on medicinal plants of Ghatal block, West Midnapur District, West Bengal, India. *International Journal of Current Research in Bioscience and Plant Biology*, 1: 35-37.
- Monlai, S. 2013. *Diversity and distribution of Ethno medicinal plants in Lohit and Anjaw districts of Arunachal Pradesh.* Ph.D. Thesis, Department of Botany, Mizoram University, Mizoram, India.
- Mudoi, T., Deka, D.C. & Devi, R. 2012. In vitro antioxidant activity of *Garcinia pedunculata*, an indigenous fruit of North Eastern (NE) region of India. *International Journal of Pharm Tech Research*, 4(1): 334-342.
- Muhammada, H., Qasimb, M., Ikrama, A., Versiania, M.A., Tahiria, I.A., Yasmeena, K., Abbasic, M.W., Azeemc, M., Alia, S.T. & Gul, B. 2020. Antioxidant and antimicrobial activities of *Ixora coccinea* root and quantification of phenolic compounds using HPLC. *South African Journal of Botany*,135: 71-79.

- Murugan, M. & Mohan, V.R. 2011.Evaluation of phytochemical analysis and antibacterial activity of *Bauhinia purpurea* L. and *Hiptage benghalensis* L. Kurz. *Journal of applied pharmaceutical science*, 01(9): 157-160.
- Mukherjee, H., Ojha, D., Bharitkar, Y.P., Ghosh, S., Mondal, S.,Kaity, S., Dutta, S.,Samanta, A., Chatterjee, T.K., Chakrabarti, S., Mondal, N.B. & Chattopadhyay, D. 2013. Evaluation of the wound healing activity of *Shorearobusta*, an indian ethnomedicine, and its isolated constituent(s) in topical formulation. *Journal of Ethnopharmacology*, 149(1): 335-343.
- Muniyandi, K., George, E., Sathyanarayanan, S., George, B.P., Abrahamse, H., Thamburaj, S. & Thangaraj, P. 2019. Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of rubus fruits from Western Ghats, India. *Food Science and Human Wellness*, 1(8): 73-81.
- Myrchiang, F.B., Lamare, R.E. & Singh, O.P. 2020. Ethno-medicinal plants in Nongtalang, Meghalaya: their uses and threats. *ENVIS Bulletin Himalayan Ecology*, 26:75-82.
- Murtem, G. & Chaudhry, P. 2016. An ethnobotanical study of medicinal plants used by the tribes in upper Subansiri district of Arunachal Pradesh, India. *American Journal of Ethnomedicine*, 3(3): 35-49.
- Nadègea, K.E., Sylvianec, D.N.M., Agathea, F.L., Clarissed, M.O.F., Germaina, T.S., Davidb, P.B., Simona, P., Stephanieb, N.K.J. & Elisabeth, N.B. 2017. Antioxidant properties of *Dichrocephalaintegrifolia* (Asteraceae) in a mouse model of monosodium glutamate-induced neurotoxicity. *African Journal of Traditional, Complementary and Alternative Medicines*, 14(5):147-155.
- Nagati, B.V., Koyyati, R., Donda, M.R., Alwala, J., Kundle, K.R. & Padigya, P.R.M. 2012. Green Synthesis and characterization of Silver nanoparticles from *Cajanuscajan* leaf extract and its antibacterial activity. *International Journal of Nanomaterials and Biostructures*. 2(3): 39-43.
- Nahannu, M.S., Umar, S.I., Abdullahi, A.D. & Hassan, J.M. 2018. Phytochemical Screening of the Ethanolic Leaves and Root Extract of *Scopariadulcis*. *International Journal of Environmental Chemistry*, 2(2): 39-42.
- Naik,G.H., Priyadarsini, K.I., Naik,D.B.,Gangabhagirathi, R. & Mohan, H. 2004. Studies on the aqueous extract of *Terminalia chebula* as a potent antioxidant and a probable radioprotector. *Phytomedicine*, 11(6): 530-538.
- Naik, S.K., Mohanty, S., Padhi, A., Pati, R. & Sonawane, A. 2014. Evaluation of antibacterial and cytotoxic activity of *Artemisia nilagirica* and *Murraya*

koenigii leaf extracts against mycobacteria and macrophages. *Complementary* and Alternative Medicine, 14(87):1-10.

- Naldarine, M.M. & Lalnundanga. 2017. Indigenous knowledge on medicinal plants used for treating diarrhoea and dysentery among the Garo community, Meghalaya (North east India). *Journal of Natural Products and Plant Resources*, 7(4):29-36.
- Naldarine, M.M. & Lalnundanga. 2018. Enumeration of ethno-medicinal plants in Rongram block of West Garo Hills District, Meghalaya. *Science Vision*, 18(1): 16-21.
- Namsa, N.D., Mandal, M., Tangjang, S. & Mandal, S.C. 2011. Ethnobotany of the Monpa ethnic group at Arunachal Pradesh, India. *Journal of Ethnobiology and Ethnomedicine*, 14: 7-31.
- Nandankunjidam, S. 2006. Some interesting medicaments from traditional medical practitioners of Karaikal region, Pondicherry. *Journal of Economic and Taxonomic Botany*. 30(2): 449-452.
- Narender, B.R., Rajakumari, M., Khan, S., Sukanya, S. & Harish, S. 2017. Antimicrobial activity of dolichos bean (*Dolichus lablab*) flower. *Journal of Scientific Research in Pharmacy*, 6(12):153-156.
- Nasar, S., Murtaza, G., Mehmood, A. & Bhatti, T.M. 2017. Green approach to synthesis of silver nanoparticles using *Ficuspalmata* leaf extract and their antibacterial profile. *Pharmaceutical Chemistry Journal*, 9(51): 811-817.
- Nasri, H. & Shirzad, H. 2013. Toxicity and safety of medicinal plants. *Journal of Herbmed Pharmacology*, 2(2): 21-22
- Natesan, S., Badami, B., Dongre, S.H. & Godavarth, A. 2007. Antitumor activity and antioxidant status of the methanol extract of *Careya arborea* bark against dalton's lymphoma ascites-induced ascitic and solid tumor in mice. *Journal of Pharmacological Sciences*, 103:12-23.
- Nath, K.K. 2001. *Medicoethnobotany of Darrang district Assam*. Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Negi, J. S., Singh, P., Joshi, G.P., Rawat, M.S. & Bisht, V.K. 2010. Chemical constituents of *Asparagus.Pharmacological Reviews*,4(8): 215-220.
- Negi, J.S., Bisht, V.K., Bhandari, A.K. & Bisht, R.S. 2012. Major constituents, antioxidant and antibacterial activity of *Zanthoxylumarmatum* DC. essential oil. *Iranian Journal of Pharmacology and Therapeutics*, 11: 66-72.
- Neogi, B., Prasad, M.N. & Rao, R.R. 1989. Ethnobotany of some weeds of Khasi and Garo Hills, Meghalaya, Northeastern India. *Economic Botany*, 43: 471-479.

- Nessa, F., Ismail, Z., Mohamed, N. & Masharis, M.R.H. 2004. Free radicalscavenging activity of organic extracts and of pure flavonoids of *Blumea balsamifera* dc leaves. *Food Chemistry*, 88(2): 243-252
- Ngente, L. 2012. Phytochemical investigation of selected ethno medicinal plants of Mizoram. Ph.D. Thesis, Department of Botany, Mizoram University, Mizoram, India.
- Nisha, S., Itanil, R. & Khanal, D.P. 2016. Pharmacognostic, phytochemical, antioxidant and antibacterial activitty studies on *Begonia picta*. *World journal of pharmaceutical research*,5(1): 979-997.
- Nonibala, K. 2015. Ethno-medico botanical aspect of Kukis of Senapati district of Manipur. Ph.D. Thesis, Department of Life Science & Bioinformatics, Har Gobind Khorana School of Life Sciences, Assam University, Silchar, Assam, India.
- Nyamath, N. & Karthikeyan, B. 2018. In vitro antibacterial activity of lemongrass (*Cymbopogon citratus*) leaves extract by agar well method. *Journal of Pharmacognosy and Phytochemistry*, 7(3):185-1188.
- Ochoa, S., Zuleta, M.M.D. & Osorio-tobón, J.F. 2020. Techno-economic evaluation of the extraction of anthocyanins from purple yam (*Dioscoreaalata*) using ultrasound-assisted extraction and conventional extraction processes. *Food and Bioproducts Processing*, 122: 111-123.
- Ogundajo, A.L., wekeye, T., Sharaibi, O.J., Owolabi, M.S., Dosoky, N.S. & Setzer, W.N. 2021. Antimicrobial Activities of Sesquiterpene-Rich Essential Oils of Two Medicinal Plants, *Lannea egregia* and *Emilia sonchifolia*, from Nigeria. *Plants*, 10(488): 1-11.
- Othman, M., Loh, S.H., Wiart, C., Khoo, T.J., Lim, K.H. & Neeting, K. 2011.Optimal methods for evaluating antimicrobial activities from plant extracts. *Journal of Microbiological Methods*, 84(2):161-166.
- Owoyemi, O.O. & Oladunmoye, M.K. 2017. Phytochemical Screening and Antibacterial Activities of *Bidens pilosa* L. and *Tridax procumbens* L. on Skin Pathogens. *International Journal of Modern Biology and Medicine*, 8(1):24-46
- Oyedeji, O.A. & Afolayan, A.J. 2005. Chemical composition and antibacterial activity of the essential oil of *Centella asiatica* growing in South Africa. *Pharmaceutical Biology*, 3(43): 249-252.
- Ozaa, M.J. & Kulkarni, Y.A. 2017. Traditional uses, phytochemistry and pharmacology of the medicinal species of the genus *Cordia* (Boraginaceae). *Journal of Pharmacy and Pharmacology*, 69: 755-789.

- Pal, A., Mahmud, Z.A., Islam, M.S. & Bachar, S.C. 2012. Evaluation of Antinociceptive, Antidiarrheal and Antimicrobial Activities of Leaf Extracts of *Clerodendrum indicum. Pharmacognosy Journal*, 30(4): 41-46.
- Panda, P., Singh, S., Pal, A., Dash, P. & Ghosh, G. 2015. antimicrobial and immunomodulatory activities of methanolic extract of *Bauhinia vahlii*. *Research journal of pharmaceutical, biological and chemical sciences*. 6(3): 655-660.
- Panda, S.S., Girgis, A.S., Prakash, A., Khanna, L., Khanna, P., Shalaby, E.M., Fawzy, N.G. & Jain, S.C. 2018. Protective effects of *Aporosa octandra* bark extract against D-galactose induced cognitive impairment and oxidative stress in mice. *Heliyon*, 11(4):1-27
- Pandey, G., Khatoon, S., Pandey, M.M. & Rawat, A.K.S. 2018. Altitudinal variation of berberine, total phenolics and flavonoid content in *Thalictrum foliolosum* and their correlation with antimicrobial and antioxidant activities. *Journal of Ayurveda and Integrative Medicine*, 9(3):169-176.
- Pandey, S., Phulara, S.C., Mishra, S.K., Bajpai, R., Kumar, A., Ranjan, A., LehrI, A., Rupreti, D.K. &Chauhan, P.S. 2020. *Betula utilis* extract prolongs life expectancy, protects against amyloid-β toxicity and reduces alpha synuclien in *Caenorhabditis elegans* via daf-16 and skn-1. *Comparative Biochemistry* and Physiology Part C: Toxicology & Pharmacology, 228: 108647
- Pandey, B.P., Thapa, R. & Upreti, A. 2017. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of *Artemisia* vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pacific Journal of Tropical Medicine, 10(10): 952-959.
- Pandey, G., Khatoon, S., Pandey, M.M. & Rawat, A.K.S. 2018. Altitudinal variation of berberine, total phenolics and flavonoid content in *Thalictrum foliolosum* and their correlation with antimicrobial and antioxidant activities. *Journal of Ayurveda and Integrative Medicine*, 9(3):169-176.
- Pandey, M.K., Singh, G.N., Sharma, R.K. & Lata, S. 2011. Antibacterial activity of *Eclipta alba* (L.) Hassk. *Journal of Applied Pharmaceutical Science*, 01(07):104-107
- Pant, N., Jain, D.C. & Bhakuni R.S. 2000. Phytochemicals from genus Swertia and their biological activities. Indian Journal of Chemistry, 398: 565-586.
- Parkavi, V., Vignesh, M., Selvakumar, K.J., Mohamed, M. & Ruby, J.J. 2012. Antibacterial activity of aerial parts of *Imperata cylindrica* (L.) Beauv. *International Journal of Pharmaceutical Sciences and Drug Research*, 4(3): 209-212.

- Parida, R., Sandeep, S., Sethy, B.K., Sahoo, S. & Mohanty, S. 2014. Chemical composition, antioxidant and antimicrobial activities of essential oil from lime basil (*Ocimum americanum*): a potent source for natural antioxidant. *International Journal of Pharmacy and Pharmaceutical Sciences*, 7(6): 487-490.
- Patay, E,B., Sali, N., Kőszegi, T., Csepregi, R., Balázs, V.L., Németh, T.S., Németh, T. & Papp, N. 2016. Antioxidant potential, tannin and polyphenol contents of seed and pericarp of three *Coffea* species. *Asian pacific journal of tropical medicine*, 9(4): 366-371.
- Patil, S.P. & Kumbhar, S.T.2017. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of *Lantana camara* L. leaves. *Biochemistry Biophysics Reports*, 10: 76- 81.
- Patil, P. & Jadhav, V. 2014. Pharamacognostical evaluation of Antidesmaacidum Retz. leaf: a wild edible plant. Journal of Advanced Scientific Research. Journal of Advanced Scientific Research, 5(1): 28-31.
- Patra, A., Jha, S. & Murthy, P.N. 2009. Narasimha murthy phytochemical and pharmacological potential of *Hygrophila spinosa* T. Anders. *Pharmacognosy Reviews*, 3(6): 330-341.
- Paul, S.B., Mazumder, A.H., Gogoi, H.K., Chaurasia, A.K., Singh, L. & Srivastava, R.B. 2010. Evaluation of *in vitro* antioxidant activity of some plants of Cachar district, Assam. *Pharmacognosy Journal*, 2(9): 289-292.
- Pawlowski, S.W., Warren, C.A. & Guerrant, R. 2009. Diagnosis and treatment of acute or persistent diarrhea. *Gastroenterol*,136(6):1874-1886.
- Payum, T. 2017. Distribution, ethnobotany, pharmacognosy and phytoconstituents of *Coptisteeta* wall.: a highly valued and threatened medicinal plant of Eastern Himalayas. *Pharmacognosy Journal*, 9(6s): s28-s34.
- Pfoze, N.L. 2012. Ethnobotanical studies and phytochemical analysis of selected medicinal plants of Senapati district, Manipur. Ph.D. Thesis, Department of Botany, Centre for advance studies, North Eastern Hill University, Shillong, Meghalaya, India.
- Pmelinda, K., Rathinam, X., Marimuthu, K., Diwakar, A., Ramanathan, S., Kathiresan & Subramaniam, S. 2010. A comparative study on the antioxidant activity of methanolic leaf extracts of *Ficus religiosa* l, *Chromolaena* odorata (L.) King & Rabinson, Cynodon dactylon (L.) Pers. and Tridax procumbens L. Asian Pacific Journal of Tropical Medicine, 3(5): 348-350.
- Policegoudra, R., Saikia, S., Das, J. & Chattopadhyay, P. 2012. Phenolic content, antioxidant activity, antibacterial activity and phytochemical composition of

Garcinia lancifolia. Indian journal of pharmaceutical sciences, 74(3): 268-271.

- Porcelli, P., Affatati, V., Bellomo, A., DeCarne, M., Todarello, O. & Taylor, G.J 2004. Alexithymia and psychopathology in patients with psychiatric and functional gastrointestinal ailments. *PsychotherPsychosom*, 73(2): 84-91.
- Prabhakaran, M., Reejo, B. & Kumar, D.S. 2014. Antibacterial activity of the fruits of *Careya arborea* Roxb. (Lecythidaceae). *Journal for drugs and medicines*, 6(1):20-24
- Pradhan, B.K. & Badola, H.K. 2008. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley bordering Khangchendzonga Biosphere Reserve in North Sikkim, India. *Journal of Ethnobiology and Ethnomedicine* 4: 22.
- Prakash, V., Gandotra, S., Kumar, P. & SinghN. 2017. Phytochemical Screening and Antimicrobial Activity of *Ficus religiosa*. *Journal of Pharmaceutical Sciences* and Research, 9(2):100-101.
- Prasad, S.K., Laloo, D., Kumar, M. & Hemalatha, S. 2013. Quality control standardization and antioxidant activity of roots from *Eriosema chinense*. *Pharmacognosy Journal*, 5(4):149-155.
- Prashar, Y. & Patel, N.J. 2020. High-Performance thin-layer chromatography analysis of gallic acid and other phytoconstituents of methanolic extracts of *Myricanagi* fruit. *Pharmacognosy Research*, 12(2): 95-101.
- Premakumara, G.A.S., Abeysekera, W.K.S.M., Ratnasooriya, W.D., Chandrasekharan, N.V. & Bentota, A.P. 2013. Antioxidant, anti-amylase and anti-glycation potential of brans of some Sri Lankan traditional and improved rice (*Oryza sativa* L.) varieties. *Journal of Cereal Science*, 3(53): 451-456.
- Prince, P.S.M. & Menon, V.P. 1999. Antioxidant activity of *Tinosporacordifolia* roots in experimental diabetes. *Journal of Ethnopharmacology*, 65: 277-281.
- Pudziuvelytea, L., Stankeviciusb, M., Maruskab, A., Petrikaited, V., Ragazinskienec, O., Draksienea, G. & Bernatoniene, J. 2017. Chemical composition and anticancer activity of *Elsholtzi aciliata* essential oils and extracts prepared by different methods. *Industrial Crops & Products*, 107: 90-96.
- Purnomo, Y., Soeatmadji, D.W., Sumitro, S.W. & Widodo, M.A. 2018. Inhibitory activity of *Urenalobata* leaf extract on dipeptidyl peptidase-4 (DPP-4): is it different in vitro and *in vivo?.Medicinal Plants*, 10(2): 99-105.
- Puttarak, P., Dilokthornsakul., P., Saokaew., S., Dhippayom, D., Kongkaew, C., Sruamsiri, R., Chuthaputti, A. & Chaiyakunapruk, N. 2017. Effects of *Centella asiatica* (L.) Urb. on cognitive function and mood related outcomes: A

Systematic Review and Meta-analysis. *Scientific Reports*, 7(6):1-7. DOI:10.1038/s41598-017-09823-9.

- Radini, I., Hasan, N., Malik, M.A. & Khan, Z. 2018. Biosynthesis of iron nanoparticles using *Trigonella foenum-graecum* seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. *Journal of Photochemistry and PhotobiologyB: Biology*, 183:154-163.
- Raeisi, S.,Sharifi-rad, S., Quek, S.Y., Shabanpour, B. & Sharifi-rad, J. 2016. Evaluation of antioxidant and antimicrobial effects of shallot (*Allium ascalonicum* L.) fruit and ajwain (*Trachyspermum ammi* (L.) Sprague seed extracts in semi-fried coated rainbow trout (*Oncorhynchus mykiss*) fillets for shelf-life extension. *LWT - Food Science and Technology*, 65:112-121.
- Rafieian-Kopaei, M. 2012. Medicinal plants and the human needs, *Journal of Herbmed Pharmacology*, 1(1):1-2.
- Raghavendra, M.P., Satish, S. & Raveesha, K.A. 2006. Phytochemical analysis and antibacterial activity of *Oxalis corniculata*, a known medicinal plant. *My Science*, 1(1): 72-78.
- Rai, L.K. & Sharma, E. 1994. Medicinal Plants of Sikkim Himalaya, Status, Uses and Ptential. GB Pant Institute of Himalayan Environment & Development, Gangtok.
- Rai, P.K. & Lalramnghinglova, H. 2010. Ethnomedicinal Plant Resources of Mizoram, India: Implication of Traditional Knowledge in Health Care System. *Ethnobotanical Leaflets*,14: 274-305.
- Rajakrishnan, R., Lekshmi, R., Benil, P.B., Thomas, J., Alfarhan, A.H., Rakesh, V. & Khalaf, S. 2017. Phytochemical evaluation of roots of *Plumbago zeylanica* and assessment of its potential as a nephroprotective agent. *Saudi Journal of Biological Sciences*, 4(24): 760-766.
- Rajbhandari, K.R. 2001. Ethnobotany of Nepal. Kath-mandu, Nepal: Ethnobotanical Society of Nepal.
- Ramalakshmi, S., Naushad, E., Ramesh, P. & Muthuchelian, K. 2012. Investigation on cytotoxic, antioxidant, antimicrobial and volatile profile of *Wrightia tinctoria* (Roxb.) R. Br. flower used in Indian medicine. Asian Pacific Journal of Tropical Disease, 2(1): S68-S75.
- Ramamurthy, T. & Sharma, N.C. 2014. Cholera Outbreaks in India. Current Topics in Microbiology and Immunology. 379. DOI:10.1007/82_2014_368
- Ramesha, K.P., Mohana, C.N., Nuthan, B.R., Rakshith, R. & Satish, S. 2020. Antimicrobial metabolite profiling of *Nigrosporasphaerica* from *Adiantum philippense* L. *Journal of Genetic Engineering and Biotechnology*, 18(66): 1-9.

- Ramesh, A.V., Adevi, D.R., Battu, G.R. & BasavaiahK. 2018. A facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of *Ficus hispida* Linn. for catalytic, antioxidant and antibacterial applications. *South African Journal of chemical engineering*, 26: 25-34.
- Ranawat, L., Bhatt, J. & Patel, J. 2010. Hepatoprotective activity of ethanolic extracts of bark of *Zanthoxylumarmatum* dc in ccl₄ induced hepatic damage in rats. *Journal of Ethnopharmacology*, 3(127): 777-780
- Ranjana, R.K., Singh, P.K., Das, A.K. & Dutta, B.K. 2013. Ethnobotanical investigation of wild edible and medicinal plants used by the Chiru tribe of Manipur, India. *Pleione*, 7(1):167-174.
- Rao, R.R. 1981. Ethnobotany of Meghalaya: Medicinal plants used by Khasi and Garo tribes. *Economic Botany*, 35: 4-9.
- Rao, R.R & Jamir, N.S. 1982. Ethnobotanical studies in Nagaland-1, Medicinal plants. *Economic Botany*, 36:176-181.
- Rathee, S., Deepti, A.,Rathee, P. & Thanki, M.M. 2010. Cytotoxic and Antibacterial Activity of Basella Alba Whole Plant: A Relatively Unexplored Plant. *Pharmacologyonline*, 3: 651-658.
- Rawat, S., Bhatt, I.D. & Rawal, R.S. 2011. Total phenolic compounds and antioxidant potential of *Hedychium spicatum* Buch. Ham. ex D. Don in west Himalaya, India. *Journal of Food Composition and Analysis*. 24: 574-579.
- Ray, A., Jena, J., Kar, B., Sahoo, A., Panda, P.C., Nayak, S. & Mahapatra, N. 2018. Volatile metabolite profiling of ten *Hedychium* species by gas chromatography mass spectrometry coupled to chemometrics. *Industrial Crops and Products*, 126(15):135-142.
- Reddy, P.V.M., Ratnam, K.V. & Raju, R.R.V. 2019. In vitro antioxidant properties of *Alangiumsalvifolium* seed extracts. *Research Journal of Pharmacy and Technology*, 12(10): 4714-4718.
- Rehman, M.U., Akhtar, N. & Mustafa, R. 2017. Antibacterial and antioxidant potential of stem bark extract of *Bombax ceiba* collected locally from South Punjab area of Pakistan. *African Journal of Traditional, Complementary and Alternative Medicines*, 14(2): 9-15.
- Ren, X., He, T., Chang, Y., Zhao, Y., Chen, X., Bai, S., Wang, L., Shen, M. & She, G. 2017. The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities. *Molecules*, 22: 1383.
- ReshmiSingha, W., Kurmi, B., Sahoo, U.K., Sileshi, G.W., Nath, A.J. & Das, A.K. 2021.*Parkia roxburghii*, an underutilized tree bean for food, nutritional and regional climate security. *Trees, Forests and People*, 4:1-7.

- Rethy, P., Singh, B., Kagyung, R. & Gajurel, P.R. 2010 Ethnobotanical studies of Dehang-Debang Biosphere Reserve of Arunachal Pradesh with special reference to *Memba* tribe. *Indian Journal of Traditional knowledge*, 9(1): 61-67.
- Ribeiro, S.M.R., Barbosa, L.C.A., Queiroz, J.H., Kno"dler, M. & Schieber, A. 2008. Phenolic compounds and antioxidant capacity of Brazilian mango (*Mangiferaindica* L.) varieties. *Food Chemistry*, 110: 620-626.
- Rofida, S. 2015. Antioxidant activity of *Jatropha curcas* and *Jatropha gossypifolia* by DPPH method. *Farmasains*, 6(2): 281-284.
- Rokaya, M.B., Parajuli, B., Bhatta, K.P. & Timsina, B. 2020. *Neopicrorhizascrophulariiflora* (pennell) hong: a comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. *Journal of Ethnopharmacology*, 247(30): 112250.
- Rout, J., Sajem, A.L. & Nath, M. 2012. Medicinal plants of North Cachar hills district of Assam used by Dimasa tribe. *Indian Journal of Traditional Knowledge*, 11(3): 520-527.
- Roy, D.C., Barman, S.K. & Shaik, M. 2013. Current updates on *Centellaasiatica*: Phytochemistry, pharmacology and traditional uses. *Medicinal Plant Research*, 3(4): 20-36.
- Rudnicki, M., Oliveira, M.R.D., Pereira, T.V. & Reginatto, F. 2007. Antioxidant and antiglycation properties of *Passifloraalata* and *Passiflora edulis* extracts.*Food chemistry*, 100(2): 719-724.
- Roy, P.C., Choudhury, M.D., Ningthouham, S.S., Das, D., Deepa, N. & Talukdar, A.D. 2015. Ethnomedicinal plants used by traditional healers of North Tripura District, Tripura, North East India. *Journal of Ethnopharmacology*, 166:135-148.
- Roy, S., Zomuanpuia, J.H., Thangliani, L., Malsawmdawngkimi, R.L., Lalhriatzuali, J., Hauhnar, L., Lalchhandama, K., Lalhminghlui, K. & Lalthanpuii, P.B. 2020. Screening of *Callicarpa arborea* and *Hemigraphisalternata* for antibacterial activity. *Science Vision*, 20(2): 72-77.
- Rozano, L., Zawawi, M.R.A., Ahmad, M.A. & Jaganath, I. 2017. Computational Analysis of *Gynura bicolor* Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor. *Advances in Bioinformatics*, 2017(3): 1-16
- Ryan, E.T. 2011. The cholera pandemic, still with usafter half a century: Time to rethink. PLoS Neglect-ed Tropical Diseases 5, e1003.

- Sahoo, S., Ghosh,G., Das,D. & Nayak, S. 2013. Phytochemical investigation and *in vitro* antioxidant activity of an indigenous medicinal plant *Alpinia nigra* B.L. Burtt. *Asian Pacific Journal of Tropical Biomedicine*, 3(11): 871-876.
- Samysowndhararajan, K. & Chulkang, S.2013. Free radical scavenging activity from different extracts of leaves of *Bauhinia vahlii* wight & arn. *Saudi Journal of Biological Sciences*, 20(4): 319-325.
- Sannigrahi, S., Mazumder, U.K., Pal, D.K. & Parida, S. 2009. In vitro anti-oxidant activity of methanol extract of *Clerodendrum infortunatum* Linn. *Advances in Traditional Medicine*, 9(2):128-134
- Saeb, S., Amin, M., Gooybari, R.S. & Aghel, N. 2016. Evaluation of antibacterial activities of *Citrus limon*, *Citrus reticulata* and *Citrus grandis*against pathogenic bacteria. *International Journal of Enteric Pathogens*, 4(4): 3-37
- Saha, S., Karmakar, P. & Sil, S. 2018. Chloroform fraction of *Parkiajavanica* bark possesses antibacterial activity against multidrug resistant gram negative bacteria predominantly found in skin wound. *Journal of drug delivery and therapeutics*. 8(5): 185-189.
- Saha, S., Mandal, S.K. & Rahaman, C.H. 2015. Anato-pharmacognostic studies of *Mikania micrantha* Kunth: A promising medicinal climber of the family Asteraceae. *International Journal of Research in Ayurveda and Pharmacy*, 6(6): 773-780.
- Saikia, B., Borthakur, S.K. & Sikia, N. 2010. Medico ethnobotany of Bodo tribals in Gohpur of Sonitpur District, Assam. *Indian Journal of Traditional Knowledge*, 9(1): 52-54.
- Saikia, B. 2006. Ethno medicinal plants from Gohpur of Sonitpur district, Assam. *Indian Journal of Traditional Knowledge*, 5(4): 529-530.
- Sailaja, R. & Setty, O.H. 2006. Protective effect of *Phyllanthus fraternus* against allyl alcohol-induced oxidative stress in liver mitochondria. *Journal of Ethnopharmacology*, 105(1-2): 201-209.
- Saikia, M. & Handique, P.J. 2013. Antioxidant and antibacterial activity of leaf, bark, pulp and seed extracts of seabuckthorn (*Hippophae salicifolia* D. Don) of Sikkim Himalayas. *Journal of Medicinal Plants Research*, 7(19):1330-1338.
- Salam, S., Jamir, N.S., Roma, M. & Singh, P.K. 2014. diversity of plant used in the treatment of stomach ulcer by the tangkhul tribe in Ukhrul district of Manipur, India. *Pleione*, 8(1): 26-29.
- Samati, H. 2006. *An ethnobotanical study of Jaintia hills district Meghalaya India*. Ph.D. Thesis, Botanical Survey of India, Eastern Circle, Shillong-3.

- Sangtam, L.T., Jamir, N.S., Deb, C.R. & Jamir, S.A. 2012. Study on the Medicinal plants used by the Sangtam Naga Tribe in Kiphire district, Nagaland, India. *International journal of Ayurvedaic and herbal medicine*, 2(2): 267-275.
- Saravanan, G., Ponmurugan, P., Sathiyavathi, M., Vadivukkarasi, S. & SengottuvelS. 2013. Cardioprotective activity of *Amaranthus viridis* Linn: effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats. *International Journal of Cardiology*, 165(3): 494-498.
- Sari, P., Wijaya, C.H., Sajuthi, D. & Supratman, U. 2012. Colour properties, stability, and free radical scavenging activity of jambolan (*Syzygiumcumini*) fruit anthocyanins in a beverage model system: Natural and copigmented anthocyanins. *Food Chemistry*, 4(132):1908-1914.
- Sarma, J. & Devi, A. 2017. Ethnomedicinal wisdom of Garo community from erstwhile Sonitpur district of Assam, Northeast India. *Pleione*, 11(2): 429-439.
- Sasikumar, J.M., Thayumanavan, T., Subashkumar, R., Janardhanan, K. &Lakshmanaperumalsamy, P. 2007. Antibacterial activity of some ethnomedicinal plants from the Nilgiris, Tamil Nadu, India. *Natural Product Radiance*, 6(1): 34-39.
- Sathak, S.S.M., Manigandan, P., Sivaraj, C. & Babu,H.S. 2014. Antioxidant and antiproliferative activities of methanol extract of leaves of *Debregeasia longifolia* Linn. *International Journal of Pharmacognosy and Phytochemical Research*, 6(3): 567-572.
- Saxena, A., Tripathi, R.M., Zafar, F. & Singh, P. 2012. Green synthesis of silver nanoparticles using aqueous solution of *Ficusbenghalensis* leaf extract and characterization of their antibacterial activity. *Materials Letters*, 1(67): 91-94.
- Semwal, D.K., Rawat, U., Badoni, R., Semwal, R. & Singh, R. 2010. Antihyperglycemic effect of *Stephania glabra* tubers in alloxan induced diabetic mice. *Journal* of *Medicine*, 11:17-19.
- Seetharaman, S., Indra, V., Sundar, N. & Geetha, S. 2017. Phytochemical profiling, antibacterial activity and antioxidant potential of *Cascabela thevetia* (L.) whole plant extracts. *Journal of Pharmacognosy and Phytochemistry*, 6(3): 93-97.
- Shah, S.S., Shah, S., Khan, I., Ilyas, M., Jan, S.A. & Khan, I. 2020. Bergenia ciliata as antibacterial agent. GSC Biological and Pharmaceutical Sciences, 12(02): 037-045.
- Shahid, M., Tayyab, M., Naz, F., Jamil, A., Ashraf, M. & Gilan, A.H. 2008. Activityguided Isolation of a novel protein from *Croton tiglium* with antifungal and antibacterial activities. *Phytotherapy Research*, 22: 1646-1649.

- Shankar, R. & Rawat, V.K. 2008. Medicinal plants used in traditional medicine in Lohit and Dibang valley districts of Arunachal Pradesh. *Indian Journal of Traditional knowledge*, 7(2): 288-295.
- Sharma, A. & Kumar, A. 2016. Antimicrobial activity of *Justicia adhatoda*. World *Journal of Pharmaceutical Research*, 5(7): 1332-1341.
- Sharma, J., Painuli, R.M. & Gaur, R.D. 2010. Plant used by the rural communities of district Shahjahanpur, Uttar Pradesh. *Indian Journal of Traditional Knowledge*, 9(4): 798-803.
- Sharma, M., Sharma, C.L. & Debbarma, J. 2014. Ethnobotanical studies of some plants used by Tripuri Tribe, NE India with special reference to magico religious beliefs. *International Journal of Plant Animal and Environmental Sciences*, 4(3): 518-528
- Sharma, R., Parashar, B. & Kabra, A. 2013. Efficacy of aqueous and methanolic extracts of plant *Desmodium triflorum* for potential antibacterial activity. *International journal of pharmaceutical sciences and research*, 5(4):1975-1981
- Sharma, T.P. & Sharma, S. 2010. Medicinal Plants of Sikkim. Berthang Bermiok, West Sikkim.
- Sharma, U.K. & Pegu, S. 2011. Ethnobotany of religious and supernatural beliefs of the Mising tribes of Assam with special reference to the 'DoburUie'. *Journal of Ethnobiology and Ethnomedicine*, 7(16): 1-13.
- Sharma, U.K. & Hazarika, D. 2018. Study of ethno-medicinal plants used by the mishing people of Dhemaji district of Assam, India. *Journal of Natural & Ayurvedic Medicine*, 2(4):1-12.
- Sharma, U.S. &Kumar, A. 2011. In vitro antioxidant activity of *Rubus ellipticus* fruits. *Journal of advanced pharmaceutical technology & research*, 2(1): 47-50.
- Shen, B., Yang, Y., Yasamin, S., Liang, N.U.W., Chen, S., Wang, X. & Wang, W. 2018. Analysis of the phytochemistry and bioactivity of the genus *Polygonum* of Polygonaceae. *Digital chinese medicine*, 1(1):19-36.
- Shigute, T. & Wasihun, Y. 2020. Antibacterial Activity and Phytochemical Components of Leaf Extracts of Agave americana. Journal of Experimental Pharmacology, 12: 447-454.
- Shil, S. & Choudhury, M.D. 2009. Indigenous knowledge on healthcare practices by the Reang tribe of Dhalai district of Tripura, North East India. *Ethnobotanical Leaflets*, 13: 775-790.

- Shil, S., Choudhury, M.D. & Das, S. 2014. Indigenous knowledge of medicinal plants used by the Reang tribe of Tripura state of India. *Journal of Ethnopharmacology*, 152: 135-141.
- Shirwaikar, A., Bhilegaonkar, P.M., Malini, S. & Kumar, J. 2003. Thegastroprotective activity of the ethanol extract of Ageratum conyzoides.Jurnal of Ethnopharmacology, 86(1): 117-121.
- Shodehinde, S.A. & Oboh, G. 2013. Antioxidant properties of aqueous extracts of unripe *Musa paradisiaca* on sodium nitroprusside induced lipid peroxidation in rat pancreas *in vitro*. *Asian Pacific Journal of Tropical Biomedicine*, 3(6): 449-457
- Shrestha, L. & Gupta, S.P. 2019. Phytochemical analysis and antibacterial activity of *Cissampelos pareira* Lin. rhizome extract against some bacterial strain. *World journal of pharmacy and pharmaceutical sciences*, 8(4):1330-1342.
- Shukla, G. & Chakravarty, S. 2012. Ethnobotanical plant use of Chilapatta Reserved Forest in West Bengal. *Indian Forester*, 138:1116-1124.
- Siddalinga, M.S. & Vidyasagar, G.M. 2013. Medicinal plants used in the treatment of Gastrointestinal disorders in Bellary district, Karnataka. *Indian Journal of Traditional Knowledge*, 12(2): 321-325.
- Singh, B., Borthakur, S.K. & Phukan, S.J. 2014. A survey of ethnomedicinal plants utilized by the indigenous people of Garo Hills with special reference to the Nokrek Biosphere Reserve (Meghalaya), India. *Journal of Herbs, Spices & Medicinal Plants*, 20(1): 1-30.
- Singh, E.J., Yadava, P.S & Singh, T.H.B. 1989. Ethnobotany study of the Tangkhul Naga Tribes of Ukhrul, Manipur. *Journal of Economic and Taxonomic Botany*, 13(1):11-16.
- Singh, H.B., Hynniewta, T.M. & Bora, P.J. 1997. Ethnomedico Botanical Studies in Tripura, India. *Ethnobotany*, 9: 56-58.
- Singh, H.B., Prasad, P. & Rai, L.K. 2002. Folk Medicinal Plants in the Sikkim Himalayas of India. G. B. Pant Institute of Himalayan Environment and Development Sikkim, India. 61:295-310.
- Singh, J. & Kakkar, P. 2009 Antihyperglycemic and antioxidant effect of *Berberis* aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. *Journal of Ethnopharmacology*, 123(1): 22-26.
- Singh, K.B. & Singh, N.M. 2014. Antioxidant and free radical scavenging potential of *Allium hookeri* thwaites roots extract studied using *In Vitro* models. *Journal of advances in biology*. 1(4): 276-285.

- Singh, M., Chettri, A., Pandey, A., Sinha, S., Singh, K.K. & Badola, H.K. 2019. In vitro propagation and phytochemical assessment of *Aconitum ferox* Wall: A threatened medicinal plant of Sikkim Himalaya. *Proceedings of the National Academy of Sciences, India Section B, DOI 10.1007/s40011-019-01104-x.*
- Singh, M., Pandey, N., Agnihotri, V., Singh, K.K. & Pandey, A. 2017. Antioxidant, antimicrobial activity and bioactive compounds of *Bergenia ciliate* sternb.: a valuable medicinal herb of Sikkim Himalaya. *Journal of traditional and complementary medicine*, 2(7):152-157.
- Singh, N.P., Gajurel, P.R. & Rethy, P. 2015. Ethnomedicinal value of traditional food plants used by the Zeliang tribe of Nagaland. *Indian Journal of Traditional Knowledge*, 14(2): 298-305.
- Singh, S. & Prakash, P. 2014. Evaluation of antioxidant activity of *Physalis minima*. *Chemical science transactions*, 3(3):1179-1185.
- Sivakumar V., Michael, E.R. & Ananthi, R.M. 2017. Determination of in vitro antioxidant activity of *Hydrocotylejavanica* Thumb whole plant extracts. *World Journal of Pharmaceutical Research*, 9(6): 824-836.
- Sinha, S.C. 1996. *Medicinal Plants of Manipur*. published by Manipur Association for Science & Society (MASS), Imphal.
- Soliman, W.E., Khan, S., Rizvi, S.M.D., Moin, A., Elsewedy, H.S., Abulila, A.S. & Tamer, M. 2020. Shehata therapeutic applications of biostable silver nanoparticles synthesized using peel extract of *Benincasa hispida*: antibacterial and anticancer activities. *Nanomaterials*, 10(1954): 1-13.
- Soleimanpour, S., Sedighinia, F.A., Afshar, A.S., Zarif, R., Asili, J. & Ghazvini, K. 2013. Synergistic antibacterial activity of *Capsella bursa-pastoris* and *Glycyrrhiza glabra* against oral pathogens. *Jundishapur J Microbiol*, 6(8): e7262.
- Solomon, O. & Oyebamiji, A.K. 2020. *Stellaria media* (L.) Vill.- A plant with immense therapeutic potentials: phytochemistry and pharmacology. *Heliyon*, 6(6): e041502.
- Spínola, V., Pinto, J., Llorent-martínez, E.J. & Castilho, P.C. 2019.Changes in the phenolic compositions of *Elaeagnus umbellata* and *Sambucus lanceolata* after *in vitro* gastrointestinal digestion and evaluation of their potential anti-diabetic properties.*Food Research International*, 122: 283-294.
- Srivastava, T.K., Kapahi, B.N. & Atal, O.K. 1987. Ethno-medico Botanical investigation in Sikkim. *Journal of Economic and Taxonomic Botany*, 11(2): 413-421.

- Street, R.A. & Prinsloo, G. 2013. Commercially important medicinal plants of South Africa: a review. *Journal of Chemistry*, 1-16.
- Subba, B. & Kandel, R.C. 2012. Chemical composition and bioactivity of essential oil of Ageratinaadenophora from Bhaktapur district of Nepal. Journal of Nepal chemical society, 30: 78-86.
- Subedi, L., Gaire, B.P., HoDo, M., HwanLee, T. & Yeou, K.S. 2016. Antineuroinflammatory and neuroprotective effects of the *Lindera neesiana* fruit *in vitro.Phytomedicine*, 23(8): 872-881.
- Subramaniam, S., Keerthiraja, M. & Sivasubramanian, A. 2014. Synergistic antibacterial action of β-sitosterol-D-glucopyranoside isolated from *Desmostachya bipinnata* leaves with antibiotics against common human pathogens. *Revistabrasileira de farmacognosia*, 24(1): 44-50.
- Sudharameshwari, K. & Radhika, J. 2007. Antibacterial screening of Aegle marmelos, Lawsonia inermis and Albizzia libbeck. African Journal of Traditional, Complementary and Alternative Medicines. 4 (2):199-204.
- Sultana, B., Anwar, F. & Przybylski, R. 2007. Antioxidant activity of phenolic components present in barks of *Azadirachtaindica, Terminalia arjuna, Acacia nilotica* and *Eugenia jambolana* Lam. trees. *Food Chemistry*, 104:1106-1114.
- Sumitra, S. 2013. Ethnobotanical Study of the Tangkhul Naga Tribe in Ukhrul district, Manipur state. Ph.D. Thesis, Department of Botany, Nagaland University, Nagaland, India.
- Sundaramsugumar, M., Doss, D.V.A. & Maddisetty, P.N.P. 2016. Hepato-renal protective effects of hydroethanolic extract of *Senna alata* on enzymatic and nonenzymatic antioxidant systems in streptozotocin induced diabetic rats.*Integrative Medicine Research*, 5(4): 276-283.
- Sur, T.K., Pandit, S., Battacharyya, D. & Kumar, A.2002. Studies on the antiinflammatory activity of *Betula alnoides* bark. *Phytotherapy Research*, 16(7): 669-671.
- Surveswaran, S., Cai, Y.Z., Corke, H. & Sun, M. 2007. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. *Food Chemistry*. 102: 938-953.
- Susanti, D., Sirat, H.M., Ahahmad, F., Matali, R. & Kitajima, M. 2007. Antioxidant and cytotoxic flavonoids from the flowers of *Melastoma malabathricum* L. *Food Chemistry*, 103(3): 710-716.
- Taib, M., Rezzak, Y., Bouyazza, L. & Lyoussi, B. 2020. Medicinal Uses, phytochemistry, and pharmacological activities of *Quercus* Species. *Evidence*-

Based Complementary and Alternative Medicine. https://doi.org/10.1155/2020/1920683.

- Talukdar, S. & Gupta, A. 2014. Medicinal plants used by the Bodo community of Chakrashila Wildlife Sanctuary, Assam, India. *Indian journal of applied research*, 4(2):1-4.
- Tana, B.S., Anwar, F. & Przybylski, R. 2007. Antioxidant activity of phenolic components present in barks of *Azadirachta indica*, *Aerminalia arjuna*, *Acacia nilotica* and *Eugenia jambolana* Lam. trees. *Food Chemistry*, 104(3):1106-1114.
- Tang, X., Xu, C., Yagiz,Y., Simonne, A. & Marshall, M.R. 2018. Phytochemical profiles, and antimicrobial and antioxidant activities of greater galangal [*Alpinia galanga* (Linn.) swartz.] flowers. *Food Chemistry*, 255: 300-308.
- Tantengco, O.A.G., Condes, M.L.C., Estadilla, H.H.T. & Ragragio, E.M. 2016 Antibacterial activity of *Vitex parviflora* A. Juss. and *Cyanthillium cinereum* (L.) H. Rob. against human pathogens. *Asian Pacific Journal of Tropical Disease*, 6(12):1004-1006.
- Tareq, A.M., Farhad, S., Uddin, A.B.M.N., Hoque, M., Nasrin, M.S., Uddin, M.M.R., Hasan, M., Sultana, A., Munira, M.S., Lyzu, C., Hossen, S.M. M., Reza, A.S.M.A. & Emran, T.B. 2020. Chemical profiles, pharmacological properties, andinsilicostudiesprovidenew insights on *Cycas pectinata* Abu. *Heliyon*, 6: e04061.
- Tatsimo, S.J.N., Tamokou, J.D.D., Havyarimana, L., Csupor, D., Forgo, P., Hohmann, J., Kuiate, J.R. & Tane, P. 2012. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from *Bryophyllum pinnatum.BMC Research Notes*, 5(158):1-7.
- Teron, R. 2011. Studies on ethnobotany of KarbiAnglong district Assam trans cultural dynamism in traditional knowledge. Ph.D. Thesis, Department of Botany, Faculty of science, Gauhati University, Assam, India.
- Thanzami, K., Lalhlenmawi, H. & Kakoti, B.B. 2013. Ethnomedicinal use of Lonicera macrantha (D.Don) spreng by the tribal people of Mizoram and comparison of the phytochemical constituents and antioxidant activities of the aqueous and hydro-alcoholic crude extracts of the leaves. 2nd International Conference on Medicinal Chemistry & Computer Aided Drug Designing, Journal of Medicinal Chemistry, 3(4):15-17.
- Thakur, S., Tashi, N., Singh, B., Dutt, H.C. & Singh, B. 2020. Ethnobotanical plants used for gastrointestinal ailments by the inhabitants of Kishtwar plateau in

Northwestern Himalaya, India. *Indian Journal of Traditional Knowledge*, 19(2): 288-298.

- Thakurta, P., howmik, P., Mukherjee, S., Hajra, T.K., Patra, A. & Bag, P.K. 2007. Antibacterial, antisecretory and antihemorrhagic activity of *Azadirachtaindica*used to treat cholera and diarrhea in India. *Journal of Ethnopharmacology*, 111: 607-612.
- Thangavelu, L., Balusamy, S.R., Sivanesan, S., Perumalsamy, H., Parameshwari, R., Rajagopalan, V. & Shanmugam, R. 2018. Seed and bark extracts of *Acacia catechu* protects liver from acetaminophen induced hepatotoxicity by modulating oxidative stress, antioxidant enzymes and liver function enzymes in Wistar rat model. *Biomedicine & Pharmacotherapy*, 108: 838-844.
- Thang, P.T., Patrick, S., Teik, L.S. & Yung, C.S. 2001. Anti-oxidant effects of the extracts from the leaves of *Chromolaena odorata* on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage. *Burns*,4(27): 319-327.
- Thanh, N.V., Trang, T.T. & Nguyen, H.T. 2019. Isolation and evaluation of antimicrobial activity of endophytic actinobacteria from horsetail plant (*Equisetum diffusum* D. Don) against bacterial disease in aquatic animals. *The international journal of biological markers* 11(1):149-155.
- Thippeswamy, N.B., Naidu, K.A. & Achur, R.N. 2013. Antioxidant and antibacterial properties of phenolic extract from *carumcarvi* L.*Journal of Pharmacy Research*, 7(4): 352-357.
- Thirunavoukkarasu, M., Balaji, U., Behera, S., Panda, P.K. & Mishra B.K. 2013.
 Biosynthesis of silver nanoparticle from leaf extract of *Desmodium gangeticum*(L.) DC. and its biomedical potential. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 116:424-427.
- Thoppil, J.E., Tazo, A., Minija, J. & Deena, M.J. 2014. Antimicrobial activity of the essential oils of three species of *Pogostemon.Journal of Environmental Biology*, 35(5): 795-798.
- Tian, L., Zhao, Y. & Yang, X. 2011. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal *Houttuynia cordata.Carbohydrate Polymers*, 2(83): 537-544.
- Tiwary, B.K., Ghosh, R., Mokta, S., Ranjan, V.K., Dey, P., Choudhury, D., Dutta, S., Deb, D., Das, A.P. & Chakraborty, R. 2017. Prospective bacterial quorum sensing inhibitors from Indian medicinal plant extracts. *Letters in Applied Microbiology*, 65: 2-10.

- Tripathi, Y.C., Jhumka, Z. & Anjum, N. 2015. Evaluation of total polyphenol and antioxidant activity of leaves of *Bambusa nutans* and *Bambusa vulgaris*. *Journal of Pharmacy Research*, 9(4): 271-277.
- Tsering, J. 2017. Ethnobotany and phytochemical analysis of selected traditional wild food and medicinal plants of the Monpa community of Arunachal Pradesh.
 Ph.D. Thesis, Department of Botany, Rajiv Gandhi University, Rono Hills Doimukh- 791112, Arunachal Pradesh, India.
- Tuite, A.R., Tien, J., Eisenberg, M., Earn, D.J.D., Ma, J. & Fisman, D.N. 2011. Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions, *Annals of Internal Medicine*, 154(9): 593-601.
- Tushar, B.S., Sarma, G.C. & Rangan, L. 2010. Ethnomedical uses of Zingiberaceous plants of Northeast India. *Journal of Ethnopharmacology*, 132: 286-296.
- Uddin, B., Nahar, T., Khalil, M.I. & Hossain, S. 2007. In vitro antibacterial activity of the ethanol extract of *Paederia foetida* L. (Rubiaceae) leaves. *Bangladesh Journal of Life Science*, 19(2):141-143.
- Uddin, M.A., Jakaria, D.M., Roy, A. & Islam, M.A. 2016. Evaluation of antioxidant and antimicrobial property of different extracts of *Litsea salicifolia* (Roxb.exNees) leaf. *International Journal of Pharmacy*, 6(3):116-123.
- Umar, R.U., Khalid, N., Sukari, M.A., Rahmani, M., Abdul, A.B. & Hamidi, D. 2013. Phenolic contents, antioxidant and cytotoxic activities of *Elaeocarpus floribundus* Blume. *Pakistan Journal of Pharmaceutical Sciences*, 26(2): 245-250.
- Umaru, I.J., Aduwamai, U.H., Ahuchaogu, C.E. &Ahmed, M.U. 2020. Phytochemical, characterization and antimicrobial studies of *Molineriacapitulata* fruits essential oil against multidrug resistance pathogens. *Solid State Technology*, 63(1s): 90-107.
- Upadhya, V., Pai, S.R. & Hegde, H.V. 2015. Effect of method and time of extraction on total phenolic content in comparison with antioxidant activities in different parts of *Achyranthes aspera.Journal of King Saud University - Science*, 27(3): 204-208.
- Uthpala, T. & Raveesha, H.R. 2019. Studies on Antioxidant and Antibacterial Activity of Cissampelospareira (L.). International Journal of Advanced Scientific Research and Management, 4(4): 35-42.
- Ved, D.K., Sureshchandra, S.T., Bhutia, T.G., Ravikumar, K., Barve, V., Somasekhar, B.S., Tandon, V., Goraya, G.S., Sumanath, M.V. & Soumyashree, N. 2017. Conservation Assessment and Management

Prioritization (CAMP) for the wild medicinal plants of Sikkim. FRLHT/TDU, Bengaluru and SMPB-FEWMD, Sikkim.

- Vineeta, N.A., Shukla, G. & Chakravarty, S. 2018. Traditionally Used Medicinal Plants for Treatment of Stomach Disorder in West Bengal, India: A Scrutiny and Analysis from Secondary Literature. *Ethno Medicine*, 12(3):163-183.
- Volden, J., Borge, G.I.A., Bengtsson, G.A., Hansen, M., Thygesen, I.E. & Wicklund, T. 2008. Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (*Brassica oleracea* L. ssp. *capitata* f. *rubra*). *Food Chemistry*, 109(3): 595-605.
- Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y. & Gritsanapan, W. 2013. Maximizing total phenolics, total flavonoids contents and antioxidant activity of *Moringa oleifera* leaf extract by the appropriate extraction method.*Industrial Crops and Products*, 44: 566-571.
- Wakchaure, D., Jain, D., Singhai, A.K. & Somani, R. 2011. Hepatoprotective activity of *Symplocos racemosa* bark on carbon tetrachloride-induced hepatic damage in rats. *Journal of Ayurveda and Integrative Medicine*, 2(3):137-143.
- Wang, R., Wang, R. & Yang, B.2009. Extraction of essential oils from five *Cinnamon* leaves and identification of their volatile compound compositions. *Innovative Food Science & Emerging Technologies*, 10(2): 289-292.
- Wanga, Y., Zhang, G., Chia, X.F. & Chen, S. 2018. Green and efficient extraction of podophyllotoxin from *Sinopodophyllum hexandrum* by optimized subcritical water extraction combined with macroporous resin enrichment. *Industrial Crops & Products*, 121: 267-276.
- Wang, Z.J., Zhou, Y., Shi, X.L., Xia, X., He, Y.Y., Zhu, Y.Y., Xie, T.Z.,Liu, T., Juanxu, X. & Luo, X.D.2021. Comparison of chemical constituents in diverse *Zanthoxylum* herbs, and evaluation of their relative antibacterial and nematicidal activity. *Food Bioscience*, 42:101206.
- Wangpan, T., Tasar, J., Taka, T., Giba, J., Tesia, P. & Tangjang, S. 2019. Traditional use of plants as medicine and poison by Tagin and Galo Tribe of Arunachal Pradesh. *Journal of Applied Pharmaceutical Science*, 9(09): 98-104.
- Wegiera, M., Kosikowska, U.,Malm, A. & Smolarz, H.D.2011. Antimicrobial activity of the extracts from fruits of *Rumex* L. species. *Central European Journal of Biology*, DOI:<u>10.2478/s11535-011-0066-0.</u>

- Wei, Y., Chen, X., Jiang, X., Ma, X. & Xiao, J.2009. Determination of taxifolin in *Polygonum orientale* and study on its antioxidant activity. *Journal of Food Composition and Analysis*, 22(2):154-157.
- World Health Organization, 2003. Traditional medicine. Fifty-sixth world health assembly, WHO.
- World Health Organization, 2004. Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems, WHO.
- World Health Organization, 2008. World health statistics. Primary Health Care Now More Than Ever, WHO.
- World Health Organization, 2017. Monitoring health for the SDGs, Sustainable Development Goals, WHO.
- World Health Organization, 2009. Diarrhoea: Why children are still dying and what can be done. The United Nations Children's Fund (UNICEF), WHO.
- Wickramaratne, M.N., Gunatilake, L.P., Anuradha, N.G.D., Godavillathanna, A.N., Perera, M.G.N. & Nicholas, I. 2015. Antioxidant activity and antibacterial activity of *Walidda antidysenterica*. *Journal of Pharmacognosy and Phytochemistry*, 4(2):121-126.
- Wu, S.J., Tsai, J.Y., Chang, S.P., Lin, D.L., Wang, S.S., Huang, S.N. & Ng, L.T. 2006. Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of *physalis peruviana*. *Journal of Ethnopharmacology*, 108(3): 407-413.
- Wu, S.J. & Ng, L.T. 2008. Antioxidant and free radical scavenging activities of wild bitter melon (*Momordica charantia* Linn. var. *abbreviata* ser.) in Taiwan. *LWT* - Food Science and Technology, 41(2): 323-330.
- Wua, Z., Li, H., Yanga, Y., Zhana, Y. & Tu, D. 2013. Variation in the components and antioxidant activity of Citrus medica L. var. sarcodactylis essential oils at different stages of maturity. *Industrial Crops and Products*, 46: 311-316.
- Xu, L.F., Chu, W.J., Qing, X.Y., Li, S., Wang, X.S., Qing, G.W., Fei, J. & Guo, L.H. 2006. Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. *Neuropharmacology*, 50: 934-940.
- Yadav, R.K., Srivastava, S.K., Bahadur, L., Lall, A.M. & Pal, M.L. 2017. Antioxidant and antidiabetic activity of *Dilleniapentagyna*Roxb. fruit extract. *Annals of Phytomedicine*, 6(1): 121-126.
- Yadav, M.K., Upadhyay, P., Purohit, P. & Pandey, B. 2017. Phytochemistry and pharmacological activity of *Mucunapruriens*: A review. *International Journal* of Green Pharmacy, 11(02): 69-73.

- Yakang, B., Gajurel, P.R., Potsangbam, S. & Bhuyan, L.R. 2013. Account of common and traditional non-timber forest products used by Apatani tribe of Arunachal Pradesh, India. *Pleione*, 7(2): 514-529.
- Yallappa, S., Manjanna, J., Peethambar, S.K., Rajeshwara, A.N. & Satyanarayan N.D. 2013. Green synthesis of silver nanoparticles using *Acacia farnesiana* (Sweet Acacia) seed extract under microwave irradiation and their biological assessment. *Journal of Cluster Science*, 24:1081-1092.
- Yang, L., He, J.J., Cui, X.Y. & Liu, Y.P. 2021. Chemical constituents from *Melodinus cochinchinensis* (Lour.) Merr. and their chemotaxonomic significance.*Biochemical Systematics and Ecology*, 95:104245.
- Yang, P., Lu, H., Wang, Q., Zhao, Z., Liu, Q., Zhao, X., Yang, J., Huang, S., Chen, Z. & Mao, D. 2020. Chemical composition and antimicrobial activities of the essential oil from the leaves of *Pterocephalushookeri*. *Natural Product Communications*. 15(12):1-5.
- Yi, Y., Tu, G., Tsang, P.E., Xiao, S. & Fang, Z. 2019. Green synthesis of iron-based nanoparticles from extracts of *Nephrolepisauriculata* and applications for Cr(VI) removal. *Material letters*, 234: 388-391.
- Yuhlung, C.C. & Bhattacharyya, M. 2016. Indigenous Medicinal Plants used by the Maring Tribe of Manipur, Northeast India. *Journal of Ayurvedic and Herbal Medicine*, 2(4):146-153.
- Zainin, N.S., Lau, K.Y., Zakaria, M.P.M. & Son, R. 2013. Antibacterial activity of Boesenbergia rotunda (L.) Mansf. A. extract against Escherichia coli. International food research journal, 20(6): 3319-3323.
- Zakaria, Z.A., Abdul, E.E., Rofiee, M.S., Norhafizah, M., Somchit, M.N., Teh, L.K. & Salleh, M. Z. 2011. *In vivo* antiulcer activity of the aqueous extract of *Bauhinia purpurea* leaf. *Journal of Ethnopharmacology*, 137(2):1047-1054.
- Zancan, K.C., Marques, M.O.M., Petenate, A.J. & Ameireles, M.A. 2002. Extraction of ginger (*Zingiber officinale* roscoe) oleoresin with co₂ and co-solvents: a study of the antioxidant action of the extracts.*The Journal of Supercritical Fluids*, 24(1): 57-76.
- Zarai, Z., Boujelbene, E., Salem, N.B., Gargouri, Y. & Sayari, A. 2013. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from *Piper nigrum. Food science and technology*, 50(2): 634-641.
- Zhao, J., Jiang, L., Tang, X., Peng, L., Li, X., Zhao, G. & Zhong, L. 2018. Chemical composition, antimicrobial and antioxidant activities of the flower volatile oils of *Fagopyrum esculentum*, *Fagopyrum tataricum and Fagopyrum Cymosum*. *Molecules*, 23:182.

- Zhasa, N.N., Hazarika, P. & Tripathi, Y.C. 2015. indigenous knowledge on utilization of plant biodiversity for treatment and cure of diseases of human beings in Nagaland, India: A case study. *International Research Journal of Biological Sciences*. 4(4): 89-10.
- Zhu, Z., Wei, G., Li, J., Qian, Q. &Yu, J. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (*Cucumis sativus* L.). *Plant Science*, 167(3): 527-533.
- Zohora, F., Islam, S.N.,Khan, S.A. & Hasan, C.M. 2019. Antioxidant, cytotoxic, thrombolytic and antimicrobial activity of *Zanthoxylum rhetsa* root bark with two isolated quinolone alkaloids. *Scientific research*, 10(03):137-145.

Chapter 10

Ethnozoological Studies in Northeast India: A Review

Dibyajyoti Saikia¹, Dipti Thakuria², Kenjum Bagra³ and Kuladip Sarma^{4*}

 ¹Department of Zoology, Sipajhar College, Sipajhar, Darang, Assam Email:dibyajyotisaikia41@yahoo.com
 ²Department of Zoology, Gauhati University, Guwahati-14, Assam, Email: dipti.thakuria@gmail.com
 ³North Eastern Institute of Folk Medicine, Ministry of AYUSH, Govt. of India, Pasighat-791 102, East Siang District, Arunachal Pradesh, India Email: bagrakb@gmail.com
 ⁴Department of Zoology, Cotton University, Panbazar, Guwahati-781001, Assam, India *Corresponding author: kuladip.sarma@cottonuniversity.ac.in

Abstract

Human-animal relationships have existed since the dawn of mankind. Across time, cultures all over the world have developed distinct ways of human interaction with local and regional fauna. Human communities have accumulated a vast bank of indigenous and traditional knowledge about animals through the centuries that is usually passed from generation to generation, largely through discipleship. The present study is the systematic literature review of topics of research conducted on ethnozoology in Northeast India.From this study,41 peer-reviewed articles were identified, of which (80.49%) were published after 2000, indicating that this topic has mainly received regional attention in the past ten years. The extensive use of animalsuggests that the tribes of Northeastern India rely heavily on forest faunal resources. The study emphasizes on the importance of traditional knowledge in conservation strategies and management of faunistic resources in Northeast Indiaas fundamental component to conservation efforts.

Key words: Zootherapy, Ethnozoology, Biodiversity

Introduction

Human civilization has evolved with the environment and extremely close relationship have existed between human and animals since primitive times. Hunting is one of the earliest known human arts, and animals have been hunted for both utilitarian and defensive reasons (Alves, 2012). The products derived from animals are used for various purpose, including food, clothing, and tools, as well as medical and magical uses (Alves & Souto, 2015). Human have consumed a wide variety of vertebrate and invertebrate species from last thousand years or more (Jorgenson, 1998; Emery, 2007). The variety of interactions between human and animals is an interesting domain of study and the knowledge and experience gained from natural sources by the native population of any region can lead us to not only vast range of opportunities, but it also gives the opportunity to cross check scientific hypothesis (Alves & Nishida, 2002). Zoo-therapy refers to treatment of human disease using animals and animal derived entities (Costa-Neto, 1999).

World Health Organization reported that all over the world, around 80% of the rural population practices traditional medicines for health care (WHO, 1993). Traditional medicines rely upon wild animals and products obtained from it which plays a significant role in healing processes. According to reports of World Health Organization, out of 252 essential chemicals, animal products contribute 8.7% (Marques, 1997) and the animal-based medicines are generally obtained from its body parts, metabolic products (such as excreta) or from the items produced like egg, nests, etc. (Costa-Neto, 2005). Global trade of animal based medicinal products accounts for billion-dollar business per year (Kunin & Lawton, 1996) and ethnobiology guides for new pharmaceutical searches (Blakeney, 1999). In India, almost 20% of biotherapeutic medicines are animal origin (Unnikrishnan, 1998). North-Eastern states of India are one of the bio-geographically distinctive hotspots in the world rich in biodiversity (Myers et. al., 2000) and a hub of traditionally, culturally, and anthropogenically different mass of population. Remedies using animal products have traditionally played a vital role in indigenous people's healing methods (Mihsill & Keshan, 2017). North east India is the home for more than 166 tribes and are largely

associated with the Indo-Mongolians, Tibeto-Burmese, and Proto-Australians populations. Arunachal Pradesh consists of around 25 types of tribes. Nagaland has more than 16 tribes. However, among all the tribes, Garo, Khasia, Jayantia, Adi, Galo, Nyishi, Bhutia, Kuki, Angami, Bodo, Deoriare some of the major tribes. They have scattered throughout the region and have distinctive cultural, occupational, and peculiar food habits. Zootherapeutic is an indigenous knowledge system, passed down by people from generation to generation, people are in close contact with nature. People use traditional medicines of animal origin in local environments, so is specially tailored and conditions for the local population. These methods have not died off but have been able to withstand the tests of time even with the advent of western medicine. Therefore, it is vital that we understand and record the irreplaceable indigenous knowledge of the traditional culture and practices which may get extinct with the demise of the bearer. This review paper aims to compile all the relevant information related to the ethnozoological studies practiced by different tribes of Northeast India with special reference to different knowledge systems prevails in the region.

Materials and methods

Study Area:

North-east India forms a significant portion of both the Himalaya and Indo-Burma biodiversity hotspots (Mittermeier et al., 2004). The north covering nearly 2,62,379 km² area and the biogeographic zone comprises of states of Arunachal Pradesh, Assam, Nagaland, Manipur, Meghalaya, Mizoram and Tripura. The region lies between 22°N and 29°5N latitude, 88°E and 97°30'E longitude. Northeast India shares international border with China, Bangladesh, Myanmar and Bhutan. At the confluence of Indo- Malayan, Indo Chinese and Indian biogeographical realms, this part of India is a mosaic of unique habitats, home to rich floral and faunal diversity. Out of the total 450 tribes in the country, the region is also abode to 225 tribes. The culture and customs of different tribes have an important role in understanding biodiversity conservation and management issues (Chatterjee et al., 2006).

Literature review was conducted on the previous work regarding ethnozoological studies in northeast India, in order to evaluate the potential use of faunal diversity for valued service of humankind. Standardised search terms with three online databases were searched *viz*. Web of Science, Scopus and Science Direct. The words "ethnozoology", "northeast" "tribe" "zootherapy" were searched in title, keywords and abstract (except in Web of Science, where the search was in Topic). Only peer-reviewed papers including were selected for the study.

Results and Discussion

The search returned a total of 41 papers, most of which (80.49%) were published after 2000. People of North-East have long practiced the traditional medicines in day-to-day life (Mao et. al., 2009). Arunachal Pradesh, the largest among all the North-Eastern states has a mixed demography of which indigenous communities like Nyishi, Apatani and Monpa use almost hundred fauna for ethnomedicinal purpose (Solanki & Chutia, 2009). Of their use, 48% are mammals, 28% are birds and 24% are amphibian and reptiles. Wide use of insect as ethnomedicine was documented in Galo community. A total of 12 edible and 4 unidentified insect species were documented in this regard by Dagyom & Gopi,2009. According to Chakravorty et. al., 2011aNyishi and Galo communities of Arunachal Pradesh uses vertebrate (36 species) and insect (81 species) for ethnozoological purpose.

Gangwar and Ramakrishnan in 2016 reported the use of variety of animals for treating common ailments by Nyishi community. Roasted liver of Apes (*Presbytis spp.*) is used against diarrhoea, dysentery, and malaria; dried liver of Bear (*Melursus ursinusis*) is used to cure body and stomach-aches, dysentery, and malaria; Cockroach (*Periplaneta americana*)consumed with liquor to reduce intoxication; ash of feathers ofCrow (*Corvus splendens*) used for healing dysentery and fever; ash of feathers of Eagle (*Aquila* spp.)is applied on wounds for healing; Earthworm (Oligochaeta) used against dysentery; fat of Hornbill (*Bucerotidae*) is massaged onto skin to set dislocated bones; Crab (Crustacea) is used as a food item and is a preventive against snake bite and dysentery. Other than these, some of the insects like dragonfly (Odonata) grasshopper (Orthoptera) and larva of Wasp (Hymenoptera) are also consumed as food item for nutritional value.

Moreover, reports were found on the use of animals among Adi (39 aquatic and terrestrial species) (Chinlampianga et. al., 2013), Wanchoand Tangsa (20 and 55 animal species respectively; Jugli et. al., 2019) etc. However, use of animals and animal products differs among different tribal communities. Tangsa people apply body fat of hornbill to sprain, strain and burns (Jugli et. al., 2020). They also reported that body fat of python and members of cat family (such as *Panthera pardus, P. tigris, Neofelisnebulosa*) is used to treat burns and wounds. Reports are found that Wancho community consumes meat of bat to treat cough and cold (Jugli et. al., 2020). Bile and gall bladder of bear is used as painkiller against headache, toothache, stomach-ache and body pain by Tangsa community whereas it has been reported that pregnant women of Wancho community uses this to reduce labour pain during child birth (Betlu, 2013). Use of Bile and gall bladder of bear in treatment of malaria and diabetes is also found in Monpa (Solanki & Chutia, 2004) and Galo and Nyishi community (Chakravorty et. al, 2011b). Another tribe known as Adi uses 39 animal species as traditional medicine and insects specially larva of ant, locally known as *run-kung* and *tari* insect are collected by their woman which is used in malarial treatment.

Assam, the second largest state of the region practices ethnobiology from time immemorial. Bora and Prasad in 2017 had done extensive studies in this regard and concluded that 44 animal species are used for many ethno-zoological purposes by different indigenous communities of Assam like Ahom, Tea tribes, Koch-Rajbonshi, Chutia and Kalita. In their report, insects were found to be used mostly (30.9%) followed by mammals (23.8%), fish (16.7%), reptiles (11.9%), amphibians (7.1%)and gastropod and annelids (4.8% each). Insects such as Vespa affinis (Linnaeus, 1764), Tetraponera rufonigera (Jordan, 1851), Acheta domestica (Linnaeus, 1758) were reported by them to be eaten orally and as a whole against disease like cancer, body arch and low eye sight respectively but only alimentary canal is used from Scapteriscus borellii (Giglio-Tos, 1894) for treating the intestinal worm. Horn of mammals such as Bubalis bubalis (Linnaeus, 1758) are taken orally to treat premenstrual pain and in some cases horn of animals such as Rucervus duvaucelii are applied topically against piles. Some fish species such as Amphipnouscuchia (Hamilton, 1822), Chacca chacca (Hamilton, 1822) etc. are taken totally for treating anaemia and asthma. Mostly the whole animal in many cases were found to be used against diseases rather than specific body parts. Moreover, excretory product like human urine was found to be used against skin diseases by the Karbi people. However, Hussain and Tynsong, 2021 reported that among the animals used for ethnozoological purpose in Assam, mammals are highest in number followed by fish, insect, bird and reptiles. Karbi people have been found to use 14 species of Ichthyofauna (Teronpi et. al., 2012) and 48 species of various species including leeches were used against diseases like cancer, piles and tuberculosis (Verma et. al., 2014). It was also reported about the use of gall bladder against hookworm infection and to reduce labour pain by the Biate tribe (Betlu, 2013).

Manipur is another integral part of Northeast where this type of practices is very old. Mostly and interestingly different fish species are used there as ethnomedicine which is not common in other North-eastern states. Meitei community of this state use almost 21 fish species for this purpose (Chanu et. al., 2016). Fish is generally a very good source of protein and raw, fried or cooked fishes found to be in use for traditional medicine through decades. Moreover, specific body parts such as bile, liver, barbells of different fish species such as *Anguilla bengalensis*, *Hilsa ilisha*, *Channastriatus*, etc. are found to be in ethnomedicinal use (Chanu et. al., 2016). Devi et. al., 2015 reported that 33 total species including both invertebrate and vertebrate

species are used here against a total of 35 ailments. Rongmei community is found to use a total of 26 fauna (Ngaomei & Singh, 2016) but interestingly no fish species were mentioned in their findings. Singh (2014) identified 11insect species with medicinal values from Manipur.

Khasi, Garo and Jaintia primarily constitute the demographic constituent of Meghalaya. Khasi people traditionally use certain spider species for boil and wound by crushing it (Mihsill & Keshan, 2017). They also documented that the Khasis traditionally treat malaria by consuming hill mole or cow bile. Milk of tigress in combination with mud for burns, sun dried deer fetus for the breastfeeding mother are some of the common prices among them. Fish (*Channa striatus*) and leeches are also traditionally used there. Different ailments such as anemia, diarrhea, cold and fever are found to be treated by almost 13 animal-based medicines in the state where mammals are used mostly followed by insects.

Ethnozoological findings revealed that Mizo, Chamka and Bru communities of Mizoram use mammals (approx. 9 species), bird (1 species) and reptiles (3 species) traditionally over ages (Solanki et. al., 2016). Different body parts such as bone, liver, gall bladder etc. were used in this purpose. Zomi-Paite community were reported to use 48 animal species for such purposes (Chinlampianga et. al., 2013). Solanki et. al., in 2016 reported that 22 animal species (including mammals, birds and reptiles) were recorded in Mizo, Bru, and Chakma communities against diseases like dysentery, cholera, epilepsy, asthma, diabetes, pneumonia, etc. They further reported that almost every body part such as bone, quill, scale, tooth, etc. are in use for this purpose. Hussain and Tynsong, 2021 reported that vertebrate species of different phylum are basically used for ethnomedicinal purposes in this state along with some invertebrate species in small quantities.

Nagaland is the state of 14 distinct major aboriginal Naga tribes which are unique in their culture and have many sub tribes. A total of 26 animal species are used for zootherapeutic purpose in Nagaland (Jamir and Lal, 2005). Different species such as Earthworm (*Pheritima* spp.) and Python (*Python reticulates*) are used as antidote against snake and spider bites. Crush of earthworm (*Pheretima posthuma*), is applied in eye for red eye by Chakhesang Tribe of Nagaland, Kakati & Dulo (2002). Other than this, Apple snail (*Pila globusa*) for stomach disorder, crab (*Cancer pararus*) for Jaundice, *Lymnonectes limnorcharis* for rheumatic-joints, *Canis familiaris* for pre and post-partum health care etc. are commonly as their ethnozoological tradition. *Ao* community is found to use body parts such as teeth, intestine, meat, skin, etc. of 25 fauna in different formulations for such purposes (Kakati et. al., 2006). Roasted animal (*Passer domestica*) is used for paralysis and flesh is used for stammering by Aotribes (Kakati et al., 2006). Along with vertebrates, invertebrates also contribute hugely in the ethnomedical practices in Nagaland.

Tripura is inhibited by 19 different ethnic tribal communities of which Reang, Tripuri and Jamatia are found to use 25 faunal species in total or different parts of it such as antler, testis, meat, etc. for ethnomedicine against diseases like arthritis, rickets, pneumonia, male impotency, constipation, paralysis, joint pain, ulcer, etc. (Das, 2015). Among the invertebrates they used Annelida, Arthropoda and Mollusca and among vertebrates, Aves and mammals top the chart followed by Pisces, Amphibian and Reptiles. Among all the animals used as ethnomedicine 16% of the total is included in IUCN Red data book (Das, 2015). *Metaphire posthuma, Pila globusa, Palaemon* sp., *Apisindica, Cracinus* sp., *Cryllus* sp., *Rana tigrina, Najanaja, Gallus gallus* L. *Felis domesticus* are among the list of animals and insects used for ethnobiological purpose in Tripura

In Sikkim, Bhutia, Lepcha and Nepali community people use and practice traditional knowledge for different diseases like heart disease, diabetes, piles, urinary tract infection, malaria, nose bleed asthma etc. (Dhakal et.al., 2019). Whole body or body parts of animals especially mammals, birds and insects were used in this purpose.

However, among invertebrates, use of honey bee venom toxin and melittin has been proved to have anticancer activity and found to inhibit the JAKk/STAT 3 pathway (Jo et.al., 2012). Evolution brings out changes that too in unique defense mechanism against different diseases that makes the animals a vital source of study. The bile is a rich source of chemicals (Wang & Carey, 2014) that has anti-inflammatory, anti-pyretic, anti-diabetic and anti-spasmodic effects. Moreover, biles of different animal are also found to be effective against specific disease.

Disease	Total species used
Malaria	37
Tuberculosis	21
Wounds	33
Cough and cold	31
Burns	30
Dysentery	32
Jaundice	24
Stomach ailment	29

Table 10.1. Animal species used for different ailments in NortheastIndia. (Following after Hussain & Tynsong, 2021).

Rheumatism	33
Asthma	37
Liver ailment	14
Joint pain	13
Fever	21
Weakness	27
Female health problems	23
Fracture	11
Animal/ Insect bite	14
Anemia	6
Male impotency	15
Diabetes	17

Traditional medicine has taken a backseat with the entry of the modern medicine. Cross cultural connections likely to play important role in use of certain animals throughout the whole region, but the tribes also maintain their heritage through traditional and secrete knowledge among them. The most commonly used fauna for ethnozoological purposes in Northeast India includes 21 species of animals under vulnerable category, 9 species as endangered, 7 species as near threatened and 3 species are critically endangered according to IUCN report 2020.

Conclusion

The study of literature reveals that most of the work on ethnobiological studies were done only after the year 2000. Considering the importance of animals in contribution to the quality of life and their valuing services to the society, ethnozoology can be viewed as a fundamental scientific area that examines the historical, economic, sociological and environmental aspects of the relationships between humans and animals. This review illustrates the persistence of ethnozoological practices in North-eastern states of India covering mostly the vertebrate fauna. However, the extensive survey on the of use of invertebrates specially insect fauna by different tribes for various purposes are yet to be done. The application of indigenous knowledge by tribal communities for health care for healing diseases also provide a cheaper and accessible alternative to the high-cost pharmaceutical remedies. Thus, knowledge about the regional fauna can offer the possibility of significant savings in comparison to the costs involved with conventional methodologies. However, the use of such practices brings out information that carries medical importance. Hence, new arena of drug discovery may be possible by intervening the knowledge of the traditional practices that can lead to a more sustainable future. Despite the lack of sufficient scientific evidence to support

these treatment methods, the rich treasures of the traditional treatment methods using animals or their products practiced by the traditional healers of different tribes of North east India is promising. Therefore, more such scientific research is needed to validate traditional treatment methods and discover their role in healing disease. The activity of continuous slaughtering of numerous animals without proper scientific verification may otherwise lead to adverse effect of resource extinction. Moreover, the users and sellers should also be aware of legal and ecological status of the species they use before reaping the benefits. Further research on understanding of the relationship among human and environment is important to enhance and preserve the traditional indigenous knowledge on the use of resources. Use of traditional knowledge in valuing service of mankind still lacks documentation in many parts of Northeast India. Hence, further researches on updating the inventory of ethnozoological studies is encouraged which will lead to have more effective strategies towards conservation of habitats for the protection of species. Thus, the connection between ethnozoology and the social and human sciences can act as a bridge the gap in the development of conservation plans.

Acknowledgement

We thank all the other authors who have made great contributions to the study of ethnozoology in Northeast India. Their articles helped immensely during the preparation of the manuscript. The authors sincerely acknowledge the initiative by North Eastern Institute of Folk Medicine, Pasighat, Arunachal Pradesh to document ethnozoological database of north-eastern part of India.

Author's Contribution:

The review is conceptualised by KS and KB. The review part is done by DJS and DT and prepared the draft of the manuscript. Finally, DT and KS prepared the manuscript.

References:

- Alves, R.R.N. & Souto, W.M.S. 2015. Ethnozoology: a brief introduction. *Ethnobiology and conservation*, doi:10.15451/ec2015-1-4.1-1-13.
- Alves R.R.N. & Nishida A.K. 2002. Aecdise do caranguejo-uçá, Ucidescordatus L. (Decapoda, Brachyura) navisão dos caranguejeiros. *Interciencia*, 27:110-117.
- Alves, R. R. N. 2012. Relationships between fauna and people and the role of ethnozoology in animal conservation. *Ethnobiology and conservation*, 1:1-69, doi: 10.15451/ec2012-8-1.2-1-69.

Betlu, A. L. S. 2013. Indigenous knowledge of zootherapeutic use among the Biate

tribe of Dima Hasao District, Assam, North-eastern India. *Journal of Ethnobiology and Ethnomedicine*, 9:1–15.

- Blakeney, M. 1999. What is Traditional Knowledge?Why should it be Protected? Who should Protectit? For Whom?: Understanding the Value Chain.UNESCO-WIPO/IPTK/RT/99/3.
- Borah M.P. & Prasad S.B. 2017. Ethnozoological study of animals-based medicine used by traditional healers and indigenous inhabitants in the adjoining areas of Gibbon Wildlife Sanctuary, Assam. *Indian Journal of Ethnobiology Ethnomedicine*,13 (1): 39.
- Chakravorty J., Ghosh S. & Meyer-Rochow V.B. 2011a. Practices of entomophagy and entomotherapy by members of the Nyshi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North East India). *Journal of Ethnobiology and Ethnomedicine*, 7 (1): 5.
- Chakravorty, J., Meyer-Rochow, V. B. & Ghosh, S. 2011b. Vertebrates used for medicinal purposes by members of the Nyishi and Galo tribes in Arunachal Pradesh (North-East India). *Journal of Ethnobiology and Ethnomedicine*, 7:13.
- Chanu, T.A., Teron, R. & Singh S.K. 2016. Ethnomedicinal use of certain fish species by ethnic groups of Bishnupur District in Manipur, NE India. *World Journal of Environmental Biosciences*, 5 (2): 1-5.
- Chatterjee, S., Saikia, A., Dutta, P., Ghosh, D., Pangging, G. & Goswami, A.K. 2006. Biodiversity significance of North east India. WWF-India, New Delhi. 1-71.
- Chinlampianga M, Singh R.K. & Shukla A.C. 2013. Ethnozoological diversity of Northeast India: Empirical learning with traditional knowledge holders of Mizoram and Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 12 (1): 18-30.
- Costa-Neto E.M. 1999. Healing with animals in Feira de Santana city, Bahia, Brazil. *Journal of Ethnopharmacology*, 65: 225-230.
- Costa-Neto, E. M. 2005. Animal-based medicines: Biological prospection and the sustainable use of zootherapeutic resources. *Anais da Academia Brasileira de Ciéncias*, 77: 33–43.
- da Nóbrega Alves, R.R. & Kioharu Nishida, A.2002. Aecdise do caranguejo-uçá, Ucidescordatus L. (Decapoda, Brachyura) navisão dos caranguejeiros. *Interciencia*, 27(3): 110-117.
- Dagyom K. & Gopi, G.V. 2009. Ethnozoology of Galo tribe with special reference to edible insects in Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 8 (1): 81-83.
- Das, D. 2015. Ethnozoological practices among tribal inhabitants in Khowai district of Tripura, North-East India. *Journal of Global Biosciences*, 4(9): 3364-3372.
- Devi, O.B., Devi, L.R., Singh, W.M. & Devi, A.K. 2015. Traditional medicines and health care from the animals of Manipur, India. *International Journal of*

Scientific and Research Publications, 5 (11): 417-422.

- Dhakal, P., Chettri, B., Lepcha, S. & Acharya, B. K. 2019. Rich yet undocumented ethnozoological practices of socio-culturally diverse indigenous communities of Sikkim Himalaya. *Indian journal of Ethnopharmacology*, 249: 112386. doi: <u>https://doi.org/10.1016/j.jep.2019.112386</u>.
- Emery, K.F. 2007. Assessing the impact of ancient Maya animal use. *Journal for Nature Conservation*, 15:184-195.
- Gangwar, A.K. & Ramakrishnan P.S. 1990. Ethnobiology notes on some tribes of Arunachal Pradesh, Northeast India. *Economic Botany*, 44: 94-105.
- Hussain, Jafrin & Tynsong, H. 2021. Review: Ethno-zoological study of animalsbased medicine used by traditional healers of North-east India. *Asian Journal of Ethnobiology*, 4 (1):1-22.
- Jamir, N.S. & Lal, P. 2005. Ethnozoological practice among Naga tribes. *Indian Journal of Traditional Knowledge*, 4 (1): 100-104.
- Jo, M., Park, M.H., Kollipara, P.S., An, B.J., Song H.S., Han S.B., Kim J.H., Song M.J. & Hong J.T. 2012 Anticancer effect of bee venom toxin and melittin in ovarian cancer cell through induction of death receptor and inhibition of JAK2/STAT3 pathway. *Toxicology and Applied Pharmacology*, 258:72–81.
- Jorgenson, J. P. 1998. The impact of hunting on wildlife in the Maya Forest of Mexico. In: Primack, R. B. (ed.) *Timber, tourists and temples: Conservation* and development in the Maya forests of Belize, Guatemala and Mexico, pp. 179-194. Washington: Island Press.
- Jugli, S., Chakravorty, J. & Meyer-Rochow, V.B. 2019. Zootherapeutic uses of animals and their parts: an important element of the traditional knowledge of the Tangsa and Wancho of eastern Arunachal Pradesh, North-East India. *Environment, development and sustainability*, 22: 4699–4734.
- Jugli, S., Chakravorty, J. & Meyer-Rochow, V.B., 2020. Tangsa and wancho of northeast India use animals not only as food and medicine but also as additional cultural attributes. *Foods*, 9(4): 528. doi: 10.3390/foods9040528. PMID: 32331342.
- Kakati, L.N., Ao, B. & Doulo V. 2006. Indigenous knowledge of zootherapeutic use of vertebrate origin by the Ao Tribe of Nagaland. *Journal of Human Ecology*, 19 (3): 163-167.
- Kakati, L.N. & Doulo, V. 2002. Indigenous knowledge System of zootherapeutic use by Chakhesang tribe of Nagaland, India. *Journal of Human Ecology*, 13(6): 419-423.
- Kunin, W.E. & Lawton, J.H. 1996. Does biodiversity matter? Evaluating the case for conserving species. In: Gaston, K.J. (Ed), *Biodiversity: a biology of num-bers* and differences, pp. 283-308. UK: Oxford: Blackwell Science.
- Mao, A.A., Hyniewta, T.M. & Sanjappa, M. 2009. Plant wealth of North East India

with reference to ethnobotany. *Indian Journal of Traditional Knowledge*, 8 (1): 96–103.

- Marques J.G.W. 1997. Fauna medicinal: recurso do am-bienteouameaça à biodiversidade? *Mutum*, 1(1): 4.
- Mihsill, K.R.R. & Keshan, B. 2017. Ethno-zoological practices by Khasis, an indigenous tribe of Meghalaya, India. *The NEHU Journal*, 15 (1): 89-96.
- Mittermeier, R.A., Gil, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & Da Fonseca, G.A.B. 2004 Hotspots revisited. CEMEX, Mexico.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., de Fonseca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. *Nature*, 403: 853-858.
- Ngaomei, G. & Singh, E.J. 2016. Traditional knowledge of therapeutic use of animals by Rongmei Tribe, Manipur, India. *International Journal of Scientific and Engineering Research*, 7 (8): 1982-1991.
- Singh, O.L. 2014. Medicinal insects of Manipur. *International Journal of Research in Science and Technology*, 1:1-5.
- Solanki, G.S., Lalchhandama, D. & Lalnunpuii. 2016. Use pattern of faunal resources by tribal and its impact on biodiversity in Dampa tiger reserve in Mizoram. *Journal of Bioresources*, 3 (1): 24-29.
- Solanki, G. S. & Chutia, P. 2009. Studies on ethno-medicinal aspects and zoo-therapy in tribal communities in Arunachal Pradesh, India. *International Journal of Ecology and Environmental Science*, 35(1): 67–76.
- Solanki, G. S. & Chutia, P. 2004. Ethnozoological and socio-cultural aspects of Monpas of Arunachal Pradesh. *Journal of Human Ecology*, 15(4): 251–254.
- Teronpi, V., Singh, H.T., Tamuli A.K. & Teron, R. 2012. Ethnozoology of the Karbis of Assam, India: Use of ichthyofauna in traditional healthcare practices. *Ancient Science Life*, 32 (2): 99-103.
- Unnikrishnan, P. M. 1998. Animals in Ayurveda. Amruth, 1(3): 1–23.
- Verma, A.K., Prasad, S.B., Rongpi, T. & Arjun, J. 2014. Traditional healing with animals (zootherapy) by the major ethnic group of Karbi Anglong district of Assam, *International Journal of Pharmacy and Pharmaceutical Sciences*, 6 (8): 593-600.
- Verma, A. K., Prasad, S. B., Rongpi, T. & Arjun, J. 2014. Traditional healing with animals (zootherapy) by the major ethnic group of Karbi Anglong district of Assam, India. *International Journal of Pharmacy and Pharmaceutical Sciences*, 6:1–8.
- Wang, D. Q.-H. & Carey, M. C., 2014. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review. *World Journal of Gastroenterology*, 20(29): 9952–9975.

Chapter 11 Phytochemical screening of ornamental orchid *Rhynchostylis retusa* (Kopou Phul)

Dipika Rajput

Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, India, 786004 Corresponding author: rajputdipika8@gmail.com

Abstract

Rhynchostylis retusa is a common orchid found in Assam. This orchid is commonly used as ornamental and medicinal purpose. It is commonly known as Kopou Phul, flower is ornamentally used in the spring festival of Bihu. Leaf juice used externally on skin, in the diseases of nervous system, also remedy for secondary syphilis, scorpion staining, rheumatism etc. Its roots are used against bronchitis and fever. The purpose of this study was to determine photochemical constitutes and antibacterial activity of Rhynchostylis retusa. The qualitative analysis for the present phytochemicals was performed using methanol, acetone and chloroform extracts of leaves Rhynchostylis plant by various standard techniques available. Phytochemical analysis revealed the presence of alkaloids, flavonoids, terpenoids, glycosides and phenols in all the extracts varying quantities. Since the plant contains high quantities of these bioactive potential compounds, it is reliable to possess large number of pharmacological values like antioxidants, antifungal, antibacterial, anti-inflammatory activities and are being employed for the treatment of different ailments in the indigenous system of medicine.

Keyword: *Rhynchostylis retusa*, ornamental, medicinal, phytochemical screening, Assam

Edited by: A. Bawri, Kenjum Bagra, Imlikumba & Robindra Teron

NEIFM Publishers (India), Pasighati-791102, Arunachal Pradesh. 2021: 598-604.

Recent Advances in Folk Medicine Research in North East India

Introduction

The medicinal plants are useful for healing as well as for curing of human diseases because of the presence of phyto-components. Phytochemicals are naturally occurring in the medicinal plants leaves, stem bark, fruits and roots that have defence mechanism and protect from various diseases. Natural products from plants called secondary metabolites are the end products of primary metabolites such as carbohydrates, amino acid, and chlorophyll lipid so on. They are synthesis large variety of chemical substances known as secondary metabolites which include alkaloids, steroids, flavonoids, terpenoids, glycoside, saponin, tannins, phenolic compounds etc.

Orchids have been used in traditional medicine in an effort to treat many diseases and ailments. They have been used as a source of herbal remedies in China 2800BC (Zhang et al., 2007 & Zhang et al., 2008). In India the earliest reference on orchids dates back to the Vedic period. The people of ancient India were well aware of the medicinal properties of orchids. The Indian ancient literature and Indian system of medicines used several orchids, both terrestrial like 'Ridhi', 'Vridhi', 'Jeevak' and epiphytic like 'Vandak' 'Jeewanti' etc. In India, there are legends wound around the beautiful inflorescence *Rhynchostylisretusa*as 'Seeta Pushpa (Rao, 1998). Orchids are associated with the culture of the Assamese people from the past. There is a tradition of using orchids by different tribes of Assam. Assamese people profusely used *Rhynchostylisretusa* (kopou phul), in the spring festival of Bihu. They are popular among the young folks who use them as a symbol of love and affection. During the spring festival, youths present the inflorescence to their hair. The spike is also used for decorating the head gear of bride in marriage ceremony.

Fig 11.1(a): Rhynchostylis retusa (complete plant); (b): Inflorescence of R. retusa

Orchids are well known for their beauty and its medicinal use. *Rhynchostylis retusa* is a monopodial epiphytic orchid that grows in almost every part of Assam. It is an epiphytic herbaceous orchid. It can tolerate a wide range of temperature from $3^{\circ}C$ - $34^{\circ}C$. Leaf juice and aerial roots were also used externally on skin, in the diseases of nervous system, ear pain and cleaning, also remedy for secondary syphilis, scorpion staining, rheumatism etc. Its roots are used against bronchitis and fever. It also used as emollient, throat inflammation. *Rhynchostylis retusa* roots were used to cure malarial fever. The whole plant preparations were used to cure blood dysentery, Tuberculosis, epilepsy, menstrual disorders, fever, gout, Asthma etc. (Hossain, 2011). Hence the present study focused on the phytochemistry of *Rhynchostylis retusa*.

Material and Method

Collection and identification of plant sample: Fresh plant sample of *Rhynchostylis retusa* was collected from Doomdooma, Tinsukia district. All plant samples were dried under shade and then ground into fine powder form (80 mesh sieve size) by electrical grinder. Powdered sample of all parts stored in clean paper bags and preserved at 40C for further analysis (Harborne, 1986).

Preparation of plant extracts: Organic extracts of leaves of plant were prepared by using three different solvents (Methanol, acetone and chloroform with decreasing polarity). Dried plant powder weighed carefully and used for extract preparation through Soxhlet apparatus at respective temperature (Oyaizu, 1986 & Ordon et al., 2006). The extract obtained was filtered and concentrated in rotary evaporator. The concentrated plant extracts (semi-solid mass) were lyophilized and then store the dried extracts in airtight bottles.

Qualitative phytochemical screening: The different qualitative chemical tests were performed for establishing phytochemical profile of methanol, acetone and chloroform extracts obtained from cold extractions. The tests for alkaloids, Saponins, Phytosterols, phenols, Tannins, glycosides, flavonoids were performed on all the extracts to detect various phytoconstituents present in them.

Estimation of total phenols: The extracts were dissolved in 5mLof distilled water and were estimated for total phenols by Folin-Ciocalteau reagent method (Gutteridgde, 1995) with absorbance measured at 650nm with catechol (50 μ g mL-1) as the standard.

Estimation of total flavonoid: The extracts were dissolved in DMSO and were estimated for total flavonoid content by aluminium chloride method (Harborne,

1998 & Ghasemi et al., 2014) with absorbance measured at 510 nm with quercetin (100 μ g mL-1) as the standard.

Statistical analysis

All the experiments were carried out in triplicate and the results are expressed as mean \pm standard error (SE).

Results

Qualitative phytochemical screening: The different qualitative chemical tests were performed for establishing phytochemical profile of three extracts obtained from cold extraction. Phytochemical screening was performed for three extracts which revealed the presence of alkaloids, saponins, phytosterols, flavonoids, phenols, glycosides in different extracts (**Table 11.1**).

Qualitative estimation of phytochemicals: The quantitative estimation of phytochemicals, which were detected in phytochemical screening of *Rhynchostylis retusa* revealed the presence of high phenol content (129.020 μ g/mL) was recorded in the methanol extract (**Table 11.2**). High content of flavonoids (108.34 μ g/mL) was recorded in the methanol extract (**Table 11.2**).

Phytochemical Screening	Μ	Α	С				
Alkaloids							
Mayer's	+	+	+				
Wagners	+	+	+				
Hager's	+	+	-				
Dragendroff's	+	+	-				
Saponins	Saponins						
Foam Test	+	+	+				
Phytosterols							
Liebemann-Burchards	+	-	-				
Phenols							
Ferric chloride	+	+	+				
FC reagent	+	+	-				
Flavonoids	+	+	+				
Glycosides	-	-	-				

 Table 11.1: Phytochemical screening of four extracts of Rhynchostylis retusa.

Note: M: Methanol, A: Acetone, C: Chloroform

Extracts Phenols (µg/ml) X*± SE		Flavonoid (µg/ml) X*± SE	
Μ	129.020±0.864	108.34 ± 1.145	
A	112.65±0.045	96.21±0.028	
С	47.00±0.017	29.87±0.014	

Table 11.2: Quantitative estimation of phytochemicals.

Note: * - Mean of 3 replications, SE- Standard Error.

Estimation of total Phenols and flavonoids content

From the standard curve equation of catechin; y = 0.043x+0.126, R2 = 0.981 (Fig. 11.2) and gallic acid; y = 0.020x + 0.145, R2 = 0.991 (Fig. 11.3).

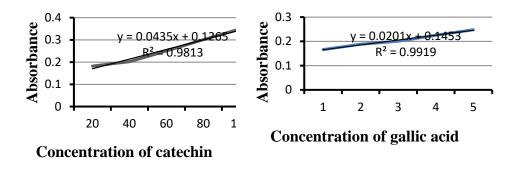


Fig 11.2. Calibration curve of catechin.

Fig 11.3: Calibration curve of gallic acid.

Discussion:

Nature is the source of medicinal agent and there are number of modern drugs have been isolated from natural sources (Gutteridgde, 1995). Herbal medicines are free from side effects, adverse effects and they are economical and easily available will be beneficial for the mankind over the centuries (Kahl & Kappus, 1993; Kalita et al., 2012). *Rhynchostylis retusa* is well known for its ornamental as well as medicinal value. Phytochemical analysis revealed the presence of alkaloids, flavonoids, saponins, glycosides and phenols in all the extracts (**Table 11.1**). Present study of *Rhynchostylis retusa* revealed the presence of high phenol content (129.020 µg/mL) was recorded in the methanol extract

(**Table 11.2**). High content of flavonoids (108.34 μ g/mL) was also recorded in the methanol extract (**Table 11.2**).

Since the plant contains high quantities of these bioactive potential compounds, it is reliable to possess large number of pharmacological values like antioxidants, antifungal, antibacterial, anti-inflammatory activities and are being employed for the treatment of different ailments in the indigenous system of medicine (Kumar et al., 2013; Mahmoud, 2014). The findings of the present study suggest that *Rhynchostylis retusa* could be a potential source of natural antioxidant that could have great importance as therapeutic agents in preventing or slowing the oxidative damage of tissues and biomolecules, eventually leading to disease conditions, like degenerative diseases. Flavonoids are the major bioactive compounds useful against free radical derived oxidative stress (Gutteridgde, 1995). A detailed study on the role of different phytoconstituents which influences the antioxidant activities are further required to be investigated.

Reference:

- Ghasemi, P.A., Siahpoosh, A., Setayesh, M. & Craker, L. 2014. Antioxidant activity, total phenolic and flavonoid contents of some medicinal and aromatic plants used as herbal teas and condiments in Iran. *Journal of Medicinal Food*, 17: 1151–1157.
- Gutteridgde, J.M.C. 1995. Free radicals in disease processes: A complication of the cause and consequence. *Free Radical Research communications*, 19: 141-158.
- Harborne, J.B. 1998. *Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis.* Springer, Netherlands.
- Hossain, M. M. 2011. Therapeutic orchids: traditional uses and recent advances-an overview. *Fitoterapia*, 82(2): 102-140.
- Kahl R & Kappus H, 1993. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. *Zeitschriftfür Lebensmittel Untersuchung und Forschung*, 196: 329–338.
- Kalita, S., Kumar, G., Karthik, L. & Rao, K.B.V. 2012. In vitro antioxidant and DNA damage inhibition activity of aqueous extract of *Lantana camara* L. (Verbenaceae) leaves. *Asian Pacific Journal of Tropical Biomedicine*, 2 (3): S1675–S1679.
- Kumar, G., Karthik, L. & Rao, K.B.V. 2013. Phytochemical composition and in vitro antioxidant activity of aqueous extract of *Aerva lanata* (L.) Juss. ex Schult. Stem (Amaranthaceae). *Asian Pacific Journal of Tropical Medicine*, 6: 180–187.

- Mahmoud, R. 2014. In vitro evaluation of antioxidant properties of ten Iranian medicinal plants. *Iranian Red Crescent Medical Journal*, 16: e10264.doi: 10.5812/ircmj.10264.
- Ordon, J. D., Gomez, J. D., Vattuone, M. A. & Isla, M. I. 2006. Antioxidant activities of *Sechium edule* (Jacq.) Swart extracts. *Food chemistry*, 97(3): 452-458.
- Oyaizu, M. 1986. Studies on products of the browning reaction, antioxidative activities of browning reaction products prepared from glucosamine. *Japanese Journal of Nutrition*, 44: 307–315.
- Rao, T. A. 1998. Conservation of wild Orchids of Kodagu in the Western Ghats. Centre for Technology Development and Agricultural Technologies and Services Private Ltd., Bangalore
- Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S. & Yao, X. S. 2007. Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile*. *Journal of Natural Products*, 70(1): 24-28.
- Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H. & Yao, X. S. 2008. Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. *Journal of Chinese Pharmaceutical Sciences*, 17(4): 314-318.

Chapter 12

Ethnobotanical survey of Ritual plants used by Boro tribe of Udalguri district, Assam

Anaru Boro

Department of Botany, Tangla College, Udalguri, Assam. Corresponding author: dranaruboro@gmail.com

Abstract

The Boro tribe of Udalguri district performs different religious and ritual activities during different seasons of a year. Many plants are associated in such tribal festivals. Therefore, an ethnobotanical survey was conducted to document such ritual plants utilized by the tribe in different festivals in the district. In present study, a total of 23 ritual plants were recorded from the study area having different utilities in different festivals of the tribe. Among these ritual plants 8 species were found to have medicinal values and 5 other species having diverse utilities. Maximum species were found to be conserved in the gardens by the tribe. Only 8 species of these ritual plants were recorded from the wild.

Key words: Ritual plants, Boro tribe, Udalguri district, Ethnic uses, Conservation.

Introduction

In tribal societies plants play major rule in their livelihood. Plants are used as foods, medicines, shelter, etc. by the tribal people. Plants are also worship as gods and goddesses for the protection and betterment of their life. They have their tradition to worship different trees in different occasion. Many tribal communities preserve this tradition through folklore and worship their deities right from the occasion of birth to mourning death. They perform specific worship with pressie offerings. Various plant parts like bark, twigs, leaves flowers, fruits and seeds are offered to gods and goddesses. They generally grown such ritual plants in gardens or in religious institutions which they regard as sacred plants.

Boro tribe of Assam is also very rich in traditional knowledge. They are belonging to Mongoloid group. Their culture is rich in magico-religious beliefs and taboos. They are known as animist and believe the five natural powers such as sun, air, earth, fire and space as gods and deities. They believe that these powers reside in some plants especially in *Euphorbia neriifolia*. The plant is worship as a symbol of the supreme deity Bathou Borai. So this plant have specific place in north-east corner of the courtyard of every household known as Bathou alter. Along with Bathou Borai, Bathou Buri (Mainao Buri) is also worship. Any Rice varieties are regarded as Bathou Buri (Mainao Buri) by the tribe. They worship these plants along with other associated plants in different religious and ritual activities.

Boro tribe of Udalguri district performed five religious and ritual festivals in different season of a year. Bwisagu, the first festival of Boro tribe is celebrated during mid of April month for seven days beginning from the day of Sankranti of Chaitra. On the first day of this festival, a ritual activity was performed by the tribe for the cattle which includes the decoration and ritual bathing. Cattles were bathed early in the morning into a river then worship by offering some plant parts. The second festival performed is Amthisuwa (June), third Katigosasaonai (October), Mainaofwrbw (November) and last Domasifwrbw (Mid-January). All these festivals of the tribe were observed associated with various plants part(s) utilizations. Some of these plants were conserved in their home garden for other uses. So present study was conducted to document the various utilizations aspects of these ritual plants, utilization of plant part(s), their distribution and availability in the Udalguri district.

Materials and Methods

1. Location and physiography of study area

Udalguri district is located in the central part of the state Assam on the northern bank of Brahmaputra River along the foothills of Himalaya. Udalguri was declared as a separate district on 30 October 2003 with Govt. Notification No. GAG (B)-137/2002/Pt/117. It is situated in between the Latitudes between 26°30/N and 27° 0/N and Longitudes between 91°08/E and 92°20/ E. The district occupies an area of 1852.16 km2. It is bounded by Bhutan and West Kameng district of Arunachal Pradesh state in the north, Sonitpur district in the east and Darrang district in the south and Baksa district in the west. The major tributaries of the river Brahmaputra viz., Nonoi, Suklai, Nallanadi, Barnadi, Pachnoi, Noa, Kulsi, Bornoi, Golandi and Dhansiri which originate from the foothills of the himalayan range flow through the district. The district is inhabited by multi-lingual and multi-cultural groups of people. The Bodo-Kacharis and Rabhas are the local inhabitant tribe of the district. Topographically the district is almost flat with small patches of hills along the Indo-Bhutan border. Physiographically the district can be divided into two parts-plain region and foothill region. The most part of the district adjoining the northern border of foothills of Indo-Bhutan border form the plain belt of the district.

2. Collection of data

The present etnobotanical study of ritual plants used by Boro tribe in Udalguri District was based on households surveymade during 2014-2016. The Boro tribe dominated villages were selected during field survey. Primary data on different types of uses of Ritual plants was collected through direct interviews with people of different age groups of both sexes with semi-structured questionnaire. For confirmation, the plants were collected from surroundings of households and also from wild habitat followed by head of family. Collected plant specimens were processed following standard Herbarium techniques (Jain & Rao, 1977). Identification was confirmed by matching with pre-identified specimens in the Herbarium of the Department of Botany, Gauhati University, Guwahati and counter checked with authentic published literatures like Flora of Assam (Kanjilal et al., 1934-40), *Flora of British India* (Hooker 1872-1897), *Flora of BTAD, Assam* (Borthakur et al., 2018), etc. The specimens are deposited in the Department of Botany, Tangla college, Tangla. Nomenclatures have been checked with the help of online websites like ww.theplantlist.org and www.ipni.org.

Presentation of data

Systematic enumeration of the plants is arranged alphabetically. The families, Vernacular name (Boro name), habit, description of specimen, use of the plants in religious and ritual practices etc. are mentioned.

Results

1. Aegle marmelos (L.) Corr. (Rutaceae)

Vernacular name: Bel (Bodo)

Description: Tree, deciduous, 10-25 m tall; leaves trifoliate, alternate. Flowers in axillary panicles, greenish-white, fragrant

Parts used: Leaf and fruit.

Ritual virtue: Leaves are used in ritual activities especially in wedding ceremony. Trifoliate leaves are tie with thread along with leaves of *Mangifera indica* and some flowers keep hanging in the main entrance of wedding ceremony.

Medicinal use: Ripe fruits are eaten raw or making juices for various stomach problems such as gastric ulcer, gas problem, pain, etc.

Distribution: INDIA (Throughout India), SRI LANKA, TROPICAL AMERICA, MALAYSIA.

Local status: Wild as well as planted in the district.

2. *Allium sativa* L. (Alliaceae)

Vernacular name: Sambram (Bodo)

Description: Herb, bulb solitary; leaves flat, scape slender.

Parts used: Bulb.

Ritual virtue: The bulb along with chilly are used to eliminate bad evil.

Medicinal use: The paste is also applied on nostril and naval region to get relief of cough.

Distribution: INDIA (Throughout India), MALYSIA, SRI LANKA, NEPAL, BHUTAN, CENTARL ASIA, CANADA, UNITED STATES.

Local status: Cultivated in the district.

3. Alpinia nigra (Gaertn.) B. L. Bertt. (Zingiberaceae)

Vernacular name: Tharai (Bodo)

Description: Herb, erect with tuberous rootstocks, leafy stem 1-2 m high; Leaves oblong lanceolate. Flowers in panicles, pink.

Parts used: Leafy stem.

Ritual virtue: Leafy stem are used in Bwisagu festival along with *Phragmites karka*, *Clerodendrum viscosum*, and *Melastoma malabathricum* where cattles are worship by the tribe during mid of April month.

Distribution: INDIA (Assam, Arunachal Pradesh, Meghalaya), MALYSIA, SRI LANKA, NEPAL, BHUTAN.

Local status: Wild.

4. Areca catechu L. (Arecaceae)

Vernacular name: Goy (Bodo)

Description: Palm about 12-30 m tall; Leaves in a terminal crown.

Parts used: Fruit.

Ritual virtue: The Boro tribe use Areca catechu along with *Piper betle* in all religious and ritual activities like worshiping god, wedding ceremonies, welcoming guests, exchange of gifts, and even as a signal for a visitor to depart.

Other uses: The nut with leaf of *Piper betle* is used as masticatory.

Distribution: INDIA (Arunachal Pradesh, Assam, Manipur, Meghalaya, Sikkim), AUSTRALIA, MYANMAR, SRI LANKA.

Local status: Cultivated.

5. *Bambusa tulda* Roxb. (Poaceae)

Vernacular name: Jathiowa (Bodo)

Description: Tufted bamboo reaching 20-45 meters in height. Leaves alternate, linear-lanceolate.

Parts used: Culm.

Ritual virtue: The whole plant parts are used in all religious practices. Bamboo sticks are used in and around the sacred plant *Euphorbia neriifolia*as a main altar of worshiping.

Other use: Besides all the customary handicrafts were made of this plant. It also used in making fence, pillar of hut, ladder, etc.

Distribution: INDIA (Assam, Arunachal Pradesh, Meghalaya, West Bengal), BANGLADESH, MYANMAR.

Local status: Cultivated in the district.

6. *Clerodendrum viscosum* Vent. (Verbenaceae)

Vernacular name: Mwkhnabifang (Bodo).

Description: Shrub, 0.5-2.5 m high; leaves simple, opposite. Flowers in panicles of corymbose, white tinged with pink in terminal panicles of cymes.

Parts used: Leafy twig.

Ritual virtue: Leafy twig are used along with *Alpinia nigra*, *Melastoma malabathricum* and *Phragmites karka* in Bwisagu festival where cattles are worship by the tribe during mid of April month.

Medicinal use: Root extract is used for stomach ache.

Distribution: INDIA (Throughout India), SRI LANKA, VIETNAM, CHINA, BHUTAN.

Local status: Wild in the district.

7. *Cynodon dactylon* (L.) Pers. (Poaceae)

Vernacular name: Dublihagra (Bodo).

Description: Perennial stoloniferous grass, about 0.5 m long. Leaves linear, lanceolate.

Parts used: Whole plant.

Ritual virtue: Twigs are used in every religious festival.

Distribution: INDIA (Throughout India), CHINA, MALAYSIA, MYANMAR.

Local status: Wild in the district.

8. *Delinia indica* L. (Dilleniaceae)

Vernacular name: Thaigir (Bodo).

Description: A big tree, 10-30 m tall; leaves simple, oblanceolate. Flowers solitary, white.

Parts used: Fruit.

Ritual virtue: The sepals are used as Diya or oil lamp in various festivals especially in Katifwrbw.

Medicinal use: Mucilaginous seeds are used for hair problems.

Distribution: INDIA (Assam, Arunachal Pradesh, Tripura, Mizoram, Tamil Nadu, Kerala, Odisha, West Bengal, Uttar Pradesh), MALAYSIA, SRI LANKA, THAILAND, VIETNAM.

Local status: Wild as well as planted in the district.

9. *Euphorbia neriifolia* L. (Euphorbiaceae).

Vernacular name: Sijou (Bodo).

Description: Shrub, 1-6 m tall; leaves alternate, simple. Cyathia in cymes.

Parts used: Whole plant.

Ritual virtue: The plant is worship by the tribe and planted as symbol of Bathou religion. Boro tribe regard this plant as the most sacred plant.

Medicinal use: Paste of leaves is used in different acne of bodies for quick relieve.

Distribution: INDIA (Throughout India), MALAYSIA, MYANMAR.

Local status: Planted in the district.

10. Flemingia strobilifera (L.) Ait. (Papilionaceae).

Vernacular name: Makhiotalaifang (Bodo).

Description: Shrub, 0.5-3 m tall; leaves simple, trifoliate. Flowers inlong axillary racemes.

Parts used: Leafy twig.

Ritual virtue: Leafy twig is used in ritual activity performed during Bwisagu festival. Distribution: INDIA (Throughout India), NEPAL BHUTAN, MYANMAR, CHINA, PAKISTAN, BANGLADESH.

Local status: Wild in the district.

11. Jatropha curcas L. (Euphorbiaceae).

Vernacular name: Enda (Bodo).

Description: Shrub; leaves palmatifid. Flowers in axillary and terminal cymes.

Parts used: Whole plant.

Ritual virtue: Plant is used in dead ritual by the tribe.

Medicinal use: Paste Twigs are advised to brush in pyorrhea problem.

Distribution: INDIA (Throughout India), TROPICAL AMERICA.

Local status: Wild as well as planted in the district.

12. Justicia gendarussa Burm. f. (Acanthaceae)

Vernacular name: Jatrashi (Bodo).

Description: Shrub, 1-2 m tall; leaves simple, linear. Flowers terminal, narrow spikes, white.

Parts used: Leafy twig.

Ritual virtue: Twigs along with *Cynadondactylon* and *Ocimumtenuiflorum* tie together with white thread for purifying home in each and every religious ceremonies and ritual activities.

Distribution: INDIA (Assam, Arunachal Pradesh, Meghalaya, Manipur, Tripura), TROPICAL ASIA, AFRICA, SRI LANKA, PHLIPPINES.

Local status: Planted in the district.

13. *Litsea salicifolia* (Roxb. ex Nees) Hook. f. (Lauraceae)

Vernacular name: Digloti (Bodo).

Description: Shrub, 2-5 m tall; leaves simple, lanceolate. Flowers in umbels, purple. Parts used: Leafy twig.

Ritual virtue: Leafy twig are used in bwisagu festival.

Distribution: INDIA (Assam, Arunachal Pradesh, Meghalaya, Manipur, Mizoram, Tripura, Sikkim, West Bengal, Uttar Pradesh), MYANMAR.

Local status: Wild as well as planted in the district.

14. *Mangifera indica* L. (Anacardiaceae).

Vernacular name: Thaijou (Bodo).

Description: A big tree about 10-30m tall; leaves simple alternate. Flowers in terminal panicles.

Parts used: Leaves.

Ritual virtue: Leaves are used for ritual purposes mostly related to wedding ceremony.

Distribution: INDIA (Throughout India), BHUTAN, NEPAL, SRI LANKA, MALAYSIA.

Local status: Planted in the district.

15. Melastoma malabathricum L. (Melastomaceae)

Vernacular name: Furkha (Bodo).

Description: Shrub, 1-3 m tall; leaves simple, hairy on both sides. Flowers in clusters, purple.

Parts used: Leafy twig.

Ritual virtue: Leafy twig are used along with *Alpinia nigra*, *Clerodendrum viscosum* and *Phragmites karka* in Bwisagu festival where cattles are worships by the tribe during mid of April month.

Other uses: Ripe fruits are eaten raw as seasonal fruit. Distribution: INDIA (Throughout India), MALAYSIA, SRI LANKA, THAILAND, VIETNAM MYANMAR. Local status: Wild in the district.

16. Musa ssp. (Musaceae)

Vernacular name: Thalir (Bodo).

Description: Fleshy herb about 1-6 m tall, pseudostem robust; leaves oblong.

Parts used: Leaf apex, shoot, root.

Ritual virtue: Leaf apex, fruit and fleshy petiole are heavily used by Boro people in every religious activities. The plant is also erected on both side of the main entry of any festival premises.

Medicinal uses: Root paste is used for toot acne.

Other uses: The young shoots are used as vegetable and dried shoots and rhizomes are used in preparation of *khar* (Alkaline).

Distribution: INDIA (Throughout India), SRI LANKA, BHUTAN, NEPAL, BANGLADESH.

Local status: Planted in the district.

17. *Ocimum tenuiflorum* L. (Lamiaceae).

Vernacular name: Thulunsi (Bodo).

Description: Shrub, 0.3-2-1 m tall; leaves simple, pubescent. Flowers in pedicelled racemes, reddish pink.

Parts used: Leafy twig.

Ritual virtue: The plant also considered as sacred by the tribe. Twigs are used for purifying home and various ritual activities.

Medicinal uses: Leaves extract mixed with honey is used for respiratory problems. Distribution: INDIA (Throughout India), SRI LANKA, AUSTRALIA, WEST ASIA. Local status: Planted in the district.

18. Oryza sativa L. (Poaceae).

Vernacular name: Mairong (Bodo).

Description: Annual cereal, 0.5-1.5 m tall.

Parts used: Cereal.

Ritual virtue: The Rice is indispensable item in every festival of Boro tribe. Rice is regarded as deity and kept inside north-east corner of a kitchen in a full of a pitcher.

Distribution: INDIA (Assam, Arunachal Pradesh, Meghalaya, Tripura, Sikkim, West Bengal, Madhya Pradesh, Punjab, Andhra Pradesh, Bihar, Uttar Pradesh), SRI LANKA, JAPAN, BRAZIL, CHINA, INDONESIA, BANGLADESH, THAILAND, MYANMAR, PHILIPPINEA. Local status: Cultivated in the district.

19. Phragmites karka (Retz.) Trin. exSteud. (Poaceae)

Vernacular name: Nwlwhagra (Bodo).

Description: Perennial grass with creeping rhizome, about 4 m high. Panicles decompounds, hairy.

Parts used: whole plant.

Ritual virtue: Stem are used along with *Alpinia nigra* and *Clerodendrumviscosum* in Bwisagu festival where cattles are worship by the tribe during mid of April month. Other uses: The culms are used for making temporary wall of a hut.

Distribution: INDIA (Assam, Arunachal Pradesh, Meghalaya, Tripura), SRI LANKA, JAPAN, S.E. ASIA, MYANMAR, AUSTRALIA, AFRICA.

Local status: Wild in the district.

20. *Piper betle* L. (Piperaceae)

Vernacular name: Fathwi (Bodo).

Description: Lianas; leaves simple, cordate, glabrous.

Parts used: Leaves.

Ritual virtue: A pair of leaves is always used along with *Areca catechu* in all traditional religious and ritual activities like worshiping god, wedding ceremonies, welcoming guests, exchange of gifts, and even as a signal for a visitor to depart.

Distribution: INDIA (Throughout India), MALAYSIA, SRI LANKA.

Local status: Planted in the district.

21. Saccharum spontaneumL. (Poaceae)

Vernacular name: Khasi hagra (Bodo).

Description: Perennial grass, erect culms, 2-5 m tall. Panicle densely silky hairy. Parts used: Whole plant.

Ritual virtue: The plant is mostly used in all religious festivals of the tribe.

Distribution: INDIA (Assam, Arunachal Pradesh, Meghalaya, Tripura), AFRICA, AUSTRALIA, SRI LANKA.

Local status: Wild in the district.

22. *Tabernaemontana divaricata* (L.) R.Br. *ex* Roem. & Schult. (Apocynaceae). Vernacular name: Daodibibar (Bodo).

Description: Shrub about 1-4m tall; leaves simple, alternate. Flowers in cymes, fragrant, white.

Parts used: Flower.

Ritual virtue: Flowers are used for worshiping various deities.

Distribution: INDIA (Throughout India), ASIA.

Local status: Wild as well as planted in the district.

23. Trichosanthes bracteata(Lam.)Voigt. (Cucurbitaceae)

Vernacular name: Dawkhakhamflai (Bodo).

Description: Lianas; leaves cordate, simple, alternate. Flowers dioecious. Parts used: Root.

Ritual virtue: Rhizome is used during ritual activity performed in Bwisagu festival. Distribution: INDIA (Assam, Arunachal Pradesh, Manipur, Mizoram, Tripura), MYANMAR.

Local status: Wild in the district.

Discussion and Conclusion

Boro tribe of Udalguri district collect the ritual plants from their surroundings habitat. They collect these plants in the previous day of each festival. In present study, a total of 23 ritual plants species were recorded. These plants belong to 23 different genera under 18 families. Out of which 14 species belong to 14 different genera under 13 Dicotyledons families and 9 species belong to 9 different genera under 5 Monocot families. The species *Flemingia strobilifera* and *Litsea salicifolia* were reported as most difficult to collect from the nearby surroundings habitat and collected far from the forest areas. The informants stated that it is difficult to present rate of habitat loss in the district the number of this species decreasing day by day.

Some species of these ritual plants claimed to have medicinal value for common ailments such as gastric problems, cough, tooth acne, etc. In present study 8 ritual plants species were reported to have medicinal value. Among other species like *Phragmites karka* and *Bambusa tulda* were collected for other uses like fencing, temporary wall of house, pillar, etc. *Musa ssp.* were found to be most utilized species among these ritual plants. All the parts of the plant such as leaf, fruits, fleshy petiole and roots were found to have different utility. So any species of genus *Musa* were found in each and every household of the tribe in the district. Some species like *Euphorbia neriifolia* were not reported in wild habitat in the district. Habitats of these ritual plants are decreasing so fast due to development of Small Tea Growers (STG) in the district. Therefore, proper documentation of such plants especially having medicinal value in the district is very important before extinction.

References

Arora, R.K. 1981. Native food plants of North-Eastern Tribals. In: S.K. Jain (ed.) Glimpses of Indian Ethnobotany, pp. 91-106. Oxford &IBH Publications Co., New Delhi.

- Barua, I. C.; Goswami, T.K. & Barua, K.N. 1996. Distributional Notes on some plants in Assam. *Journal Economic and Taxonomy Botany*, 20(3):655-660.
- Baruah, A. (ed.) 2015. Medicinal and Aromatic Plants: exploration and utilization. EBH Publishers, Guwahati, Assam.
- Baruah, P. & Sarma, G.C. 1984. Studies on the medicinal uses of plants by the North-East Tribes-II. *Journal of Economic and Taxonomic Botany*, 5(3): 599-604.
- Baruah, P. & Sarma, G.C. 1987. Studies on the medicinal uses of plants by the North-East Tribes-III. *Journal of Economic and Taxonomic Botany*, 11:71-76.
- Basumatary, S.K.; Ahmed, M. & Deka, S.P. 2004. Some medicinal plant leaves used by Boro (tribal) people of Goalpara district, Assam. *Natural Product Radiance*, 3(2): 88-90.
- Begum, S.S. & Gogoi, R. 2007. Herbal recipe prepared during Bohag or Rongali Bihu in Assam. *Indian Journal of Traditional Knowledge*, 6(3): 417-422.
- Bhagabati, A.K., Kalita, M.C. & Baruah, S. 2006. Biodiversity of Assam (Status Strategy & Action Plan for Conservation). EBH Publishers, M.L.N. Road, Panbajar, Guwahati.
- Bhagabati A. K., Kar B. K. & Bora A. K. 2001. Geography of Assam, Rajesh Publication, New Delhi.
- Bor, N.L. 1940. *Flora of Assam*, Vol. V. Government Press, Shillong (Reprinted 1982).
- Bora, P. J. 1999. A study on ethnomedicinal uses of plants among the Bodo tribe of Sonitpur district, Assam. *Journal of Economic and TaxonomicBotany*, 23(2): 609-614.
- Borah, R., Saikia, D. & Borthakur, S.K. 2001. Studies on Ethnomedicinal Plants of Darrang District, Assam. Proceedings of National Institute of Science Communication and Information Resources, C.S.I.R., New Delhi, pp. 70-78.
- Bordoloi, B.N., Sharma Thakur, G.C. & Saikia, M.C. 1987. *Tribes of Assam: Part-I*. Tribal Research Institute, Assam.
- Borthakur, S.K. 1981. Certain plants in folklore and folklife of Karbis (Mikirs) of Assam. In: S.K. Jain (ed.) *Glimpses of Indian Ethnobotany*, pp 170-181. Oxford & IBH Publishing Co., New Delhi,.
- Borthakur, S.K., Bawri, A., Boro, D. & Boro, A. 2018. *Flora of BTAD*, Vols. I-IV. Eastern Book House Publisher (India), Panbazar Guwahati, Assam.
- Boro, A., Bhattacharjee, K. & Sarma, G.C. 2011. Wild vegetables used by Bodo tribe in Udalguri District of Assam, India. *Pleione* 5(2):209-216.
- Boro, A., Baishya, S.K. & Sarma, G.C. 2012. Plants used by Bodo tribe in preparation of *Kolakhar (khar)* of Udalguri district of Assam, India. *Pleione* 6(1):128-131.
- Boro, A. 2017. *Floristic Study of Udalguri District, Assam.* Ph.D. Thesis, Gauhati University, Guwahati, Assam.

- Brahma, B.K. 1992. A study on the ethno-botany of the Bodos of Kokrajhar District, *Assam*, Ph.D. Thesis, Gauhati University, Guwahati, Assam.
- Brahma, K. 1992. *Study of Socio-Religious- Belief, Practices and Ceremonies of the Bodos.* Punthi Pustak, Calcutta.
- Chowdhery, H.J. & Murti. S.K. 2000. *Plant diversity and Conservation in India- An overview*. Bishen Singh and Mahendra Pal Singh, Dehra Dun, India.
- Chowdhury, S. 2005. *Assam's Flora: Present status of Vascular Plants*. Assam Science Technology and Environment Council, Guwahati, Assam.
- Endle, S. 1997. The Kacharis. Low price Publications. Delhi.
- Gogoi, P. & Borthakur, S.K. 1991. Plants associated with Religio-cultural beliefs of the Tai Khamtis. *Ethnobotany*,3:11-17.
- Gogoi, R. & Borthakur, S.K. 2001. Notes on herbal recipes of Bodo tribe in Kamrup district, Assam. *Ethnobotany*, 13:15-23.
- Hooker, J.D. 1872-1897. The Flora of British India. Vols. 1-7. Reeve & Co., London.
- Jain, S.K. (ed.). 1995. Manual of Ethnobotany. Scientific Publisher, Jodhpur.
- Jain, S.K. & Rao, R.R. 1977. *AHandbook of Field and Herbarium Methods*. Today & Tomorrow's Printers and Publishers, New Delhi, India.
- Kanjilal, U.N.; Kanjilal, P.C.; Das, A. & De, R.N. 1934-40. Flora of Assam. Vols. I-IV. Government Press, Shillong [Reprinted 1982].
- Rao, R.R. 1996. Traditional knowledge and sustainable develovement- Key role of ethnobotanist. *Ethnobotany* 8:14-24.
- The Plant List. 2020. The Plant List.http://www.theplantlist.org. (Accessed on 28th & 29th March 2020) http://www.ipni.org. (Accessed on 28th & 29th March 2020)

Chapter 13

UTILIZATION PATTERN OF MEDICINAL PLANTS BY ZEME TRIBE OF MANIPUR, NORTHEAST INDIA

Robert Panmei, P.R. Gajurel*& B. Singh

Department of Forestry, North Eastern Regional Institute of Sciences and Technology Nirjuli, Arunachal Pradesh, 791109 Corresponding authors:prgajurel@gmail.com

Abstract

The state Manipur of North East India is located in the Indo Myanmar Biodiversity Hot spot and found rich in floristic diversity. The hilly areas of the state are inhabited by various tribal communities who are mostly forest dwellers. The *Zeme* is one of the tribes inhabiting in the Tamenglong district of the state and have been adopting traditional ways of resources utilization to fulfil their day-to-day needs. They are fulfilling their nutritional requirements and treating the various health ailments using mostly the wild species. To document the traditional knowledge systems and diversity of plants used an ethnobotanical incentivization was made. As a part of the study the present paper aims to document and understand the utilization pattern of medicinal plant by the Zeme tribe of Manipur. Altogether84Angiospermic plants were recorded within 47 families and78 genera. These plants were used to treat 28 types of health ailments where gastro-intestinal disorders were found to be the most prevalent ailment category. *Croton joufra, Gynura bicolor* and *Oroxylum indicum* are the most commonly used species preferred for more than 3 ailments. Majority of medicinal plant recorded exist in the wild without any particular conservation effort. The results of this study also showed that the local community still depend on medicinal plants, and indigenous knowledge are the main systems to maintain health care in Tamenglong District. Further phytochemical investigations may be helpful to validate the presence of bioactive chemicals following the ethnomedicinal knowledge of the tribes.

Key words: Ethnomedicinal plants, Zeme tribe, Manipur, Tamenglong, ethnobotany, healing practices.

Introduction

Documentation of traditional medicinal plants play a vital role for biodiversity conservation, bioactive chemical extractions and retention of indigenous knowledge. consequently, ethnobotanical survey was found to be one of the reliable approaches to drug discovery (Fabricant & Farnsworth, 2001). For a state like Manipur, inhabited by variant ethnic communities have an ample scope of ethnobotanical exploration. The state Manipur exhibits a rich and unique diversity of flora and fauna and the richness of the plant diversity is also evident from the uses of large number of plants species by the indigenous communities of the state (Panmei et al., 2019). The 'Meitei' is the major ethnic group of the state mostly residing in the valley region. There are 32 different tribes recognized by the government inhabiting mostly in the hill districts of the state (Rongmei & Kapoor, 2005). Ethnically and linguistically Zeme tribes belong to the mongoloid group of races and speak Zeme, a Tibeto-Burman language under the Naga Bodo section family (Grierson, 1903; Kabui, 1991). In Manipur they are dominantly inhabited in Tousem division of Tamenglong district. Being forest dwellers, the Zeme tribe of Manipur have been adopting traditional way of harvesting these rich ethnobotanical resources to fulfil their healthcare and other day to day needs. The study aims to gather the ethnomedicinal plant species and their associated knowledge of the Zeme Naga tribe.

Materials and methods

The study was conducted during 2017- 2018in Tamenglong district of Manipur (Fig. 13.1). The district lies between 24°30'N and 25°27'N Lat. and of 93°10'E and 94°54'E Lon., with an altitude of 1,260 m a.s.l. Integrated approach for botanical collections, group discussions and interviews with semi structured questionnaires were followed (Jain, 1987; Martin, 1995). Total eight local healers were selected from 4 villages (Aben, Mandu, Tousem Khunou and Khullen) adopting purposive sampling techniques (Tongo, 2007). Collection of plant samples were made as per standard taxonomic procedure (Jain & Rao, 1977).Collected plants were

identified with the help of Herbarium of BSI, Shillong and relevant taxonomic literatures.

Informant consensus factor (ICF) was calculated to determine the effectiveness of medicinal plants in each ailment category (Trotter & Logan, 1986). It was calculated as $ICF = Nur \cdot Nt / Nur \cdot I$; Where Nur is the number of use reports for a particular ailment category and Nt is the number of species used for the particular ailment category by all informants. All the ailments treated in the study area are grouped into 11 major/broad categories following Tumoro and Maryo (2016), Chekole (2017)

Fidelity level (FL) was calculated to determine the most frequently used plant species for treating a particular ailment. It was calculated for the most frequently reported diseases or ailments by the formula $FL \% = Np/N \times 100$; where Np is the number of use reports cited for a particular ailment and N refers to the total number of use reports cited for any given plant species (Alexiades, 1996).

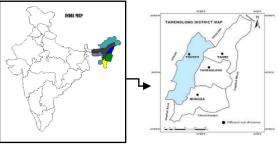


Fig. 13.1. Map showing Study site.

Results & Discussion *Diversity of Medicinal Plants used*

The study revealed that the Zeme tribe of Manipur rely on the different plants found in their surroundings in management of their health and health ailments. A total of 84 species were recorded under 78 genera and 47 families that are used as ethnomedicinal plants. All the species recorded are Angiosperm which consist of 84% dicotyledons and 16 % monocotyledon. Among the different families of Angiospermic plants, Asteraceae with 9 species, Fabaceae 9, Euphorbiaceae with 5 and Zingiberaceae with 4 species were the most used sources for the medicinal purposes. Among the medicinal plants, shrubs were the most dominant habit form with maximum representation (36 spp), followed by herbs (20 spp), trees (19 spp) and climbers (9 spp). Details of the recorded species along with their botanical identity, part(s) used, disease treated and mode of treatment is presented in **Table 13.1**. Many of the reported species in the present study are also enumerated in earlier workers from the state (Sinha, 1996; Singh et al., 2000; Rajkumari et al., 2013; Panmei et al., 2018) and found important components of the floristic diversity of the state.

Plant part(s) used, mode of preparation and application

The selection of species and its parts are mostly depends on the nature of the disease treated and availability of the species. The healers of the Zeme tribe applied different plant parts in preparation of the crude drug for treatment of different diseases. Among the various plant parts employed, the leaves (52%) were mostly used, followed by the bark (16%), roots (12%), rhizomes (9%) and the flowers (1%) were found least used in preparation of different remedies (Fig. 13.2). Although crushed paste (34%) followed by water decoction (20%) were the most common form of the crude drug, the uses of juice, extracts, raw chewing, poultice, vapour, etc. were also followed (Fig. 13. 2). Majority of the reported remedies were drawn from mixture or multiple plants (55%). It is believed that multiple remedies contain a range of pharmacologically active compounds and the poly-herbal treatment has more healing power than the single medicinal plant treatment since each medicinal plant used in the mixture is a remedy (Teklehaymanot et al. 2007). Species like Solanum spirale, Oroxylum indicum, Croton joufra and Gynura bicolor are used for treating 2 or more different ailments. Such plant with multi medicinal uses may have more degradation liability. Therefore, proper conservation intervention is required for sustainable utilization.

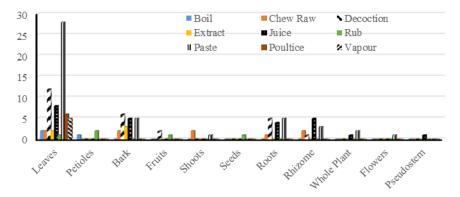


Fig. 13.2. Proportional contributions of plant parts and crude drug preparations.

The various health ailments treated in the study area are grouped into 11 broad disease categories (Table. 13.1). Among the major ailment categories, digestive system disorder was dominated with 33 use-reports followed by dermatological disorder 24 use- reports. Around 28 spp were found used to treat Digestive System Disorder followed by Dermatological disorder, Cultural related/ Undefined illness, Musculoskeletal & Nervous system, Pain/ Analgesic and antipyretic (21 spp, 17 spp, 12 spp, 10 spp and 2 spp respectively).

SI. No.	Botanical name [Family]	Local name (Zeme)	Habit	Part(s) and preparation mode	Broad Ailment category
1.	Acorus calamus L. [Acoraceae]	Nammechak	Herb	Leaves/ rhizome + Oroxylum indicum (bark)+ Plantago erosa (leaves) crushed paste are applied to releif headache. Acorus calamus (leaves/rhizome) + Oroxylum indicum (bark) crushed juice mixed with water is taken after food for jaundice. Acorus calamus+ Ocimum basilicum (leaves) + Lasianthus cyanocarpus (leaves) +Cymbopogon citratus decoction is taken for stomachic and gastritis. Crushed paste of leaves of Lasianthus sp. + Schefflera elliptica + Mussaenda glabra + Piper sylvaticum+ Acorus calamus (rhizome)	Analgesic Digestive system disorder Digestive system disorder Undefined illness. Undefined illness

Table 13.1. List of ethnomedicinal plants.

Recent Advances in Folk Medicine Research in North East India Edited by: A. Bawri, Kenjum Bagra, Imlikumba & Robindra Teron NEIFM Publishers (India), Pasighati-791102, Arunachal Pradesh. 2021: 617-645

				is applied to relief stomach pain. <i>Mimosa pudica</i> (leaves) + <i>Kaempferia galanga</i> (rhizome) + <i>Acorus</i> <i>calamus</i> (leaves/rhizome) crushed juice is taken (2-3 cup) for 1 week to relief sudden body pain.	
2.	Ageratum conizoides L. [Asteraceae]	Nakamkiheu	Herb	Crushed leaves paste applied on cuts and wounds	Dermatological
3.	<i>Aloe vera</i> (L.) Burm [Agavaceae]	Aloe vera	Herb	Leaves applied in burnt and blister	Dermatological
4.	Artemisia sp. [Asteraceae]	Takaibua	Shrub	Leaves decoction against stomachic. Crushed leaves juice also applied for sinusitis	Digestive system disorder. Respiratory system disorders
5.	<i>Azadirachta indica</i> A. Juss Mém. [Meliaceae]	Neem	Tree	Boiled leaves vaporish used in massage to relief fever	Antipyretic
6.	Bambusa sp. [Poaceace]	Kepai, Kechuipuak	Tree	Scraped bark paste applied in cuts and wounds	Dermatological
7.	<i>Blumeopsis flava</i> (DC.) Gagnep. [Asteraceae]	Tingmandibae	Shrub	Leaves + Houttuynia cordata + Tagetes erecta (leaves) crushed juice mixed with few drops of kerosene is used in	Undefined illness

				massaging to relief body pain.	
8.	<i>Brachystemma calycinum</i> D. Don Caryophyllaceae	Ngakpinchin	Climber	Crushed leaves paste applied to heal wounds.	Dermatological
9.	Brassica sp. [Brassicaceae]	N'jeikambe	Herb	Leaves poultice against headache	Pain analgesic
10.	<i>Cajanus cajan</i> (L.) Millsp. [Fabaceae]	Chiaupi	Shrub	Leaves + Cannabis sativa (leaves) decoction is taken for dysentery. Cajanus cajan (leaves) + Oroxylum indicum (bark) crushed paste mixed with water is taken against jaundice.	Digestive system disorder Digestive system disorder
11.	<i>Callicarpa arborea</i> Roxb. [Lamiaceae]	N'kong	Shrub	Crushed bark paste applied in cuts and wounds. <i>Callicarpa arborea</i> leaves + <i>Tabernaemontana</i> <i>divaricata</i> (leaves) crushed paste are applied to control bleeding in cuts and wounds.	Dermatological Dermatological Dermatological
12.	<i>Cannabis sativa</i> L. [Malvaceae]	Ganja	Shrub	Leaves + <i>Cajanus cajan</i> (leaves) decoction taken for dysentery.	Digestive system disorder
13.	<i>Capsicum chinese</i> Jacq. [Solanaceae]	Tasu	Shrub	Berries directly applied on spider/millipede sting.	Insect and snake bite

14.	<i>Carica papaya</i> L. [Caricaceae]	Chingaina	Tree	Leaves + <i>Cajanus cajan</i> (leaves) decoction taken for dysentery.	Digestive system disorder
15.	<i>Caesalpinia sappan</i> L. [Fabaceae]	Patikungam	Tree	Bark decoction taken as tea, as health tonic.	General metabolism
16.	<i>Centella asiatica</i> (L.) Urb.[Apiaceae]	Khareine	Herb	2-3 drops of crushed leaves juice of <i>Centella asiatica</i> + <i>Phlogacanthus</i> <i>thyrsiflorus</i> + <i>Momocordia</i> sp. are applied for 3 days before bed for conjunctivitis.	Eyes ailment
17.	<i>Clerodendrum</i> <i>glandulosum</i> Lindl. [Lamiaceae]	N'ringkun	Shrub	Boiled leaves eaten against hypertension.	Circulatory system disorder
18.	<i>Colocasia esculenta</i> (L) Schott [Araceae]	Kebeitikpe	Shrub	Boiled petiole eaten for dysentery	Digestive system disorder
19.	<i>Cordia trichotoma</i> (Vell.) Arráb. ex Steud. [Boraginaceae]	Temau bang	Tree	Shoots are chewed and applied to relief itching caused by cut and wounds.	Dermatological
20.	<i>Cheilocostus speciosus</i> (J. Koenig) C.D. [Costaceae]	Ruangpuitiu	Shrub	Decoction of <i>Cheilocostus</i> <i>speciosus</i> (rhizome) + <i>Schefflera elliptica</i> (bark) + <i>Mussaenda glabra</i> (bark) + <i>Phyllanthus</i> <i>urinaria</i> (leaves) is taken	Nervous system disorder

				against paralysis	
21.	<i>Croton caudatus</i> Geiseler [Euphorbiaceae]	Sipuiniria	Shrub	Croton caudatus(roots) +Pericampylusincanus(roots)+Xanthiumstrumarium(roots)juice/decoction is taken torelief labor pain	Urinogenital system disorder
22.	<i>Croton joufra</i> Roxb. [Euphorbiaceae]	Haobum	Tree	Decoction of root is taken for dysentery/ diarrhea. Root paste is applied to cure ringworm. Bark decoction for burp and chest pain.	Digestive system disorder Dermatological Digestive system disorder
23.	<i>Curcuma xanthorrhiza</i> Roxb. [Zingiberaceae]	Gah	Shrub	Rhizome + <i>Erythrina</i> <i>stricta</i> (bark) crushed juice drink in stomach pain	Digestive system disorder
24.	<i>Cucurbita maxima</i> Duch. ex Lamk. [Cucurbitaceae]	Maa-na	Shrub	Crushed leaves juice applied for blood clotting during injury.	Dermatological
25.	<i>Curcuma caesia</i> Roxb. [Zingiberaceae]	Hegeingmeiga	Herb	Rhizome + <i>Erythrina</i> sp (bark) crushed juice is applied to alleviate sudden body swelling. Juice of fresh rhizome is also taken to relief stomachic.	Undefined illness Digestive system disorder Digestive system disorder

				Fresh rhizome eaten to relief stomachic.	
26.	<i>Cymbopogon citratus</i> (DC.) Stapf [Poaceae]	M'bauliangtu	Shrub	Leaves decoction of Cymbopogon citratus + Ocimum bassilum + Acorus calamus + Lasianthus cyanocarpus is taken for stomachic and gastritis.	Digestive system disorder
27.	<i>Datura stramonium</i> L. [Solanaceae]	Kepeu	Shrub	Poultice of leaves applied to relief body pain.	Undefined illness
28.	<i>Drymaria cordata</i> (L.) Willd. ex Schult. [Caryophyllaceae]	Phitpanew	Herb	Fresh leaves applied to cure abscesses (boil)	Dermatological
29.	<i>Erythrina</i> <i>stricta</i> Roxb.[Papilionaceae]	Tabang	Tree	Raw bark + <i>Curcuma</i> <i>caesia</i> (rhizome) crushed juice is applied to lessen sudden body swelling (evil spirit) Bark + <i>Curcuma caesia</i> (rhizome) crushed juice is taken to relief stomach pain.	Undefined illness Undefined illness
30.	<i>Euphorbia</i> sp. [Euphorbiaceae]	Heduiheu	Shrub	Juice of crushed whole plants applied in skin irritation (scabies)	Dermatological
31.	Gmelina arborea Roxb.	Bae	Tree	Gmelina arborea (fresh	Musculoskeletal

	[Verbenaceae]			bark) + Tabernamontana divaricata (leaves) + Solanum spirale (leaves/ roots) + Paedaria foetida (whole plant) + Rhaphidophora decursiva are crushed and paste are used as poultice for settling bones for 3 days.	disorder
32.	<i>Gnaphalium purpureum</i> L. [Asteraceae]	Kuliheuchiambe	Herb	Crushed leaves paste applied on cuts and wounds.	Dermatological
33.	Gossypium arboreumL.[Malvaceae]	Kalang	Shrub	Leaves of Impatiens balsamina+ Tageteserecta +Gossypium arboreum+ Marengpa are crushed together and the paste are applied in cut and wound and cover with Phrynium pubinerve leaves which are poultice.	Dermatological
34.	<i>Gynura bicolor</i> (Roxb. ex Willd.) DC. [Asteraceae]	N'pungi	Shrub	Boiled leaves eaten in stomachic and ulcer.	Digestive system disorder
35.	<i>Gynura cusimbua</i> (D.Don) S.Moore [Asteraceae]	Khamadijei	Shrub	Flowers and leaves paste used for clotting blood during injury.	Dermatological

36.	<i>Hedyotis scandens</i> Roxb. [Rubiaceae]	N'rim	Shrub	Leaves decoction taken in urinary problem.	Urinogenital system disorder
37.		Samma/ Nsenmah	Herb	Leaves of <i>Houttuynia</i> <i>cordata</i> + <i>Tagetes erecta</i> + <i>Sonchus</i> sp. are crushed together in hand with some kerosene and used for massage in body pain (Puan); care should be taken while massaging, e.g. in hand it should be massage downward while in neck it be done circularly.	Undefined illness
38.	<i>Hydrocotyle japonica</i> Makino [Apiaceae]	Heriepeikhuak	Herb	Vapour of boiled leaves of <i>Hydrocotyle japonica</i> + <i>Persicaria barbata</i> + <i>Ipomoea batatas</i> are used for massage in body pain	Analgesic
39.	<i>Impatiens balsamina</i> L. [Balsaminaceae]	BAHEU	Shrub	Leaves of <i>Impatiens</i> <i>balsamina</i> + <i>Tagetes erecta</i> + <i>Gossypium arboreum</i> + Marengpa are crushed together and the paste are applied in cut and wound and cover with <i>Phrynium</i>	Dermatological

				<i>pubinerve</i> leaves which are poultice.	
40.	<i>Imperata cylindrica</i> (L.) Raeusch. [Poaceae]	Ngaina	Shrub	<i>Imperata cylindrica</i> (roots) + <i>Euphorbia</i> sp. (leaves) + <i>Solanum spirale</i> (roots) are crushed and paste applied in bone settle, sprain and cramp.	Musculoskeletal disorder
41.	<i>Ipomoea batatas</i> (L.) Lam. [Convolvulaceae]	Hereukumbe	Herb	Boiled leaves vapour of <i>Ipomoea batatas+</i> <i>Persicaria barbata+</i> <i>Hydrocotyle japonica</i> are massage to relief body pain.	Undefined illness
42.	<i>Kaempferia galanga</i> L. [Zingerberaceae]	Hekeuga	Herb	Leaves of <i>Kaempferia</i> galanga+ Tagetes erecta + <i>Impatiens balsamina</i> leaves crushed paste are applied in cut and wound and cover with <i>Phrynium</i> <i>pubinerve</i> .	Dermatological

43.	<i>Lagenaria siceraria</i> (Molina) Standl. [Cucurbitaceae]	N'rau	Climber	Leaves applied to remove bee sting.	Snake and insect bites
44.	<i>Lasianthus cyanocarpus</i> Jack [Rubiaceae]	Chingbanam	Shrub	Vapour of boiled leaves used for massage in body pain. Leaves decoction of <i>Lasianthus cyanocarpus</i> +	Undefined illness Digestive system disorder
				Lastantinus cyanocarpus + Ocimum bassilum + Acorus calamus + Cymbopogon citratus is taken for stomachic and gastritis. Crushed leaves paste of +Lasianthus cyanocarpus + Schefflera elliptica + Mussaenda glabra + Piper sylvaticum+ Acorus calamus (rhizome) applied for puansumei.	Undefined illness
45.	<i>Lindernia</i> sp [Scrophulariaceae]	Agakpu	Herb	Crushed leaves paste of <i>Lindernia</i> sp. + <i>Tabernaemontana</i> <i>divericata</i> + <i>Piper</i> <i>sylvaticum</i> are used in sprain and bone settle.	Musculoskeletal disorder
46.	<i>Lobelia nummularia</i> Lam. [Campanulaceae]	Buiseipewteu	Herb	Crushed plant applied in cut and wound	Dermatological

47.	<i>Mallotus pallidus</i> (Airy Shaw) Airy Shaw [Euphorbiaceae]	N'Nim bang	Tree	Fresh roots are tasted to diagnose evil spirit possession (Bitter taste).	Undefined illness
48.	<i>Mangifera indica</i> L. [Anacardiaceae]	Bachi	Tree	Crushed bark (inner part) mixed with ashes are wipe over the body of jaundice patient, it is believed that mucus is discharged from the body, disease is cured after there are no mucus.	Digestive system disorder
49.	<i>Meyna spinosa</i> Roxb. ex Link [Rubiaceae]	Tuding	Tree	Barks are crushed and the juice extract is taken for headache and back pain.	Analgesic
50.	<i>Mimosa pudica</i> L. [Leguminosae]	Kangamheu	Herb	<i>Mimosa pudica</i> (leaves) + <i>Kaempferia galanga</i> (rhizome) + <i>Acorus</i> <i>calamus</i> (leaves/rhizome) crushed juice of 2-3 cup is taken for a week against body pain.	Undefined illness/ cultural related
51.	<i>Molineria capitulata</i> (Lour.) Herb. [Hypoxidaceae]	M'pak	Shrub	Fresh crushed rhizome paste applied in cut and wound as coagulant	Dermatological
52.	<i>Musa paradisiaca</i> L. [Musaceae]	Nnungpui	Herb	Crushed pseudostem juice drank in snake bite to neutralize the venom.	Insect and snake bites

				Petiole applied in snake	
53.	<i>Mussaenda glabra</i> Vahl	M'Phingpa	Shrub	bite to remove venom. <i>Mussaenda glabra</i> (bark) +	Nervous system
55.	[Rubiaceae]	in migpu	Sindo	Cheilocostus speciosa (rhizome) + Schefflera	disorder
				elliptica (bark) + Phyllanthus urinaria	Undefined illness
				(leaves) the decoction is taken for paralysis.	
				Crushed leaves paste of	
				Lasianthus cyanocarpus +	
				Schefflera elliptica	
				+Mussaenda glabra +	
				Piper sylvaticum + Acorus	
				<i>calamus</i> (rhizome) applied for body pain	
54.	Oroxylum indicum (L.)	Ngumpi	Tree	Oroxylum indicum (bark)	Undefined illness
	Kurz [Bignoniaceae]			+ Phaseolus lunatus	
				(leaves) + Plantago erosa	Digestive system
				(leaves) + Acorus calamus	disorder
				(leaves/rhizome) are	
				crushed and applied for	Digestive system
				headache.	disorder
				Oroxylum indicum (bark)	
				+ Acorus calamus	Digestive system
				(leaves/rhizome) crushed	disorder

55.	Paederia foetida L.	Banam	Climber	juice mixed with water t is taken after food for jaundice. <i>Oroxylum indicum</i> (bark)+ <i>Zehneria scabra</i> (roots) crushed juice and decoction is taken for jaundice . <i>Cajanuscajan</i> (leaves) + <i>Oroxylum indicum</i> (bark) crushed paste mixed with water is taken against jaundice . <i>Gmelina arborea</i> (fresh	Musculoskeletal
	[Rubiaceae]	Danam		bark) + Tabernamontana divaricata (leaves) + Solanum spirale (leaves) + Solanum spirale (leaves/ roots) + Paedaria foetida (whole plant) + Rhaphidophora decursiva are crushed and paste are used as poultice for settling bones for 3 days. Leaves/whole plant is crushed and bandage for sprain and bone settle.	disorder Musculoskeletal disorder

				for the same purpose.	
56.	<i>Parkia timoriana</i> (DC.) Merr. [Mimosaceae]	Kampi	Tree	Bark juice for dysentery. Juice extract from crushed barks of Parkia timoriana + <i>Psidium guajava</i> + <i>Phyllanthus emblica</i> are taken for dysentry and diarrhea.	Digestive system disorder
57.	<i>Pericampylus glaucus</i> (Lam.) Merr. [Menispermaceae]	N'giekukak	Climber	Crushed root juice/ decoction of <i>Pericampylus</i> <i>glaucus</i> + <i>Urena lobata</i> are taken against trouble after child birth.	Urinogenital system disorder
58.	<i>Persicaria barbata</i> (L.) H.Hara [Polygonaceae]	Heubin	Herb	Boiled leaves vapour of <i>Ipomoea batatas+</i> <i>Persicaria barbata</i> + <i>Hydrocotyle japonica</i> are used for massage in body pain.	Analgesic
59.	<i>Polygonum posumbu</i> BuchHam. ex D. Don [Polygonaceae]	Kokfei	Shrub	Leaves paste applied for pile.	Digestive system disorder
60.	<i>Phaseolus lunatus</i> L. [Fabaceae]	Teipingei	Climber	Oroxylum indicum (bark) + Phaseolus lunatus (leaves) + Plantago erosa (leaves) + Rarouga (leaves/rhizome)	Analgesic

				are crushed and applied for headache.	
61.	thyrsiflorus Nees.	Nongmangkha	Shrub	2-3 drops of crushed leaves juice of <i>Centella asiatica</i> +	Eyes disorder
	[Acanthaceae]			Phlogacanthus thyrsiflorus + Momocordia sp. are applied for 3 days before bed for conjunctivitis. Leaves decoction also	antipyretic
				taken against cold and fever	
62.	<i>Phrynium pubinerve</i> Blume [Marantaceae]	Kena	Shrub	Leaves of Impatiens balsamina + Tagetes erecta +Gossypium arboretum are crushed together and the paste are applied in cut and wound and cover with Phrynium pubinerve leaves which are poultice.	Dermatological
63.	<i>Phyllanthus emblica</i> L. [Phyllanthaceae]	Rampholochi	Tree	Juice extract from crushed barks of <i>Parkiatimoriana</i> + <i>Psidium guajava</i> + <i>Phyllanthus emblica</i> are taken for dysentry and diarrhea.	Digestive system disorder
64.	Phyllanthus urinaria L. [Euphorbiaceae]	Sibaina	Herb	Schefflera elliptica (bark) + Costus speciosa (rhizome)	Nervous system disorder

				+ <i>Mussaenda glabra</i> (bark) + <i>Phyllanthus</i> <i>urinaria</i> (leaves) the	
				decoction is taken for	
				paralysis.	
65.	Piper sylvaticum Roxb.		Climber	Crushed leaves paste of	Musculoskeletal
	[Piperaceae]			<i>Lindernia</i> sp. +	disorder
				Tabernaemontana	Undefined illness
				divericata + Piper	
				sylvaticum are used in	
				sprain and bone settle.	
				Crushed leave paste of	
				Lasianthus cyanocarpus +	
				Schefflera elliptica +	
				Mussaenda glabra + Piper	
				sylvaticum + Acorus	
				calamus (rhizome) against	
				body pain	
66.	Plantago erosa Wall.	Khamadigei	Herb	Oroxylumindicum (bark) +	Undefined
	[Plantaginaceae]			Phaseolus lunatus (leaves)	
				+ <i>Plantago erosa</i> (leaves) +	
				Acorus calamus	
				(leaves/rhizome) are	
				crushed and applied for	
				headache.	
67.	Psidium guajava L.	Chikarichi	Tree	Juice extract from crushed	Digestive system

	[Myrtaceae]			barks of <i>Parkia timoriana</i> + <i>Psidium guajava</i> + <i>Phyllanthus emblica</i> are taken for dysentry and diarrhea.	disorder
68.	<i>Quercus serrata</i> Murray [Fagaceae]	M'phu	Tree	Inner bark eaten for dysentery.	Digestive system disorder
69.	<i>Rhaphidophora decursiva</i> (Roxb.) Schott [Araceae]	Henuaheu	Climber	Poultice of leaves in sprain and muscle cramp. Poultice of leaves applied to remove blood clot.	Musculoskeletal disorder Dermatological
70.	<i>Sambucus javanica</i> Blume [Adoxaceae]	Mbeuchimbe	Shrub	Leaves decoction for gastritis.	Digestive system disorder
71.	Schefflera elliptica (Blume) Harms [Araliaceae]	Talang	Climber	Schefflera elliptica (bark) + Costus speciosa (rhizome) + Mussaenda glabra (bark) + Phyllanthus	Nervous system disorder
				urinaria(leaves)thedecoctionistakenforparalysis.Crushedleavespasteof+Lasianthuscyanocarpus +Scheffleraelliptica +Scheffleraelliptica+Pipersylvaticum+Acoruscalamus(rhizome)applied	Undefined illness

				for body pain	
72.	<i>Schima wallichii</i> Choisy [Theaceae]	N'kia	Tree	2-3 fresh tender leaves eaten to reliefnausea; leaves facing toward east are preferred.	Digestive system disorder
73.	<i>Senna alata</i> (L.) Roxb. [Fabaceae]	Ghajangnew	Shrub	2/3 leaves /shoot eaten raw with water against burp (foul breath)	Digestive system disorder
74.	<i>Solanum spirale</i> Roxb. [Solanaceae]	N'Kabua, Mangmangrachi	Shrub	Gmelinaarborea(freshbark/root/stem)+Tabernamontanadivaricata(leaves) +Solanum spirale(leaves/ roots) +Paedariafoetida(whole plant) +Rhaphidophoradecursivaarecrushedandpasteusedaspoulticeforsettingbonesbonesfor 3 days.Poulticeofleavesusedtocurebloodclotclotinthebody.Groundedrootsmixedwithraweggyolkareappliedtohealwounds.Imperatacylindrica(roots)Euphorbiasp.(leaves) +Solanum spirale(roots)arecrushedandpasteapplied	Musculoskeletal disorder Dermatological Dermatological Musculoskeletal disorder

				in bone settle, sprain and cramp.	
75.	<i>Spondias pinnata</i> (L. f.) Kurz [Anacardiaceae]	Majingchi	Tree	Bark eaten for dysentery.	Digestive system disorder
76.	<i>Stixis suaveolens</i> (Roxburgh) Pierre [Capparaceae]	Jourachi	Shrub	Stixis suaveolens (roots) + Zingiber zerumbet (rhizome) crushed and the juice is taken to relieve body pain.	Analgesic
77.	<i>Tabernaemontana</i> <i>divaricata</i> (L.) R.Br. ex Roem. &Schult. [Apocyanaceae]	Jampu, Hingbangheu	Shrub	<i>Gmelina arborea</i> (fresh bark) + <i>Tabernamontana</i> <i>divaricata</i> (leaves) + <i>Solanum spirale</i> (leaves/ roots) + <i>Paedaria foetida</i> (whole plant) + <i>Rhaphidophora decursiva</i> are crushed and paste are used as poultice for settling bones for 3 days.	Musculoskeletal and nervous system
78.	<i>Tagetes erecta</i> L. [Asteraceae]	Marengpatikpa	Shrub	Leaves of <i>Houttuynia</i> cordata+ Tagetes erecta + Sonchus sp. are crushed together in hand with some kerosene and used for massage in body pain	Undefined illness Dermatological Analgesic Analgesic

				(Puan); Leaves of Impatiens balsamina+ Tagetes erecta. +Gossypium arboretum crushed paste are applied in cut and wound and cover with Phrynium pubinerve. Crushed leaves paste also applied to relief headache.	
79.	<i>Tamarindus indica</i> L. [Fabaceae]	Kemeupi	Tree	Half seed (endosperm) is applied to remove bee sting.	Snake and insect bites
80.	<i>Urena lobata</i> L. [Malvaceae]	Raujia	Shrub	Crushed root juice/ decoction of <i>Pericampylus</i> glaucus+ Urena lobata are taken against trouble after child birth.	Urinogenital system disorder
81.	<i>Xanthium strumarium</i> L. [Asteraceae]	Tingie	Shrub	Crushed leaves applied to heal wound.	Dermatological
82.	<i>Zehneria scabra</i> Sond. [Cucurbitaceae]	Siammgaime	Climber	<i>Oroxylum indicum</i> (bark)+ <i>Zehneria scabra</i> (roots) crushed juice and decoction is taken for jaundice. Raw fruits or leaves decoction are taken twice a day (morning and before bed)	Digestive system disorder Digestive system disorder

				for jaundice. Raw fruits; leaves decoction is also taken for stomachache.	
83.	Zingiber sp.	Gahtikpae	Herb	Fresh rhizome juice taken	Digestive system
	[Zingiberaceae]			for stomachic.	disorder
84.	<i>Zingiber zerumbet</i> (L.) Roscoe ex Sm. [Zingiberaceae]	Gakhuang	Shrub	Stixis suaveolens (roots) + Zingiber zerumbet (rhizome) crushed and the juice is taken to relieve body pain. Rhizome juice taken for jaundice, crushed paste also applied on the entire body.	<u> </u>

The ICF values were calculated and the value ranges from 0 (Respiratory system disorder) to 0.5 (Urinogenital system disorder and eye ailment (**Table 13.2**). This indicates the homogeneity of information provided by the different informants. It is found that the ICF values is inversely proportional to the use of mixture of multiple species among the healers for a particular ailment. The study found that digestive system disorder and dermatological disorder like cut & wound, ringworm, abscesses, eczema, skin irritation to be the most prevalent ailments among the community, where maximum number of plants and use reports are recorded. The major cause of digestive system disorder may be due to poor domestic hygiene condition, frequent consumption of chilly, alcohol and dietary routine, while the prevalence of dermatological disorder could be associated with the laborious lifestyle and poor hygienic condition.

Fidelity level (FL) was calculated for the most cited medicinal plants with 3 and above use-reports. This indicates the most preferred species mentioned by the informants to treat a particular ailment. *Clerodendrum glandulosum* and *Callicarpa arborea* has the highest FL values with 100 % for Dermatological disorder and least *Acorus calamus* with 40 % for Digestive system disorder (**Table 13.3**). This is due to the fact that the two species are being preferably used only for treatment of single type of ailment and the knowledge are homogenous among the informants.

Broad categories	Ailments/ Diseases	No. of species used (Nt)	No. of Use reports (Nur)	ICF Values
Antipyretic	Fever	2	2	0.00
Circulatory system disorder	Hypertension, Health tonic	2	2	0.00
Cultural related/ Undefined illness	Hysteria, evil spirit, stomach pain, body pain	17	18	0.05
Dermatological disorder	Cut & wound, ringworm, abscesses, eczema, skin irritation	21	24	0.13
Digestive system Disorder	Jaundice, Stomachic, Gastritis, Dysentry, Diarrhea, ulcer, haemorrhoids, nausea	28	33	0.15
Eye ailment	Conjunctivitis	2	3	0.50

Table 13.2. Disease category and their ICF values.

Musculoskeletal & Nervous system	Bone fracture, muscle cramp, sprain, paralysis	12	13	0.08
Pain/Analgesic	Headache and Bodyache	10	12	0.18
Poisoning	Spider sting, snake bite, millipede sting	3	4	0.33
Respiratory system disorder	Sinusitis, cold	2	2	0.00
Urinogenital system disorder	Urinary trouble	2	3	0.50

 Table 13.3. Fidelity Level of most common used plants.

Botanical name [Family]	Broad Ailment	NP	N	FL %
	category			=
				NP/N
				×100
Clerodendrum glandulosum Lindl.	Circulatory	6	6	100.00
	system disorder			
Callicarpa arborea Roxb.	Dermatological	3	3	100.00
[Lamiaceae]				
Oroxylum indicum (L.) Kurz	Digestive system	3	4	75.00
[Bignoniaceae]	disorder			
Croton joufra Roxb.	Digestive system	2	3	66.66
[Euphorbiaceae]	disorder			
Lasianthus cyanocarpus Jack	Undefined illness	2	3	66.66
[Rubiaceae]				
Zingiber zerumbet (L.) Roscoe ex	Analgesic	2	3	66.66
Sm. [Zingiberaceae]				
Solanum spirale Roxb.	Musculoskeletal	2	4	50.00
[Solanaceae]	disorder			
Acorus calamus L. [Acoraceae]	Digestive system	2	5	40.00
	disorder			

Conclusion

The study showed that the Zeme tribe of Manipur still depends on medicinal plants adopting the indigenous knowledge systems for health management and treatments of

various diseases. The herbal practices adopted by the local healers are well accepted by the local mass. Phytochemical investigations particularly of the species with higher use report may be helpful to find out the bioactive chemicals of the ethnomedicinal plants and validate their application. The finding of the present study may contribute in undertaking in depth study of the ethnomedicinal and ethnophrmacological practices of the tribe for human welfare and also in biodiversity conservation.

Acknowledgements

The authors are grateful to the *Zeme* people of Tousem division Tamenglong district for their valuable information and co-operation during the field studies. The first author also thanks DST, New Delhi for providing financial assistance through INSPIRE fellowship sanctioned order no. DST/INSPIRE Fellowship/2013/685. The authors express gratitude to the Director NERIST and to the Head, Department of Forestry, NERIST for all facilities and help

References

- Alexiades, M. N. 1996. Selected guidelines for ethnobotanical research- a field manual advances in economic botany, vol. 10. The New York Botanical Garden, Bronx.
- Grierson, G. A. 1903. Linguistic Survey of India; Tibeto-Burman Family; Specimens of the Bodo, Naga and Kachin Groups. Superintendent of Government Printing, India, Calcutta. n <u>http://dsal.uchicago.edu/books/lsi/lsi.php?volume=3-2&pages=540#page/3/mode/1up</u> (Accessed on 07 Jan. 2017)
- Jain, S. K. 1987. A Manual of Ethnobotany. Scientific Publisher, Jodhpur, India. Martin, G. J. 1995. Ethnobotany. A Methods Manual. Chapman and Hall, London.
- Panmei, R., Gajurel, P. R., Singh, B. 2019. Ethnobotany of medicinal plants used by the Zeliangrong ethnic group of Manipur, northeast India. *Journal of Ethnopharmacology*, 235: 164-182. https://doi.org/10.1016/j.jep.2019.02.009
- Panmei, R., Gajurel, P. R. & Singh, B. 2018. Ethnomedicinal plants of the Bunning Wildlife Sanctuary of Manipur, India *Pleione* 12(1):1-10.
- Rajkumari, R., Singh, P. K., Das, A. J. & Dutta, B. K. 2013. Ethnobotanical Investigation of wild edible and medicinal plants used by Chiru tribe of Maniputr, India. *Pleione*, 7(1): 167-174.
- Rongmei, K.S. & Kapoor, S., 2005. Zeliangrong today: a Naga tribe of Manipur. *Stud. Tribes Tribals*, 3 (2), 105–116. https://doi.org/10.1080/0972639X.2005.11886526.

- Singh, N. P., Chauhan, A. S. & Mondal, M. S. 2000. Flora of Manipur, series 2. Botanical Survey of India. Kolkata.
- Sinha, S. C., 1996. *Medicinal Plants of Manipur*. Manipur Association for Science and Society, Imphal.
- Tongo, M. D C. 2007. Purposive sampling as a tool for informant selection. *Ethnobotany Research and Applications*, 5: 147-158.
- Trotter, R. & Logan, M. 1986. Informant consensus; a new approach for identifying potentially effective medicinal plants, In: Etkin N.L. (ed) *Plants in indigenous medicine and diet: biobehavioural approaches*, pp 91-112. N.Y.: Redgrave Publishers, Bedford Hills.
- Chekole, G. 2017. Ethnobotanical study of medicinal plants used against human ailments in Gubalafto District, Northern Ethiopia. *Journal of Ethnobiology and Ethnomedicine*, 13: 55.<u>https://doi.org/10.1186/s13002-017-0182-7</u>.
- Tumoro, G. & Maryo, M., 2016. Determination of informant consensus factor and fidelity level of ethnomicinal plants used in Misha Woreda, Hadiya Zone, Southern Ethiopia. *International Journal of Biodiversity and Conservation*, 8 (12): 351 – 364.
- Teklehaymanot, T. & Giday, M. 2010. Ethnobotanical study of wild edible plants of Kara and Kwego semi-pastoralist people in Lower Omo River Valley, Debub Omo Zone, SNNPR, Ethiopia. *Journal of Ethnobiology and Ethnomedicine*, 6: 23.<u>https://doi.org/10.1186/1746-4269-6-23</u>

Chapter 14

Resurgence of Wild Edible Plants of North East India as a source of nutrients

Pankaj Bharali, Bipankar Hajong, Jyotisikha Lahon, Anusmrita Kashyap Scientist and AcSIR Assistant Professor Centre for Infectious Diseases, CSIR –North East Institute of Science and Technology, Jorhat, Assam, India Corresponding Author e-mail: pbharali@neist.res.in / pankajbharali98@gmail.com

Abstract

The Himalayan hill ranges are inhibited by a large number of different ethnic communities. The chapter enumerated the utility of wild edible plants among the ethnic life, mainly the northeastern states of India. In Assam, the Assamese community people prepare a very special dish using 101 vegetables during Bohag Bihu, in the month of April. According to their traditional belief, the intake of this dish on this particular day boosts their immunity. In the past, many scientific researchers have reported about the importance of green leafy vegetables. The indigenous people usually use the traditional green leafy vegetables (TGLVs) as their local diet which in turn prevents the risk of hidden hunger, since TGLVs are major source of micronutrients and mineral sources, thus enhancing the health as well as the food security. Different plant parts like, leaf, root, tuber, stem, bark, corm, rhizome, flower and inflorescence are the major consumable parts in the traditional food habits of the indigenous people of the state. There are over 170 species of wild edible plants,

mostly consumed by the local people of NE region. The region is also rich in the diversity of tree ferns which can be use as famine food including few species from family Arecaceae, eg. *Arenga, Wallichia* (Tashe/ Tashi).Tashi/tasheisa substitute of staple food locally known in the tribal communities of Arunachal Pradesh. They have a very unique technique to prepare their indigenous food from the trunks of tree *Wallichia* sp. The group of indigenous people from different communities has channelized the utilities and the economic pursuits through the traditional green leafy vegetables (TGLVs) as well as the underutilized fruits. In this article, some selected plant species are mentioned as wild edible plants along with their used pattern, usable parts and ethno medicinal properties. It is not only essential to conserve this wealth of information but also, the plant species used in the traditional wisdom. It would also be helpful in the modern biochemical and agricultural techniques to determine the utility and adaptability of the most effective one.

Key words: TGLVs, famine food, ethno medicine, northeast India.

Introduction

The use of plants and plant-based products had probably started with the advent of the origin of agriculture in the hoary past which forced the nomadic people to start settled life. With the growing awareness for food and food security, there is an ever-growing need of scientific assessment of all kinds of food known to mankind. As food is a commodity which cannot be artificially created; therefore, it is imperative to screen out available plant-based food from the nature with nutritional properties. In general, nutraceutical foods are those which provide major nutritional component and also contain compounds that promotes health quality.

Modern agriculture is basically monoculture and hence, when there is a sudden failure of an established crop, there will be no instant remedy. But in most rural societies there are traditional practice of falling back on what is called 'scarcity food' or 'famine food' whenever there is an unexpected food crisis. Research on the utilization of the underutilized herbs is renewed to promote the traditional knowledge in the developing countries. The TGLVs are beneficial in terms of the micronutrients as compared to the cultivated vegetables. The indigenous people often use the underutilized herbs as local diets which prevents the burden 'hidden hunger', thus enhancing the health as well as the food security. Due to the migration of the rural people to the towns, TGLVs tend to disappear from the diets. Furthermore, due to the unavailability and poor knowledge on the nutritional benefits of herbal plants among the young generations, remains unexplored.

Since 1970, the National Bureau of Plant Genetic Resources (NBPGR), has been actively engaged in the plant exploration along with other research institutes of NE India, for the documentation and validation of the underutilized food plants. The indigenous people, especially the tribal people have their own traditions and domestication practices of the wild resources in their day-to-day life.

In terms of biodiversity richness among the phytogeographic locations, Western Ghats of India and North- east India are rich with 234 and 222 plant species respectively (Arora and Pandey, 1996). However, for North-East India the figure appears to be conservative since, the remote and inaccessible hilly areas are yet to be explored. The northeast India is known to be inhibited by almost 175 ethnic groups, of which most of them are tribal groups. So, apart from the floristic biodiversity north- east India is also famous for ethnic and cultural biodiversity. Therefore, Northeast India is considered to be one of the mega diversity hotspots in the world. Ethnic knowledge about various wild edible plants is enormous which is more or less unexplored. Nutritional profile of many wild edible plants had been found comparable and sometime better than cultivated varieties (Handique, 2003; Handique & Handique, 2005; Gupta & Prakash, 2009).

The natural resources specially the plants and plant products are traditionally used by the people in their day-to-day life. An overall survey of the uses of wild plants in Indian subcontinent has revealed that nearly one-third of about 15,000 higher plants are used by the indigenous people and these plant products meet most of the requirement, from food to medicine, for man and domesticated animals, birds and poultry. These underutilized plant resources used in various purposes, mainly the wild edible plants as medicines; barks of the trees for clothing, vegetables fat as a cooking medium. Wild plants are also used to poison arrows and darts, as spices and condiments; few as antidotes to snake, scorpion and dog bite; as a natural dye, perfumes, insecticidal agents etc. In this chapter, we are trying to highlight the traditional uses of the plant resources available in NE India along with their used pattern as food and as traditional medicine.

Methodology

The research has been carried out during last one year (2019-2020) in Assam. During this survey, the information was gathered by the interactions with local aged people of Assam, who have been practicing traditional medicines since long time. Information on local name, use of plant parts etc. were documented. The collection of the plant specimens and their digital pictures were taken from those localities. The herbarium preparation of collected 101 plant species were done by following Jain & Rao, (1977). The herbaria were identified by BSI experts of Sikkim, Flora of Assam, Flora of Arun and deposited to the herbarium of CSIR-NEIST. Scientific name and their family were confirmed from the website International Plant Names Index (IPNI) (https://www.ipni.org/)and Plants of the World Online (POWO) (http://www.plantsoftheworldonline.org/).Theinformation about the indigenous

Famine food, locally known as Tashi/Tashe (*Wallichia oblong folia*) was gathered by the interactions with local aged people of Kurung Kumey district of Arunachal Pradesh during 2017-2018. Other than the 101 vegetables, the information on Wild edible plants and their ethno-medicinal importance were collected from available secondary sources like literatures, different websites etc. and discussed in this paper.

Plants used as green leafy vegetables

The uses of these Traditional Green Leafy Vegetables (TGLVs) are not new among the human population. It is well proved that all the wild leafy green vegetables have immune boosting properties which may have some nutritional as well as antioxidants properties. During this COVID-19 pandemic situation, the scientific community and the ministry of AYUSH has also recommended some herbal formulation as an immune booster. There are no special diets, or particular food, that will directly boost your immune system. Eating a diet as fresh or whole food in reasonable amount is the best way to get the daily dose of vitamins, including the healthy antioxidants found in fruits and vegetables. The leafy vegetables are rich in the vitamins and nutrients which may act as the immune booster. The TGLVs are generally boiled before the consumption and sometimes washed extensively to remove the bitter and toxic plant materials. There is a need of nutrient rich diets, for strong immunity which includes the Fe, Zn, K, selenium and antioxidants. Among the minerals, Zn and Selenium plays a vital role in boosting the immunity. Zinc appears to slow down the immune response and control inflammation in human body. Selenium seems to have a powerful effect on the immune system, including the potentiality in lowering down the body's over-active responses to certain aggressive forms of cancer.

The Indian segment of the Eastern Himalaya is often referred to as "Paradise of Botanists" comprises more than 250 major tribes along with their own traditional knowledge. Among all the ethnic knowledge, the use of 101 wild leafy plants during the *Goru bihu* in Assam, in the month of April is one of the very interesting traditional practices among the community of *Assamese* people. They cook a mixture of the 101 nos. of known TGLVs in the very beginning day of the Assamese New Year calendar and there is a belief that this recipe can boost the immunity of the human for the entire year. Among those wild edible leafy vegetables, more than about 30% are toxic to the human health if it's consumed directly. Generally, those are not eaten in the normal days, but only on that very special day. They prepare a special dish using those 101 TGLVs, commonly known as *Ekho Eta Sak*. There are around 130 different wild leafy vegetables (**Table14.1**), out of which 101 different vegetables are used by the Assamese community on that special day. Few communities of Assam also use 15 different vegetables on that special day (**Table14.2**).

There are around 50 species of wild leafy vegetables which generally use by the ethnic people in their regular diets in the form of raw or cooked. Among the most widely used species, *Alocasia macrorrhiza, Colocasia esculanta, Enhydra fluctuans, Houttuynia cordata, Diplezium esculentum, Leucas aspera, Paederia foetida, Centella asiatica, Hydrocotyle sibthorpioides, Amaranthus viridis, Amaranthus angeticuslinn, Alternanthea sessilis* etc. are available in the agricultural fields and mostly of hygrophytic habitats, often abundant in waterlogged areas along the road side also.

There is a long list of wild edible leafy vegetables to a number of angiosperm families like Asteraceae, Rubiaceae, Myrsinaceae, Urticaceae, Acanthaceae, Solanaceae, Polygonaceae, Anacordiaceae, Piperaceae, Brassicaceae, Lamiaceae, Euphorbiaceae, Araliaceae, Verbanaceae, Tiliaceae, Caesalpiniaceae, Balsaminaceae, Amaranthaceae, Poaceae etc. Many of these species are grow wildly in agricultural fields including jhum fields, and others are found in primary and secondary forests.

Plants with edible flowers

The indigenous people have knowledge on the utilizing pattern of the plant products by trial-and-error method. They use different parts of plants as vegetables including the young unopened flowers. Scientifically it is proved that the flowers and flower buds are rich in the nutrients and antioxidants. Flowers and inflorescence of few plants having the spadix and with overlapping bracts at the end of large and long peduncles of wild and cultivated plants are delicacy for almost all the people of NE India. The young flowers of *Bauhinia purpurea* and *B. variegata* are cooked and used as vegetables by the Assamese community. The inflorescences of different Musa species e.g., M. balbisiana, M. cheesmani, M. itinerans, M. acuminate etc. are very common among the communities of Assam which are again a very good source of iron, with wound healing properties. Flowers of Alpinia galangal, Polygonum runcinatum, Ensete superb, Indigofera dosua, Nelumbo, Ardisia griffithii, Vaccinum serratum, Carica papaya, Nyctanthes arbor-tristis, Phlogocanthus thyrsiflorus, Cucurbita maxima, Eichhornia crassipes, Monochoria hastaefolia, Jasmine etc. are cooked and used as vegetables by different tribes of NE India (Table 14.3). These flowers are also available in the local markets in the different region of hilly areas, which are the potential source of nutrients and others required nutrients.

Sl. No.	Scientific Name	Family	Assamese Name	Ethnomedicinal Uses
1	Adhatoda vasica Nees.	Lamiaceae	Titabahak	Leaf and root decoction are used to treat cough & cold.
2	Allium cepa L.	Liliaceae	Piyaz	Juice from the bulb is use to cure Stone disease.
3	A. sativum L.	Liliaceae	Nohoru	Used to treat ailments such as arthritis, parasites, leprosy, and heart diseases.
4	<i>Aloe vera</i> (L.) Burm. f.	Liliaceae	Sal kuwari	The sap of leaf is applied to the infected area of skin.
5	<i>Alpinia nigra</i> (Gaertn.) Burtt	Zingiberacea e	Tora	Rhizome paste is used to treat bronchitis, gastric disease. Shoot extract is used to treat helminthic disease.
6	Alternanthera sessilis (L.) R. Br. ex. DC.	Amaranthace ae	Mati kaduri	The plant is grinded to make paste and then the paste is applied to the wound area.
7	A. philoxeroides (Mart.) Griseb.	Amaranthace ae	Pani khutura	-
8	Amaranthus spinosus L.	Amaranthace ae	Hati khutura	-
9	Amaranthus hybridus L.	Amaranthace ae	Moricha sak	Taking as vegetable which improve eyesight.
10	A. viridis L.	Amaranthace ae	Khutura	Taking as vegetable which improve eyesight.
11	Andrographis paniculata (Burm. f.) Wall. ex Nees	Acanthaceae	Kalmegh	Traditionally used for the treatment of array of diseases such as cancer, diabetes, high blood pressure, ulcer, leprosy, bronchitis, skin diseases, flatulence, colic and influenza.
12	Artocarpus heterophyllus Lamk.	Moraceae	Kothal	-
13	Azadirachta indica A. Juss.	Meliaceae	Moha neem	Leaf paste is used to treat Small pox, Skin problems.
14	Bacopa monnieri (L.) Pennell.	Scrophularia ceae	Brahmi	Eaten as vegetable, is said to prevent epilepsy,

				anxiety and depression.
15	Bambusa balcooa Roxb.	Poaceae	Bholuka banh	The outer green layer is scrapped off, powdered and then can applied on fresh wound for quick healing.
16	Basella alba L.	Basellaceae	Puroi sak	Leaf, stem and fruit are largely used as Vegetable, considered good for anaemia patient.
17	<i>Benincasa</i> <i>hispida</i> (Thunb.) Cog	Cucurbitacea e	Kumura	The seed has anti- helmintic, anti- inflammatory, demulcent, diuretic, expectorant, febrifuge, laxative and tonic properties. A decoction of seed is used internally in the treatment of vaginal discharges and coughs.
18	Beta vulgaris L.	Chenopodiac eae	Pirali paleng	The decoction prepared from the leaf is use as purgative and in burns.
19	<i>B. juncea</i> (L.) Czern.	Chenopodiac eae	Lai sak	Used for the treatment of arthritis, foot ache, lumbago and rheumatism.
20	Brassica nigra (L.) Koch.	Brassicaceae	Soriyah	Mustard oil is said to help in reducing inflammation and pain to enhancing hair and skin health.
21	Calamus erectus Roxb.	Arecaceae	Bet gaz	Taking as vegetable is said to purify blood, also used as an anti-diabetic agent.
22	Cannabis sativa L.	Cannabinace ae	Bhang	-
23	Centella asiatica (L.) Urban.	Apiaceae	Bor mani muni	The whole plant is chewed for blood purifier. The paste of the whole plant is applied on the infected areas of skin diseases and also used in the stomach problems.
24	Chenopodium album L.	Chenopodiac eae	Bali bhotora/Jil mil	The juice of the stem is applied to freckles and sunburn. The juice of the root is used for the treatment of bloody

				dysentery.
25	Chrysanthemum coronarium L.	Asteraceae	Babori	-
26	Cinnamomum bejolghota (Buch. –Ham.) Sweet.	Lauraceae	Pati hunda	Traditionally used for flavouring food. The leaf and bark are used against various ailments astringent, warming stimulant, carminative, blood purifier, digestive, antiseptic, antifungal, antiviral, antibacterial, antioxidant, anti- inflammatory and immune- modulatory properties.
27	C. tamala Fr.	Lauraceae	Tezpat	Traditionally used for flavouring food. The leaf and bark are used against various ailments astringent, warming stimulant, carminative, blood purifier, digestive, antiseptic, antifungal, antiviral, antibacterial, antioxidant, anti- inflammatory and immune- modulatory properties.
28	Clerodendrum colebrookianum Walp.	Verbenaceae	Nephaphu	Decoction of tender leaf is drink to cure hypertension.
29	<i>C. serratum</i> (L.) Moon	Verbenaceae	Nangal bhanga	Root decoction is use to cure dysentery.
30	C. viscosum Vent.	Verbenaceae	Dhopat tita	Leaf is use to cure malaria.
31	Colocasia esculenta (L.) Schott	Araceae	Kochu	The leaf and rhizomes are used for the treatment of various ailments such as asthma, arthritis, diarrhea, internal hemorrhage, neurological disorders, and skin diseases.
32	Commelina benghalensis L.	Commelinac eae	Kona himolu	Traditionally used for the treatment of many different diseases such as burns, leprosy, sore throat,

				pain and inflammations.
				And also used as an
				emollient, demulcent and
				laxative.
22	Corchorus	Tiliaaaaa	Tita mora/	Taking as vegetable is
33	capsularis L.	Tiliaceae	Mora pat	said to improve eyesight.
34	Croton caudatus	Euphorbiace	Mahudi	Leaf decoction is taken in
54	Geisel.	ae	Manuai	kidney troubles.
				Pumpkin has a cooling
	Cucurbita			effect on human body. It
35	maxima Duch.	Cucurbitacea	Ronga lau	is therefore used in
55	Ex Lamk.	e	nonga iau	hemorrhagic conditions
	En Eurint.			such as uterine bleeding
				and rectal bleeding.
				Used as a traditional
				medicine for various
				diseases including cough,
				diabetes,
				dermatological
36	Cma longa L.	Zingiberacea	Halodhi	conditions, respiratory
20	enna teriga 21	e	11000000	problems, cardiovascular,
				hepatobiliary diseases,
				arthritis, irritable bowel
				disease (IBS), peptic
				ulcers, psoriasis, and
				atherosclerosis.
				Used as a traditional
			Surat gas	medicine and used for
		Urticaceae		various diseases including
				a cough, diabetes,
	Dendrocnide			dermatological conditions,
37	sinuata (Bl.)			respiratory problems,
	Chew			cardiovascular and
				hepatobiliary diseases,
				arthritis, irritable bowel
				disease (IBS), peptic
				ulcers, psoriasis, and
<u> </u>				atherosclerosis.
38	Dillenia indica	Dilleniaceae	Ou tonga	Fleshy calyx eaten raw or cooked which has anti-
30	L.	Diffemaceae	Ou tenga	diabetic agent.
				Aerial parts are used to
				treat hemoptysis and
	Diplazium			coughs; rhizome is used
39	Diplazium esculentum	Athyriaceae	Dhekia	for diarrhea, dysentery
37		Amynaceae	Блеки	and coughs; leaf used to
	(Retz.) Sw.			treat fever, dermatitis,
				measles, coughs, and as
				measies, cougits, and as

				postpartum tonic; root is used for fever, dermatitis and as hair tonic.
40	Drymaria diandra Bl	Caryophyllac eae	Lai jabori	Whole plant is used as sinusitis, asthma, cough and cold, fever, head ache and pneumonia. And also used for burn, ring worm and skin diseases.
41	Duchesnea indica (Andr.) Focke	Rosaceae	Goru khis	Eaten fresh to cure dysentery.
42	Eclipta prostrata L.	Asteraceae	Keha raj	Leaf juice is taken in jaundice and root extract is applied to cut & wound area.
43	Enhydra fluctuans Lour.	Asteraceae	Heloshi	Leaves are pressed and applied to the skin as a cure for certain herpetic eruptions.
44	Eryngium foetidum L.	Apiaceae	Man dhoniya	-
45	Euphorbia hirta L.	Euphorbiace ae	Gakhiroti/ Dhudh bon	Used traditionally for female disorders, respiratory ailments such as cough, coryza, bronchitis, and asthma.
46	Fagopyrum esculentum Moench.	Polygonacea e	Sutiya lofa	Aerial parts of the plant and its extract are used in traditional medicine and herbal remedies for the treatment of hemorrhagic complaints and hypotensive patients.
47	Flemingia strobilifera (L.) R. Br. ex Ait.	Fabaceae	Makhioti	Root paste is applied externally to body swellings.
48	<i>Garcinia</i> acuminata Planch. & Triana	Clusiaceae	Mahi thekera	-
49	G. kydia Roxb.	Clusiaceae	Kujitheker a	-
50	<i>G. pedunculata</i> Roxb.	Clusiaceae	Bor thekera	Fruit is used for various stomach problems.
51	Hedyotis corymbosa (L.) Lamk.	Rubiaceae	Bon jaluk	-

	Hibiscus		Tanaa	Roselle has been used for
52	sabdariffa L.	Malvaceae	Tenga mora	relief of sour throat and healing wounds.
53	<i>Houttuynia</i> cordata Thunb.	Saururaceae	Moshunda ri	Leaf is used to treat the measles, dysentery and gonorrhoea.
54	Hydrocotyle sibthorpioides Lamk.	Apiaceae	Horu mani muni	Leaf is used for Dysentery, indigestion and fever.
55	Ipomoea aquatica Forsk.	Convolvulac eae	Kolmou sak	Oral administration of leaf leads to cure ailments such as jaundice and nervous debility.
56	<i>Kalanchoe</i> <i>pinnata</i> (Lamk.) Pers	Crassulaceae	Dupor tenga/ Pate goja	Chewed raw with sugar to control dysentery and diarrhea. Juice is drink to cure jaundice. Leaf paste is applied on skin infections and pimples.
57	Lagenaria siceraria (Molina) Stadley	Cucurbitacea e	Jati lau	The fruits, leaves, oil, and seeds are edible and used by local people as folk medicines in the treatment of jaundice, diabetes, ulcer, piles, colitis, insanity, hypertension, congestive cardiac failure, and skin diseases. The fruit pulp is used as an emetic, sedative, purgative, cooling, diuretic, antibilious, and pectoral.
58	Lasia spinosa (L.) Thw.	Areceae	Seng mora	-
59	Lawsonia inermis L.	Lythraceae	Jetuka	Decoction of stem bark is taken orally to cure Jaundice.
60	<i>Leucas</i> <i>plukenetii</i> (Roth.) Spreng.	Lamiaceae	Durun	Leaf is use in sinusitis. 2- 3 drops of leaf juice is use to stop nasal haemorrhoe.
61	<i>Lindernia</i> <i>ruellioides</i> (Colsm.) Pen	Scrophularia ceae	Kasi doriya	-
62	<i>Litsea salicifolia</i> (Roxb. ex Wall.) Hk. f.	Lauraceae	Digh loti	-
63	Luffa acutangula	Cucurbitacea	Jika	Fruit is use for diabetes

	(L.) Roxb	e		treatment.
64	L. cylindrica (L.)	Cucurbitacea	Bhol	_
04	M. Roemer	e	Dh0i	-
65	Lygodium flexuosum (L.) Sw.	Lygodiaceae	Kopou dhekia	Frond is boiled and used as local application carbuncles, rhemutasim, sprains, scabies, ulcers, cut and wounds. Stem and rhizome are taken orally for curing sexually diseases gonorrhoea and spermatorrhoea. Paste of leaf is applied for piles. The infusion of plant is used in menorrhoea. Spore is used to cure high fever.
66	Mangifera indica L.	Anacardiacea e	Am	It is traditionally known for the treatment of different ailments like urinary tract infections, diuretic, throat disease, Malaria, Skin infection, dysentery, diarrhea, bums and scalds etc.
67	Melastoma malabathricum L.	Melastomata ceae	Phutkola	Decotion of root is used to cure diarrhea.
68	<i>Melothria</i> <i>heterophylla</i> (Lour.) Cogn	Cucurbitacea e	Beli poka	-
69	Mentha spicata L.	Lamiaceae	Podina	-
70	Momordica charantia L.	Cucurbitacea e	Tita kerela	Juice is used for the treatment of conjunctivitis.
71	M. cochinchinensis (Lour.) Spreng.	Cucurbitacea e	Bhat kerela	-
72	Monochoria hastata (L.) Solms	Pontedariace ae	Haru meteka	Leaf juice is applied on boils.
73	Morinda angustifolia Roxb.	Rubiaceae	Anshu gas	-
74	<i>Moringa oleifera</i> Lamk.	Moringaceae	Sojina	Leaf is used to cure Diarrhoea, dysentery, colitis, sores, skin

				infection, anemia, cuts, scrapes, rashes and sign of aging. Gum is used for the treatment of Fevers, dysentery, asthma and dental decay. Flower is used to cure tumour, inflammation, hysteria, enlargement of spleen, muscle diseases and aphrodisiac substances.
75	Morus indica L.	Moraceae	Nuni	-
76	<i>Murraya</i> koenigii (L.) Spreng	Rutaceae	Norosingh a	Used as Datun for cleaning, strengthen gums and teeth.
77	Musa balbisiana Colla	Musaceae	Kol gas	-
78	Mussaenda roxburghii Hk. f.	Rubiaceae	Sukloti	-
79	<i>Nelumbo nucifera</i> Gaertn.	Nelumbonac eae	Podum	Decoction of flower petal is used as cardio tonic, liver tonic, anti-vomiting and diarrhea. Leaf paste with lime used as plaster on fracture bone. Young seed paste is externally used as a cooling agent for skin diseases. Root and rhizome paste is taken against ring worm. Root powder with lemon juice is taken for treatment of piles. The fruiting torus is edible and the rhizome is used as vegetable.
80	Nyctanthes arbor-tristis L.	Nyctaginacea e	Sewali	Leaf infusion is taken for malaria; fried flower is taken with meal for intestinal worm, diabetes and cough.
81	Nymphaea nouchali Burm. f.	Nympheacea e	Bhet phul	Rhizome is used to treat diarrhea, dysentery, dyspepsia, goiter, burn wounds and also to stop excessive menstrual flow. Flower and leaf are soaked in water overnight then the decanted water is

			r	
				taken for cardiac problems. Leaf paste is applied to cure scabies. Root juice is used to increase breast milk.
82	Ocimum basilicum L.	Lamiaceae	Bon tulsi	Leaf paste is applied on the infected area of skin diseases.
83	Oxalis corniculata L.	Oxalidaceae	Horu tengeshi	Leaf extract (20-30ml) is applied regularly once a day in pyorrhoea till the end of problem.
84	O. debilis H. B. K. var.corymbosa (DC.) Lour	Oxalidaceae	Bor tengeshi	-
85	Paederia foetida L.	Rubiaceae	Bhedai lota	Leaf juice is used to treat diarrhoea, dysentery and burns or scalding.
86	Phlogacanthus thyrsiflorus (Roxb.) Nees	Acanthaceae	Tita phul	-
87	P. tubiflorus Nees	Acanthaceae	Tita phul	-
88	Phyllanthus emblica L.	Euphorbiace ae	Amlokhi	The exudation from the incisions on the fruit is used as an external application in inflammation of eye. Juice of the fresh bark with honey and turmeric is use to cure gonorrhea. Decoction of the roots has given in myalgia following upon some febrile condition.
89	Piper longum L.	Piperaceae	Pipolee	The decoction of dried fruit and root are used in the treatment of acute and chronic bronchitis.
90	P. hamiltonii DC.	Piperaceae	Arani pan	-
91	Plantago erosa Wall.	Plantaginace ae	Singa pat	_
92	Pogostemon benghalense (Burm. f.) Kuntz.	Lamiaceae	Hukloti	Decoction of fresh newly sprouted leaves is taken orally to cure dyspepsia, cold and cough.

93	Polygonum plebeium R. Br.	Polygonacea e	Bon jaluk	-
94	<i>P. scandens</i> Meissn.	Polygonacea e	Modhu huleng	-
95	Portulaca oleracea L.	Portulacacea e	Hanh thengia/M albhug khutura	The leaves are infused in linseed oil as a liniment for stiff neck. The mixture of plant juice with honey is used for cough.
96	Prunus jenkinsii Hk. f. & Th.	Rosaceae	Thereju tenga	-
97	Psidium guajava L.	Myrtaceae	Modhuri	Fruit particularly the raw ones or decoctions made from tender immature leaves are quite helpful in cold and cough.
98	Rubus ellipticus Smith.	Rosaceae	Jetuli poka	-
99	Sarcochlamys pulcherrima Gaud.	Urticaceae	Meshangi	Fresh leaf extract is applied as eye drop to stop itching.
100	Sesamum indicum L.	Pedaliaceae	Til	-
101	Smilax perfoliata Lour.	Smilacaceae	Tikoni Barua	-
102	Solanum indicum L.	Soalanaceae	Tita bhekuri	Eaten as curry to treat dysentery.
103	S. melongena L.	Soalanaceae	Bengana	-
104	S. nigrum L.	Soalanaceae	Pok mou/ Lach koshi	Juice from roots is used to treat asthma and whooping cough. Leaves are pounded and applied topically to cure ringworm.
105	S. torvum Sw.	Soalanaceae	Hati bhekuri	-
106	S. tuberosum L.	Soalanaceae	Alu	Raw potato juice is used to treat gastritis, colitis, gastric and intestinal ulcers. The juice is also used as a remedy for rheumatism.
107	Stephania japonica (Thunb.) Miers	Menispermac eae	Tubuki lota	Decoction of leaves is used as antidiabetic and antioxidant.
108	Tetrastigma thomsonianum Planch	Vitaceae	Nol tenga	-

109	Urena lobata L.	Malvaceae	Agora	-
110	Vitex negundo L.	Verbenaceae	Poshotiya	Root decoction and leaf juice are used in treatment of cough and respiratory disorders.
111	Zanthoxylum nitidum (Roxb.) DC	Rutaceae	Tez moi	Root juice is used to treat pneumonia.
112	Zingiber officinale Rosc.	Zingiberacea e	Ada	Rhizome is eaten in both raw and cooked form, used to cure cardiovascular diseases.

Table 14.2. List of plants of which stems and barks are used as food and their ethnomedicinal properties.

S N	Scientific Name	Family	Uses (as local diet)	Ethno medicinal Properties	Refere nces
1	Amomum sp.	Zingiberacea e	Soft core of the shoot is taken in both raw and cooked form.	-	-
2	Ampelocissus barbata (Wall.) Planch.	Vitaceae	Young stem is chewed which is slightly sour in taste.	Used in the treatment for Bone fracture, Skin diseases.	Singh & Kumar , 2017.
3	Arenga pinnata (Wurmb) Merr.	Arecaceae	Trunk is used as a source of farinaceous food.	-	-
4	Merr. Baccaurea ramiflora Lour. Phyllanthace ae		Bark of the stem, slightly sweetish in taste,is chewed.	Anti-phlogistic and anodyne against rheumatoid Arthritis, Cellulitis, Constipation, Indigestion, Jaundice.	Kalita et al., 2014; Lin et al., 2003; Rahim et al., 2012; Saha

					et al.,
					2017.
5	<i>Bambusa tulda</i> Roxb.	Poaceae	Soft core of the young sprouts is used in making curries and pickles.	Uterine prolapse, Poisonous insects bite.	Biswas et al., 2011; Gam, 2013.
6	Begonia roxburghii (Miq.) A.DC.	Begoniaceae	Fleshy sour petioles are chewed and also used in making chutney.	Skin problem, Piles (haemorrhoids) , Bee stink, Stomachache, Diarrhea, Bile dysentery, Stomach ulcer, Tongue abnormalities, Jaundices, Diabetes.	Rahma n, 1996; Sawml iana, 2013; Tag et al., 2012; Tangja ng et al., 2011.
7	Begonia silletensis (A.DC.) C.B.Clarke	Begoniaceae	Sour petioles are chewed.	Various ailments.	Taram et al., 2020.
8	Callicarpa arborea Roxb.	Lamiaceae	Bark of the plant is chewed with betel nut.	Astringent, Demulcent, Antipyretic, Antipruritic, Cough, Cold, Eruptive fevers, Smallpox, Snake bite, Digestion promoter, Colic and loose motions, Ulcers, Jaundice, Asthma, Dental disease.	Ambar dar&A eri, 2013.
9	Caryota urens L.	Arecaceae	Soft core portion of seedlings	Loss of appetite, to get relieved from	Reddy et al., 2008;

			1	.1 .00	
			shoot is	the effect	Smita
			taken in	caused due to	et al.,
			both raw	intake of this	2012.
			and cooked	plant in case of	
			form.	pregnant	
				women.	
				Colic,	
				Diarrhea,	
				Nausea,	
				Vomiting,	
	Cinnamomum			Gastic	Kunwa
	tamala (Buch.		Bark of the	problems,	r et al.,
10	-Ham.) T.	Lauraceae	plant is used	alleviate pain	2009;
10	Nees & C. H.	Lauraceae	as	and	Upadh
	Eberm.		condiment.	inflammation	yay,
	Lociiii.			in patients	2017.
				those who	
				suffer from	
				arthritic	
				rheumatism.	
					Chakra
11	Maesa indica	Primulaceae	Young stem	Antidiabetic.	borty
11	(Roxb.) Sweet	Fillinulaceae	is chewed.	Annuabene.	et al.,
					2021.
					Bapuji
					&
				Cough,	Ratna
	Мисипа		Slightly	Asthma,	m,
			sweetish	· · · ·	2009;
12	<i>monosperma</i> Roxb. ex	Fabaceae		Expectorant,	Kar,
			young stem is chewed.	Glaucoma, Eczema and	2019;
	Wight		is chewed.	Scabies.	Singh
				scables.	&
					Kumar
					, 2017.
	Pegia nitida	Anacardiacea	Bark of the		
13	Colebr.		young stem	-	-
	Colebi.	e	is chewed.		
			Young		
	Pseudodissoch		stems are		
		Malastamata	chewed		
14	aeta assamica	Melastomata	which is	-	-
	(C.B.Clarke)	ceae	slightly		
	Nayar		sweetish in		
			taste.		
15	Spondias	Anacardiacea	Slightly	Anti-thirst	Bora

	<i>pinnata</i> (L.f.) Kurz	e	sour leaf- bases are chewed.	remedy, Diabetes, Refrigerant, Tonic, Antiseptic, Astringent, Anti- dysenteric, Anti-diarrhoeal and Anti- emetic, Regulating menstruation, Anti- tubercular, Aphrodisiac.	et al., 2014; Sujarw o et al., 2019.
16	<i>Terminalia</i> <i>arjuna</i> (Roxb. ex DC.) Wight &Arn.	Combretacea e	Bark juice is taken out by crushing and taken orally.	Cure sores, Heart disease, Leucorrhoea.	Anony mous, 1984; Goswa mi & Dutta, 1983; Stewar t, 1869.
17	<i>Terminalia</i> <i>myriocarpa</i> Van Heurck & Müll.Arg.	Combretacea e	Bark of the stem is used as masticatory.	Urinary disorder, Heart problem.	De, 2016.

 Table 14.3. List of edible flowers/buds/inflorescences and their ethno medicinal properties.

SI. No	Scientif ic Name	Family	Uses (as local diet)	Ethno medicinal Properties	References
1	<i>Alpinia</i> galanga (L.) Willd.	Zingiberac eae	Flowers are eaten raw or cooked as vegetable	Stomach pain, Back pain, Rheumatism, Asthma, Diabetes, Heart disease, disorders of the liver, kidney disease, and to increase the appetite, antibiotics,	Chopra et al., 2006; Rajpal & Kohli, 2009; Ram & Rastogi, 2006; The Review of

				Disinfectants, Food seasonings, Gastric therapy, Cardiotonic lesions, Diuretic, Antiplatelet, Antifungal, Anti- tumor activities, Fever, Dyspepsia, Bronchitis, Irritations.	Natural Product, 2002.
2	Ardisia griffithii C.B. Clarke	Primulacea e	Flowers are eaten cooked.	-	-
3	Bambus a bambos (L.) Voss	Poaceae	Young buds are cooked as vegetable s.	Ulcers, Pain, Cure ear infection.	Pattanayak et al., 2012; Tomar, 2019.
4	Bauhini a purpure a L.	Fabaceae	Flower buds are cooked as vegetable s.	Diarrhoea, Dysentery, Tumour in stomach, Laxative.	Balami, 2004; Vanila et al., 2008.
5	Bombax ceiba L.	Malvaceae	Flower- buds and fleshy calyx are eaten raw.	Diabetes mellitus, Sexual problems, Debility, Urolithiasis, Acne, Hepatic disorder, Abortifacient, Aphrodisiac, Birth control, Sexual diseases, Tonic, Anti- inflammatory activity, Impotency, Asthma, Small-pox boils, Muscular Injury, Wounds, Anti-diarrheal, Leprosy, Pimples, Skin disease, Anthelmintics.	Chaudhary & Khadabadi, 2012; Jain & Verma, 2014.

6	Dillenia indica L.	Dilleniacea e	Flowers are boiled and taken orally.	Anti-diabetic, Fever, Aphrodisiac, promotes virility, Cures food poisoning, Applied externally in sprains.	Mehta, 2013; Talukdar et al., 2012.
7	Dioscor ea pentaph ylla L.	Dioscoreac eae	Flower buds are cooked as vegetable s.	Stomach Ache, Constipation, Indigestion, Abdominal pain, Dysentery, Cough, Cold, Asthma, Tuberculosis, Skin wounds, Boils, Sunburn, Cuts and injury.	Dutta, 2015.
8	Ensete superbu m (Roxb.) Cheesm an	Musaceae	Flowers are cooked as vegetable s.	Dog bite, to dissolve and eliminate kidney stone, enhance semen production, Leucorrhoea, Stomachache, Immune resistance to the baby, Debility, Hip pain, Fever with body pains, Scabies, Diabetes, Urolithiasis, Prevent pregnancy, Convulsions, Pneumonia, Cholera, Chickenpox, Measles.	Sethiya et al., 2019.
9	Indigofe ra dosua Buch Ham. ex D.Don	Fabaceae	Flowers are cooked as vegetable		-
10	Musa acumin ata Colla	Musaceae	Infloresc ence and the flowers are good source of iron and	Blood pressure, Diabetes, Hypertension, Anemia, Allergies, Infections, Bronchitis, Fever, Coughs,	Mathew & Negi, 2017.

	[•••••	T 1 1	1
			vitamins,	Tuberculosis,	
			used as	Dysentery.	
			vegetable		
			Infloresc		
			ence and		
			the		
			flowers	Pineworm infection,	
	Musa		are taken	Infertility in women,	
11	balbisia	Musaceae	as	Jaundice, Gout,	Borborah et
	na Colla	1114540040	vegetable	Gastricts, Health	al., 2016.
	na cona		, are	tonic, Cough,	
			good	Dysentery.	
			source of		
			iron and		
			vitamins.		
			Infloresc		
			ence and		
	Musa		the		
	cheesm		flowers		
	anii		are good		
12	N.W.	Musaceae	source of	-	-
	Simmon		iron and		
	ds		vitamins,		
	G B		used as		
			vegetable		
			Infloresc		
			ence and		
	Musa		the flowers		
	musa itineran				
13		Musaceae	are good source of		
15	s Cheesm	wiusaceae	iron and	-	-
			vitamins,		
	an		used as		
			vegetable		
			vegetable		
L			•		

14	Nelumb o nucifera Gaertn.	Nelumbona ceae	Flower buds are cooked as vegetable s.	Diarrhea, High fever, Hemorrhoids, Leprosy, Lipolytic, Anti-obesity, Cardiovascular activity, Hypocholesterolaemi c, Analgesic activity, Anthelmintic activities, Antiobesity, Hypolipidemic, Haematopoietic, Anti-diabetic, Uterine Bleeding, Cough, Consolidation of kidney function, Male sexual disorders and female leucorrhea.	Sheikh, 2014.
15	Palaqui um polyant hum (Wall. ex G.Don) Baill.	Sapotaceae	Flowers taken as vegetable	-	-
16	Persica ria runcinat a (Buch Ham. ex D.Don) H.Gross	Polygonace ae	Flowers and infloresc ence are taken as vegetable s.	Tonic, Cardiac problems.	Malla, 2015.
17	Pontede ria hastata L.	Pontederiac eae	Infloresc ence is cooked as vegetable s.	-	-
18	Syzygiu m formosu m	Myrtaceae	Calyx is cooked as vegetable	-	-

	(Wall.) Mason		s.		
19	Vaccini um vaccinia ceum (Roxb.) Sleumer	Ericaceae	Flowers are used to make curry.	-	-

 Table 14.4. List of underground edible parts (tuber/rhizome) and their ethnomedicinal properties.

Sl. No	Scientific Name	Family	Uses (as local diet)	Ethnomedicina l Properties	References
1	Alocasia macrorrhizos (L.) G.Don	Araceae	Corms are boiled and eaten as a vegetable.	Pus in ears, Decreased eyesight.	Rahmatulla h et al., 2009.
2	<i>Alpinia</i> galanga (L.) Willd.	Zingiber aceae	Rhizomes are boiled and taken as soup.	Stomach pain, Back pain, Rheumatism, Asthma, Diabetes, Heart disease, disorders of the liver, kidney disease, and to increase the appetite, antibiotics, Disinfectants, Food seasonings, Gastric therapy, Cardiotonic lesions, Diuretic, Antiplatelet, Antifungal, Anti-tumor activities, Fever, Dyspepsia, Bronchitis,	Chopra et al., 2006; Rajpal & Kohli, 2009; Ram & Rastogi, 2006; The Review of Natural Product, 2002.

				Irritations.	
3	<i>Alpinia</i> <i>speciosa</i> (Blum e) D.Dietr.	Zingiber aceae	Rhizomes are boiled and taken soup.	-	-
4	Amorphophalus sp.	Araceae	Rhizomatous stems and leafy stalks are boiled and eaten.	-	-
5	Asparagus racemosus Willd.	Asparag aceae	Juice is taken out by boiling the roots and then it's taken orally.	Gastric, Ulcers, Dyspepsia, Diarrhea, Dysentery, Indigestion, Jaundice,	Hasan et al., 2016.
6	Bistorta officinalis Delarbre	Polygon aceae	Tubers are used as vegetable.	-	-
7	Colocasia esculenta (L.) Schott	Araceae	Rhizomatous stems and leafy stalks are boiled and eaten.	-	-
8	<i>Curcuma zedoaria</i> (Christm.) Roscoe	Zingiber aceae	Rhizomes are boiled and taken as soup.	Stomachic, Emmenagogic, Vomiting, Menstrual haematometra, Treatment of leucorrhoeal discharge, Treatment of worms in children, Antiallergant, Treatment of dropsy, Treatment of leprosy, As	Lobo et al., 2009.

				plasters in	
				lymphangitis,	
				Furunculosis.	
				Cancerous	
				wounds,	
				Leprosy,	
			Underground	Gonorrhoea,	
			swollen roots	Blood pressure,	D 2015
0	Dioscorea	Dioscor	are baked.	Skin diseases,	Dutta, 2015;
9	alata L.	eaceae	boiled or	Treatment of	Mustafa et
			grinded into	piles, Reduce	al., 2018.
			flour.	weakness,	
			noun	Wormicide for	
				stomach	
<u> </u>				Worms.	
				Skin related	
				infections,	
				Contraceptive	
				disease, Struma,	
				Throat	
			Underground	infection,	
			swollen roots	Tuberculosis,	
10	Dioscorea	Dioscor	are baked,	Cough, Asthma,	Kundu et
10	bulbifera L.	eaceae	boiled or	Abdominal	al.,2020.
			ground into	pains, Piles,	
			flour.	Sexual vigour,	
				Dysentery,	
				Ulcers,	
				Diabetics,	
				Leprosy, and	
				Syphilis.	
				To increase low	
				weight,	
			Underground	Analgesic for	
	Dioscorea		swollen roots	chest pain,	Dutta, 2015;
11	esculenta	Dioscor	are baked,	Anti-	Mustafa et
11		eaceae	boiled or		
	(Lour.) Burkill		ground into	inflammatory,	al., 2018.
			flour.	Treat boils,	
				Dysentery,	
				Swellings.	
			Underground		
	Dioscorea	D.'	swollen roots		Dutta, 2015;
12	hamiltonii	Dioscor	are baked,	Dysentery,	Kumar et
	Hook.f.	eaceae	boiled or	Piles, Burnt.	al., 2013.
			ground.		, =0101
			0		

13	Dioscorea oppositifolia L.	Dioscor eaceae	Underground swollen roots are baked, boiled or ground into flour.	Post pregnancy nutrition tonic, taken with honey to increase sperm, Antiseptic, used to treat scorpion bite, used with leaves of clematis to treat seizures or convulsions.	Mustafa et al., 2018.
14	Dioscorea pentaphylla L.	Dioscor eaceae	Underground swollen roots are baked, boiled or ground into flour.	Reduce swelling of joints and improve immunity, Analgesic for stomach pain, Tonic and Spasmodic, Inflorescence is used as vegetables for body weakness, Constipation, Indigestion, Abdominal pain, Dysentery, Cough, Cold, Asthma, Tuberculosis, Skin wounds, Boils, Sunburn, Cuts, Injury.	Dutta, 2015; Mustafa et al., 2018.
15	Dioscorea versicolor BuchHam. ex Wall.	Dioscor eaceae	Underground swollen roots are baked, boiled or ground.	-	-
16	Eleocharis dulcis (Burm.f.) Trin. ex Hensch.	Cyperac eae	Tubers are cut into pieces and eaten raw as salad.	-	-
17	Eulophia campestris	Orchida ceae	Tubers are eaten raw or	-	-

	Wall.		boiled.		
	vv all.		bolled.		
18	<i>Flemingia</i> <i>vestita</i> Benth. ex Baker f.	Fabacea e	The tubers are used as vegetables.	-	-
19	Hellenia speciosa (J.Koenig) S.R.Dutta	Costace ae	Rhizomes are boiled and the juice is taken orally.	-	-
20	Houttuynia cordata Thunb.	Saururac eae	The tubers are eaten and mainly used as salad.	-	-
21	Nelumbo nucifera Gaertn.	Nelumb onaceae	The rhizomes are boiled to prepare a soup and curry.	Diarrhea, High fever, Hemorrhoids, Leprosy, Lipolytic, Anti- obesity, Cardiovascular activity, Hypocholestero laemic, Analgesic activity, Anthelmintic activities, Antiobesity, Hypolipidemic, Haematopoietic , Anti-diabetic, Uterine Bleeding, Cough, Consolidation of kidney function, Male sexual disorders and female leucorrhea.	Sheikh, 2014.
22	Polygonum multiflorum Gueldenst.	Polygon aceae	Tuber are cooked and taken as vegetable and curry.	Hair-blacking, Liver and kidney- tonifying, Anti- aging effects.	Lin et al., 2015.

23	Polygonum verticillatum Biroli ex Colla	Polygon aceae	Tubers are cooked and taken as a curry and sometime as a vegetable.	-	-
24	Sagittaria sagittifolia L.	Alismat aceae	Tuberous roots are boiled and eaten as vegetable.	-	-
25	Vigna vexillata (L.) A.Rich.	Fabacea e	Tubers are eaten as raw and boiled.	-	-
26	Zingiber zerumbet (L.) Roscoe ex Sm.	Zingiber aceae	Leaf is used to add flavor in soup.	Inflammation, Fever, Toothache, Indigestion, Constipation, Diarrhea, Severe sprains, to relieve pain, Antispasmodic, Antirheumatic, Diuretic agents, Edema, Stomach ache, Sores, Loss of appetite	Yob et al., 2011.

Table 14.5. List of edible fruit plants and their ethnomedicinal properties.

Sl.	Scientific	Family	Uses (as	Ethnomedicin	Referenc
No.	Name		local diet)	al Properties	es
1	Alpinia malaccensis (Burm.f.) Roscoe	Zingiberace ae	Ripen fruits are eaten.	-	-

2	Amomum dealbatum Roxb.	Zingiberace ae	The fleshy aerial parts are boiled and taken soup.	Throat trouble, Congestion of lungs, Inflammation of eyelids, Digestive disorders, Pulmonary tuberculosis, Flatulence, Loss of appetite, Gastric troubles, Congestion, Liver complaints, Headache, Stomatitis.	Jafri et al., 2001; Shukla et al., 2010; Verma et al., 2010.
3	Ardisia rhynchophylla C.B.Clarke	Primulacea e	Ripen fruits are eaten.	-	-
4	Ardisia thomsonii Mez	Primulacea e	Ripen fruits are eaten.	-	-
5	Artocarpus heterophyllus Lam.	Moraceae	Bracts and perianths of ripe fruits are eaten.	Fever, Boils, Wounds, Skin deaseas, Brain tonic, Convulsions, Dysopia, Ophthalmic disorders, Pharyngitis, Antibacterial agents, Ulcers, Asthma, Diarrhoea, inflammation.	Vazhach arickal et al., 2015.
6	Baccaurea ramiflora Lour.	Phyllanthac eae	Arils of fruits are eaten which is very sweet or acidic in taste.	Anti-phlogistic and anodyne against rheumatoid arthritis, Cellulitis, Constipation,	Kalita et al., 2014; Lin et al., 2003; Rahim et al., 2012; Saha et

				Indigestion, Jaundice	al., 2017.
7	Balakata baccata (Roxb.) Esser	Euphorbiac eae	Ripen fruits are eaten.	-	-
8	Berberis napaulensis (DC.) Spreng.	Berberidace ae	Pulp of fruits are eaten which is sour in taste.	-	-
9	Bischofia javanica Blume	Phyllanthac eae	Ripen fruits are eaten.	-	-
10	Broussonetia papyrifera (L.) L'Hér. ex Vent.	Moraceae	Fruits are eaten which is fleshy, sweet.	-	-
11	Calamus floribundus Griff.	Arecaceae	Fruits are eaten.	-	-
12	Canarium bengalense Roxb.	Burseracea e	Fruits are eaten.	-	-
13	<i>Canarium</i> <i>resiniferum</i> Bruce ex King	Burseracea e	Fruits are taken.	-	-
14	Choerospondi as axillaris (Roxb.) B.L.Burtt &A.W.Hill	Anacardiac eae	Ripen fruits are taken.	-	-
15	Citrus sp.	Rutaceae	Fruit juice is taken.	-	-
16	Dillenia indica L.	Dilleniacea e	Thick, fleshy, acidic sepals are used as vegetables or in making chutney.	Anti-diabetic, Fever, Aphrodisiac, promotes virility, Cures food poisoning, Applied externally in sprains.	Mehta, 2013; Talukdar et al., 2012.

r		1			
17	Dimocarpus longan Lour.	Sapindacea e	Fleshy aril of fruit is eaten which is sour in taste.	-	-
18	Elaeocarpus floribundus Blume	Elaeocarpa ceae	Fruits are eaten raw which is sour in taste.	Diabetes, Hypertension, Dysentery, Rheumatism.	Mahomo odally & Sookhy, 2018.
19	Ficus auriculata Lour.	Moraceae	Receptacle is eaten.	-	-
20	Ficus benghalensis L.	Moraceae	Fleshy receptacle is eaten raw.	-	-
21	<i>Ficus</i> <i>semicordata</i> BuchHam. ex Sm.	Moraceae	Receptacle are eaten which is sweet in taste.	Leprosy, Wound, Boil, Liver disorders, Gynecological disorders.	Gupta, 2018.
22	Garcinia lanceifolia Roxb.	Clusiaceae	Ripen fruits are eaten which is very delicious.	Dysentery, Fever, Jaundice, Urinary troubles.	Baruah, 2021.
23	<i>Garcinia pedunculata</i> Roxb. ex BuchHam.	Clusiaceae	Pulp of fruits is eaten raw or sometimes by cooked.	Dysentery, Jaundice, Diarrhea, Digestive, Cooling.	Baruah, 2021; Sarma & Devi, 2015.
24	<i>Garcinia</i> <i>xanthochymus</i> Hook.f. ex T.Anderson	Clusiaceae	Pulp of fruits is eaten raw.	Wound, Skin diseases, Dysentery.	Baruah, 2021.
25	Grewia eriocarpa Juss.	Malvaceae	Ripe fruits are eaten.	-	-
26	Haematocarpu s validus (Miers) Bakh.f. ex	Menisperm aceae	Pulps of fruits are eaten which is	Jaundice, Anemia, Iching.	Rahim et al., 2015.

	Forman		voruinion			
	Forman		very juicy.			
	TT (* T T		Fruit arils			
27	Horsfieldia	Myristicace	are eaten			
27	amygdalina	ae	raw which	-	-	
	(Wall.) Warb.	ue	is very			
			sweet.			
			Succulent			
			peduncles,			
	Hovenia dulcis	Rhamnacea	infloresce			
28	Thunb.		nces are	-	-	
	Thund.	e	eaten and			
			its taste is			
			like pear.			
	Huberantha					
	jenkinsii		Ripen			
29	(Hook.f. &	Annonacea	fruits are	-	_	
	Thomson)	e	eaten.			
	Chaowasku					
			Insipid			
30	Leea asiatica	Vitaceae	fruits are	-	-	
50	(L.) Ridsdale	(Ituccuc	eaten raw.			
			cuton nuw.	Fractured		
	Litsea glutinosa			Insipid	limbs, Tablet	Ramana
31			fruits are	formulations, in	& Raju,	
51	(Lour.)		eaten raw.	making incense	2017.	
	C.B.Rob.		caten raw.	sticks.	2017.	
	Macluracochi		Ripen	SUCKS.		
32	nchinensis	Moraceae	fruits are			
32		Moraceae		-	-	
	(Lour.) Corner		eaten.		Chalmah	
22	Maesa indica	Primulacea	Ripen	Antidiatedia	Chakrab	
33	(Roxb.) Sweet	e	fruits are	Antidiabetic.	orty et	
			eaten.		al., 2021.	
			Pulp of			
	Mangifera		fruits is			
34	sylvatica	Anacardiac	eaten war	-	_	
	Roxb.	eae	as well as			
	1.040.		by making			
			pickle.			
	Medinilla	Melastomat	Insipid			
35	rubicunda	aceae	fruits are	-	-	
	(Jack) Blume	aceae	eaten raw.			
	Molactowa		Fruits are	Diarrhoea,		
20	<i>Melastoma</i>	Melastomat	eaten	Dysentery,	Joffry et	
36	malabathricu	aceae	which is	Leucorrhoea,	al., 2012.	
	<i>m</i> L.		insipid	Hemorrhoids,		
			maipiù	riemonnoids,		

				~ .	I
			and taste	Cuts and	
			is like a	Wounds,	
			black	Infection during	
			berry.	confinement,	
				Toothache,	
				Stomachache,	
				Flatulence, Sore	
				legs, Thrush,	
				Jaundice.	
				Coughs, Fever,	
				Inflamed eyes,	
			Ripen	Sore throats,	
			fruits are	Headaches,	
			eaten	Dizziness,	Bagachi
37	Morus alba L.	Moraceae	which is	Vertigo, Used	et al.,
			slightly	as a gargle and	2013.
			sour in	mouthwash,	
			taste.	Toothache,	
				Retention, Joint	
				pain.	
				Chronic cough,	
				Asthma, Ulcers,	
				Headache,	
	Myrica		Fruits are	Rheumatoid	
	esculenta		eaten raw	arthritis,	Sood &
38	BuchHam.	Myricaceae	and also,	Diarrhoea,	Shri,
	ex D.Don		made into	Dysentery,	2018.
	CA D.DOII		a drink.	Menorrhagia,	
				Menstrual	
				disorders.	
	<u> </u>	<u> </u>	Ripen	010010015.	
	Myrsine	Primulacea	insipid		
39	capitellata	e	fruits are	-	-
	Wall.		eaten raw.		
<u> </u>	Parabaena		caton ruw.		
	sagittata		Ripen		
40	Miers ex	Menisperm	fruits are	_	_
	Hook.f. &	aceae	eaten.	-	_
	Thomson		catch.		
	1101115011		Pulp of the		
			fruits is		
	Parthenocissu		eaten raw		
41	s semicordata	Vitaceae	which is		
+1	(Wall.)	vitaceae		-	-
	Planch.		slightly		
			sour in		
			taste.		

42	Pegia nitida Colebr.	Anacardiac eae	Pulp of the fruits is eaten raw which is slightly sour in taste.	-	-
43	Persicaria chinensis (L.) H.Gross	Polygonace ae	Ripen fruits are eaten.	Diuretic, Emmenagogue, regulate menstrual irregularities, Diarrhea, Dyspepsia, Itching skin, Excessive menstrual bleeding, Hemorrhoids, Cancer, Astringent, Cicatrizing, Gastric, Pulmonary problems, Uterine hemorrhages, For termination of pregnancy, Uterine disorders, Colic pain.	Huq et al., 2014.
44	Phoenix dactylifera L.	Arecaceae	Fleshy pulp of fruit is eaten which is sweet in taste.	Infertility problems.	Selmani et al., 2017.
45	Pinanga gracilis Blume	Arecaceae	Small nuts are chewed with betel leaf.	-	-

					1
46	Potentilla indica (Andrews) Th.Wolf	Rosaceae	Ripen fruits are eaten.	-	-
47	<i>Rubus burkillii</i> Rolfe	Rosaceae	Ripen fruits are eaten.	-	-
48	Rubus ellipticus Sm.	Rosaceae	Fruits are eaten raw which is slightly sour in taste.	-	-
49	<i>Rubus lucens</i> Focke	Rosaceae	Ripen fruits are eaten.	-	-
50	Rubus moluccanus L.	Rosaceae	Ripen fruits are eaten.	-	-
51	Rubus rosifolius Sm.	Rosaceae	Fruits are taken which is sour in taste.	-	-
52	<i>Saurauia</i> <i>cerea</i> Griff. ex Dyer	Actinidiace ae	Fruits are eaten.	-	-
53	<i>Saurauia</i> <i>cerea</i> Griff. ex Dyer	Actinidiace ae	Fruits are cooked as vegetables	-	-
54	Saurauia punduana Wall.	Actinidiace ae	Fruits are cooked as vegetables	-	-
55	Saurauia roxburghii Wall.	Actinidiace ae	Ripen fruits are eaten which is very delicious.	Indigestion, Boils, Fever, Gout, Piles, Eczema, Asthma, Ulcers, Bronchitis, Epilepsy, Hepatitis B.	Nahrin et al., 2020.
56	Saurauiana paulensis DC.	Actinidiace ae	Fruits are cooked as	-	-

			vegetables		
57	Solanum spirale Roxb.	Solanaceae	Fruits are cooked as vegetables	_	-
58	Solanum torvum Sw.	Solanaceae	Fruits are cooked as vegetables		Asiedu- Darko, 2010.
59	Solanum violaceum Ortega	Solanaceae	Fruits are cooked as vegetables	-	-
60	Solena heterophylla Lour.	Cucurbitace ae	Ripen fruits are eaten.	-	-
61	<i>Stauntonia</i> <i>latifolia</i> (Wall.) R.Br. ex Wall.	Lardizabala ceae	Pulps of fruits are eaten.	Pulps of fruits are -	
62	Syzygium aborense (Dunn) Rathakr. & N. C. Nair	Myrtaceae	Ripen fruits are eaten.	-	-
63	Syzygium cumini (L.) Skeels	Myrtaceae	Ripen fruits are eaten.	Dysentery, Diabetes, Cough, Inflammation, Ringworm, Blisters in mouth, Cancer, Colic, Diarrhea, Digestive complaints, Dysentery, Piles, Pimples, Stomachache.	Shrikant Baslinga ppa et al., 2012.
64	<i>Terminalia</i> <i>bellirica</i> (Gaertn.) Roxb.	Combretace ae	Raw fruits are eaten and also can be stored	-	-

			after drying.		
65	<i>Terminalia</i> <i>citrina</i> (Gaertn.) Roxb.	Combretace ae	Fruits are eaten which is sour in taste.	-	-
66	Tetrastigma leucostaphylu m (Dennst.) Alston	Vitaceae	Ripen fruits are eaten.	-	-
67	Trivalvaria argentea (Hook.f. & Thomson) J.Sinclair	Annonacea e	Ripen fruits are eaten.	-	-
68	Zanthoxylum nitidum (Roxb.) DC.	Rutaceae	Fruits are eaten which is slightly pungent.	Relieve pain, Stomach ache, Toothache, Rheumatic arthralgia, Traumatic injury, Venomous snake Bites, Burn, Scald, Chronic lumbar muscle strain, Snake bites.	Lu et al., 2020.
69	Zehneria scabra (L.f.) Sond.	Cucurbitace ae	Fruits are eaten raw.	Skin diseases, Syphilis, Gonorrhea, Malaria, Worm, Diarrhoea, Malaise, Mumps, Fever, Taeniasis, Constipation, Conjunctivitis, Swelling, Headache, Snakebites, Eye infection, Evil eye, Michi, Internal mitch.	Bayu et al., 2018.

Recent Advances in Folk Medicine Research in North East India

70	Ziziphus apetala Hook.f.	Rhamnacea e	Pulp of fruits is eaten.	-	-
71	Ziziphus funiculosa BuchHam. ex M.A.Lawson	Rhamnacea e	Pulp of fruits is eaten.	-	-
72	Ziziphus incurve Roxb.	Rhamnacea e	Pulp of fruits is eaten.	-	-

Plants with edible stems and barks

Barks of some plants are chewed for its taste or as a masticatory in the dayto-day life of the forest dwellers. Bark of *Baccaurea sapida* stem is slightly sweetish in taste and is often chewed by the local people when they come across such trees in the jungle or during the cultivation period in the *jhum* land. The soft pith of some plants basically belonging to the Zingiberaceae, Poaceae and Arecaceae are also taken as a raw food and used as a famine food. The secondary metabolites deposition is mainly taking place in the bark and stem; therefore, these parts also have potential medicinal properties and used as a traditional medicine in the treatment of different diseases. A list of the plants whose stems and barks are used is given below (**Table14.2**).

Plants with underground edible parts (tubers/rhizome)

The North Eastern states are rich in the cultivation and domestication of the edible tuber/rhizome yielding crops native to the region. A number of plants belonging to the families Araceae and Dioscoreaceae come under the categories of food plants. However, these plants include both the cultivated and wild one. They are eaten in the form of raw or boiled. The people of this region cultivate different types of yam and taro in their agricultural fields along with other primary crops such as sweet potato. The family Araceae is represented by the species of *Colacasia, Alocasia, Amorpholus* and *Lasia* with a number of local varieties, as it is evident from the occurrence of long list of local names of *Colacasia antiqurum*. Different yams like *Dioscorea esculenta, D. bulbifera* are cultivated in jhum fields and some other species are grown in wild (**Table14.4**). The edible tubers are found deep under the soil surface and after digging out, these are baked or boiled and served.

Fruit bearing plants

Over 170 different underutilized fruit bearing plants are recorded in different parts of NE India which are consumed by the indigenous group of people. Tropical and subtropical forests abound in a large variety of fruit plants. Some of the fruits are also used as vegetables in the raw or cooked form, one such prominent fruit is jackfruit (Artocarpus heterophyllus) which is popularly used all over the states of NE in both raw and cooked form and also as ripen fruit. Wild mangoes (Mangifera sylvetica) are also found in the primary forest of NE India. It has been reported that there are two different wild mango varieties, these wild species are smaller and inferior than the cultivated ones (*M. indica*). There are more than 60 different local cultivated mango varieties, reported from Assam which indicates the origin of these specific fruits. Fruits of wild and cultivated species of Solanum of the family Solanaceae are usually used as vegetables along with the other fruits of the family Cucurbitaceae. The family Moraceae is well represented by plants like Morus indica and several edible species of Ficus like F. auriculata, F. cunia, F. roxburghii, F. racemosa etc. The detailed list of the underutilized edible fruitis listed in the (Table14.5).

Wild edible seeds

Besides the long list of the wild edible fruits, a few of the edible seed yielding plants come under the families such as Sterculiaceae, Clusiaceae, Cyperaceae, Euphorbiaceae, Lamiaceae, Fagaceae, Cucurbitaceae, Moraceae, Elaeocarpaceae etc. The most popular way of the utilization of the seeds are to roast the seeds and eat as it is or mixed with salt and considered as salad. Large seeds of *Hodgsonia macrocarpa* of the family Cucurbitaceae which is a good source of oil/protein. The hard and bitter taste of the seed is carefully removed and the kernel is taken. These seeds are commonly used by the Mizo tribe of Mizoram (Arora and Hardas, 1977). A detailed list of the plants along with their families having edible seeds is given below.

Bamboo based food

The young succulent bamboo shoots are used as food by the indigenous people of entire North East India. The tender shoots of the bamboo are collected at the advent of monsoon season from both cultivated and wild bamboo species. When the tips of the young shoots are about to come out from the soil heaps, they are then cut near the base attached to the parent rhizome. The tender shoots are generally used in the form of raw or cooked or fermented. Young sprouts are collected from the wild and cultivated species of bamboo like *Dendrocalamus hookeri* (cultivated and wild), *D. hamiltonii* (cultivated and wild), *Bambusa tulda* (cultivated), *B. arundinacea* (cultivated and wild), *Arundinaria* sp. (Wild) etc.

Traditional famine food plants in the realm of food security

In course of time various small communities, particularly in the tropical countries; they developed unique indigenous techniques for efficient utilization of resources and bio-resources around them. In other words, they have learnt to survive fulfilling their day-to-day requirements which led to a strong bond between Man and Biosphere relationship developed in complete harmony with nature. Whatever primitive Sweden or slash and burn methods of agriculture used by those communities were not adequate enough to fulfill their need for food for the whole year. During the lean period, they had to search for wild edibles to get over the period of crisis. Another emergent situation was that there were often crop failure due to various reasons viz. destruction of the crops by wild animals, natural calamities etc. As a result, those communities had to face famine like situation. In the verge of such a situation, the ethnic communities had developed some unique techniques to extract food from unconventional wild plant species to meet their hunger and nutritional needs. The interesting aspect is that many indigenous ethnic groups residing amidst the biodiversity rich tropical parts of the world are still following these techniques.

The indigenous people of NE India are basically agrarian society and rely on traditional *jhum* cultivation, the return from which is a meager and the local communities had to depend on wild food and animals as food supplement. Such conditions forced the people to depend on *famine* food to tide over the lean period. In the past such food were used as a source of starchy supplement and developed their indigenous techniques for processing and utilization. Increase in population in developing countries like India is the major problem leading to food scarcity. So, there is a basic need for alternative food material of traditional cereal crops viz., rice millets and pulses.

Earlier people used the plant products as food substances during the famine like situation in Arunachal Pradesh. *Wallichia oblongifolia* (Locally known as *Tashe*) isan important famine food plant which is traditionally used by the local people even today as food supplement (**Fig. 14.1**). After biochemical investigation and the nutritional profiling of this plant, it was proved that the trunk of *Wallichia oblongifolia* is a good source of carbohydrate as well as other minerals (Bharali *et. al.*, 2014). Therefore, this plant can be used as an alternative food of rice and millets; hence, there is a need for technology input for manufacturing different food products, which can solve the problems related to food scarcity. One interesting aspect is that the local communities have plantation of this potential food plant in the vicinity of their habitat.

Although the young trunks are used as feed for the pigs, the mould or the poultry, and aformulated powder from the same can be used as a feed for fishes.

Fig. 14.1. The plant *Wallichia oblongifolia* (Locally known as Tashe) is used for various purposes by the tribal community of Arunachal Pradesh.

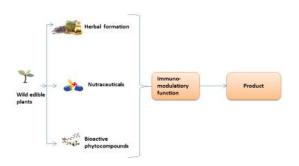


Fig. 14.2. The wild edible plants are used in herbal formulation, nutraceutical and phytochemical screening.

The black stiff hairs like vascular strands of the plant leaf is used in decorating and in making of the traditional raincoat and the head gear, by the local youths go for hunting. The midribs of the leaf are used as traditional broom which sustains the household economy in a small way. Due to the strength of the vascular strand, it is used as a trapping material for killing birds and also use in making carpets. There are other tree ferns like *Alsophila andersoni* J. Scott ex Bedd: (Tashe/Tashi Hiram in Galo), *Cyathea brunoniana* (Wall. ex Hook.) Clarke & Baker: (Saoe/Pangi), *Angiopteris evecta* (Forst.) Hoff .(Taba/Bakum) and their trunk are processed by indigenous techniques and to produce ethnic food, commonly known as Tashe/Tashi.

Ferns and Fern allies used as food

In contrast to the vast number of edible angiosperm plants, the number of edible ferns and fern-allies are very few. Certain tree ferns are used as source of

farinaceous food. In the remote past, the early food gatherers, when they had yet to learn the technique of agriculture, had tried different wild plants as sources of food.

Conclusion

The description presented above in the article confirmed and showed the prospects of the underutilized plant resources to the livelihood in a sustainable way. There is an urgent need of proper awareness and training among the indigenous people about the importance and sustainable use of those prominent species. The traditional green leafy vegetables (TGLVs) are rich in nutrients, carotenoids (vitamins), iron, calcium, ascorbic acid, riboflavin, folic acid and appreciable amounts of other minerals and so, the scientific evidence for the use of 101 leafy plants used in making a special dish by the people of Assamese community is extremely important on this regard. This needs scientific evaluation of the minerals and the proximate composition of the traditional green leafy vegetables along with other edible plant parts. This may lead to the establishment of the medicinal properties of indigenous plant resources from NE India. The extensive exploration and documentation are also required to find out the unreported specimen from NE India for the scientific validation. In addition, there is a need for survey and scientific documentation in the form of database which will be implementing AI and ML is required for easy availability of traditional knowledge globally. It will be more beneficial if the government institute provide training, awareness and other skill development activities among the rural people of the region for the formulation of food products and expand it to the local market within the state and beyond. This will definitely increase the local livelihood and rural economy among the indigenous people of NE India.

Acknowledgment

This work was funded by the Council of Scientific and Industrial Research (CSIR), Government of India under its "*Immuno Modulatory Function of Nutritionals and Nutraceuticals for Health and Wellness*" mission project. The author would like to thank Dr. G. Narahari Sastry, Director CSIR NEIST for facilitating the study and for the valuable suggestions and encouragement. Authors also very thankful to the indigenous people of NE India for sharing their traditional knowledge and information.

References

Ambardar, N. & Aeri, V. 2013. A better understanding of traditional uses of *Careya arborea Roxb*.: Phytochemical and pharmacological review. *CELLMED*, 3(4): 28-1.

- Anonymous, 1984. Annual Report of the All-India Co-ordinated Research Project on Ethnobiology. Department of Environment, Government of India, p. 78.
- Arora, R.R. &Pandey, A. 1996. Wild edible plants of India: Conservation and use. Indian Council of Agricultural Research - National Bureau of Plant Genetic Resources, New Delhi.
- Asiedu-Darko, E. 2010. A survey of indigenous knowledge about food and medicinal properties of *Solanum torvum* in East Akim District of Eastern Region of Ghana. *Ghana Journal of Agricultural Science*, 43(1): 61-64.
- Bagachi, A., Semwal, A. & Bharadwaj, A. 2013. Traditional uses, phytochemistry and pharmacology of *Morus alba* Linn.: A review. *Journal of Medicinal Plants Research*, 7(9): 461-469.
- Balami, N. P. 2004. Ethnomedicinal uses of plants among the Newar community of Pharping village of Kathmandu district, Nepal. *Tribhuvan University Journal*, 24(1): 13-19.
- Bapuji, J. L. & Ratnam, S. V. 2009. Traditional uses of some medicinal plants by tribals of Gangaraju Madugula Mandal of Visakhapatnam district, Andhra Pradesh. *Ethnobotanical leaflets*, 2009: (3), 2.
- Baruah, S., Barman, P., Basumatary, S. & Bhuyan, B. 2021. Diversity and Ethnobotany of genus *Garcinia* L. (Clusiaceae) in Assam, Eastern Himalaya. *Ethnobotany Research and Applications*, 21(1): 1-14.
- Bayu, E., Assefa, G. & Alemseged, M. 2018. Medicinal use, method of administration and phytochemicals in *Zehneria scabra*. Journal of Medicinal Plants, 6(5): 114-116.
- Bharali, P., Paul, A., Dutta, P., Gogoi, G., Das, A. K. & Baruah, A. M., 2014. Ethnopharmacognosy of *Stemona tuberosa* Lour., a potential medicinal plant species of Arunachal Pradesh, India. *World J Pharm Pharm Sci*, 3(4): 1072-1081.
- Biswas, K. R., Khan, T., Monalisa, M. N., Swarna, A., Ishika, T., Rahman, M. & Rahmatullah, M. 2011. Medicinal plants used by folk medicinal practitioners of four adjoining villages of Narail and Jessore districts, Bangladesh. *American Eurasian Journal of Sustainable Agriculture*, 5(1): 23-33.
- Bora, N. S., Kakoti, B. B., Gogoi, B. & Goswami, A. K. 2014. Ethno-medicinal claims, phytochemistry and pharmacology of *Spondias pinnata*: A review. *International Journal of Pharmaceutical Sciences and Research*, 5(4): 1138.
- Borborah, K., Borthakur, S. K. & Tanti, B. 2016. Musa balbisiana Colla-Taxonomy, Traditional knowledge and economic potentialities of the plant in Assam, India. *Indian Journal of Traditional Knowledge*,15(1): 116-120.
- Chakraborty, R., Sen, S., Chanu, N. R., Singh, A. B., Lyngkhoi, C., Kharlyngdoh, S.
 & Kalita, P. 2021. An Ethnomedicinal Survey of Antidiabetic Plants and Preliminary Evaluation of Antioxidant, Hypoglycemic Activity *Maesa indica*

Leaves, a Folk Antidiabetic Plant of Manipur, India. *Current Traditional Medicine*, 7(2): 286-294.

- Chaudhary, P. H. & Khadabadi, S. S. 2012. *Bombax ceiba Linn.*: pharmacognosy, ethnobotany and phyto-pharmacology. *Pharmacognosy Communications*, 2(3): 2-9.
- Chopra, R.N., Nayar, S.L. & Chopra, I.C. 2006. Glossary of Indian Medicinal Plant, Edition VII, 16, Published by *NISCAIR* Press. New Delhi;
- De, L. C. 2016. Medicinal and aromatic plants of North-East India. *International Journal of Development Research*, 6(11): 10104-10114.
- Dutta, B. 2015. Food and medicinal values of certain species of *Dioscorea* with special reference to Assam. *Journal of Pharmacognosy and Phytochemistry*, 3(5).
- Dutta, B. 2015. Food and medicinal values of certain species of *Dioscorea* with special reference to Assam. *Journal of Pharmacognosy and Phytochemistry*, 3(4): 15-18.
- Gam, N. K. 2013. Ethno-medicinal claims existing among mising tribes of Assam. *IJSIT*, 2(4): 284-291.
- Goswami, P. & Dutta, A.M. 1983. Some folklore medicines of cardiac importance. Ancient Science of Life 2: 233-235.
- Gupta, S. 2018. Ethnomedicinal claims of *Ficus semicordata* Buch. -Ham. ex Sm.: A review. *International Journal of Green Pharmacy (IJGP)*, 12(01).
- Gupta, S. & Prakash, J. 2009. Studies on Indian green leafy vegetables for their antioxidant activity. *Plant foods for human nutrition*, 64(1): 39-45.
- Handique, A. K. 2003. Nutritive Values of Five Wild Edible Ferns of North East India. *Indian Journal of Plant Genetic Resources*, *16*(3): 175-177.
- Handique, G. K. & Handique, A. K. 2005. Nutritive values of some non-conventional leafy vegetables. *Indian J. Agric. Biochem*, 18(1): 47-49.
- Hasan, N. Ahmad, N., Zohrameena, S., Khalid, M. & Akhtar, J.2016. Asparagus racemosus: For medicinal uses & pharmacological actions. International Journal of Advanced Research, 4(3): 259-267.
- Huq, A. K. M., Jamal, J. A. & Stanslas, J. 2014. Ethnobotanical, phytochemical, pharmacological, and toxicological aspects of *Persicaria hydropiper* (L.) Delarbre. *Evidence-Based Complementary and Alternative Medicine*, 2014.
- Jafri, M.A., Farah, K.J. & Singh, S. 2001. Evaluation of the gastric antiulcerogenic effect of large cardamom (fruits of *Amomum subulatum* Roxb.). *Journal of Ethnopharmocology*, 75: 89-94.
- Jain, S.K. & Rao, R.R. 1997. A Handbook for field and herbarium methods. Today & Tomorrow's Publishers, New Delhi.

- Jain, V. & Verma, S. K. 2014. Assessment of credibility of some folk medicinal claims on *Bombax ceiba L. Indian Journal of Traditional Knowledge*, 13 (1): 87-94.
- Joffry, S. M., Yob, N. J., Rofiee, M. S., Affandi, M. M. R., Suhaili, Z., Othman, F. & Zakaria, Z. A. 2012. *Melastoma malabathricum* (L.) smith ethnomedicinal uses, chemical constituents, and pharmacological properties: a review. *Evidence-Based Complementary and Alternative Medicine*, 2012.
- Kalita, D., Saikia, J., Mukherjee, A. K. & Doley, R. 2014. An ethnomedicinal survey of traditionally used medicinal plants for the treatment of snakebite in Morigaon district of Assam, India. *International Journal of Medicinal and Aromatic Plants*, 4(2): 97-106.
- Kar, S., Das, D., Das, A. & Datta, B. K 2019. Ethnomedicinal uses of some legumes in Tripura, India. *Pleione* 13(2): 258 – 268.
- Kumar, S., Parida, A. K. & Jena, P. K. 2013. Ethno-medico-biology of Bān-Aālu Dioscorea species: a neglected tuber crops of Odisha, India. International Journal of Pharmacy and Life Sciences, 4(12): 3143-3150.
- Kundu, B. B., Vanni, K., Farheen, A., Jha, P., Pandey, D. K. & Kumar, V. 2020. *Dioscorea bulbifera* L. (Dioscoreaceae): A review of its ethnobotany, pharmacology and conservation needs. *South African Journal of Botany*, https://doi.org/10.1016/j.sajb.2020.07.028
- Kunwar, R. M., Uprety, Y., Burlakoti, C., Chowdhary, C. L. & Bussmann, R. W. 2009. Indigenous use and ethnopharmacology of medicinal plants in far-west Nepal. *Ethnobotany research and applications*, 7: 005-028.
- Lin, L., Ni, B., Lin, H., Zhang, M., Li, X., Yin, X. & Ni, J. 2015. Traditional usages, botany, phytochemistry, pharmacology and toxicology of *Polygonum multiflorum* Thunb.: a review. *Journal of ethnopharmacology*, 159: 158-183.
- Lin, Y. F., Yi, Z. & Zhao, Y. H. 2003. Chinese Dai medicine colorful illustrations. *Yunnan National Publishing House, Kunming, China*, 6, 126.
- Lobo, R., Prabhu, K. S., Shirwaikar, A. & Shirwaikar, A. 2009. *Curcuma zedoaria* Rosc. (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. *Journal of Pharmacy and Pharmacology*, 61(1): 13-21.
- Lu, Q., Ma, R., Yang, Y., Mo, Z., Pu, X. & Li, C. 2020. Zanthoxylum nitidum (Roxb.) DC: Traditional uses, phytochemistry, pharmacological activities and toxicology. Journal of Ethnopharmacology, 260: 112946.
- Mahomoodally, M. F. & Sookhy, V. 2018. Ethnobotany and pharmacological uses of *Elaeocarpus floribundus* Blume (Elaeocarpaceae). In *Plant and Human Health, Volume 1* (pp. 125-137). Springer, Cham.
- Malla, B., Gauchan, D. P. & Chhetri, R. B. 2015. An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. *Journal of ethnopharmacology*, 165: 103-117.

- Mathew, N. S. & Negi, P. S. 2017. Traditional uses, phytochemistry and pharmacology of wild banana *Musa acuminate* Colla: A review. *Journal of ethnopharmacology*, 196: 124-140.
- Mehta, D. G. P. 2013. *Dillenia indica Linn*. and *Dillenia pentagyna* Roxb.: pharmacognostic, phytochemical and therapeutic aspects. *Journal of Applied Pharmaceutical Science*, 3(11): 134-142.
- Mustafa, A., Ahmad, A., Tantray, A. H. & Parry, P. A. 2018. Ethnopharmacological potential and medicinal uses of miracle herb *Dioscorea* spp. J. Ayu. Her. Med, 4(2): 79-85.
- Nahrin, A., Junaid, M., Afrose, S. S., Alam, M. S., Hosen, S. M., Akter, R. & Sharmin, T. 2020. A Review of *Saurauia roxburghii* Wall. (Actinidiacaea) as a Traditional Medicinal Plant, Its Phytochemical Study and Therapeutic Potential. *Mini Reviews in Medicinal Chemistry*, 20(19): 2036-2051.
- Pattanayak, S., Dutta, M. K., Debnath, P. K., Bandyopadhyay, S. K., Saha, B. &Maity, D. 2012. A study on ethno-medicinal use of some commonly available plants for wound healing and related activities in three southern districts of West Bengal, India. *Exploratory Animal and Medical Research*, 2(2): 97-110.
- Rahim, M. A., Khatun, M. J. M., Rahman, M. M., Anwar, M. M. & Mirdah, M. H. 2015. Study on the morphology and nutritional status of Roktogota (*Haematocarpus validus*) an important medicinal fruit plant of hilly areas of Bangladesh. *International Journal of Minor Fruits, Medicinal and Aromatic Plants*, 1(1): 11-19.
- Rahim, Z. B., Rahman, M. M., Saha, D., Hosen, S. Z., Paul, S. & Kader, S. 2012. Ethnomedicinal plants used against jaundice in Bangladesh and its economical prospects. *Bulletin of Pharmaceutical Research*, 2(2): 91-105.
- Rahman, M. 1996. Diversity, ecology and ethnobotany of the Zingiberaceae of Bangladesh. *Journal of Economic and Taxonomic Botany Addl Series*. 12:13– 19.
- Rahmatullah, M., Das, A. K., Mollik, M. A. H., Jahan, R., Khan, M., Rahman, T., & Chowdhury, M. H. 2009. An ethnomedicinal survey of Dhamrai sub-district in Dhaka District, Bangladesh. *American Eurasian Journal of Sustainable Agriculture*, 3(4): 881-888.
- Rajpal, VB. & Kohli, DPS.2009. Herbal Drug Industry. Edition II. Published by *Business Horizons*. New Delhi.
- Ram, P. & Rastogi, BN. 2006. Compendium of Indian Medicinal Plant, IV: 6-37 CDRI, &National Institute of Science Communication and Information. New Delhi.
- Ramana, K. V. & Raju, A. S. 2017. Traditional and commercial uses of *Litsea glutinosa* (Lour.) CB Robinson (Lauraceae). *Journal of Medicinal Plants Studies*, 5(3): 89-91.

- Reddy, K. N., Reddy, C. S. & Raju, V. S. 2008. Ethnomedicinal observations among the Kondareddis of Khammam District, Andhra Pradesh, India. *Ethnobotanical leaflets*, 2008(1): 124.
- Saha, S., Gouda, T. S. & Srinivas, S. V. 2017. Preliminary phytochemical analysis and oral acute toxicity study of the leaves of *Baccaurea ramiflora* and *Microcos paniculata*. Saudi Journal of Medical and Pharmaceutical Sciences, 3(6): 444-449.
- Sarma, R. & Devi, R. 2015. Ethnopharmacological survey of *Garcinia pedunculata* Roxb. Fruit in six different districts of Assam, India. *Int J Pharma Sci Inv* 4: 20-28.
- Sawmliana, M. 2013. The Book of Mizoram Plants. Lois Bet, Chanmari, Aizawl, Mizoram.
- Selmani, C., Chabane, D. & Bouguedoura, N. 2017. Ethnobotanical survey of *Phoenix dactylifera* L. pollen used for the treatment of infertility problems in Algerian oases. *African Journal of Traditional, Complementary and Alternative Medicines*, 14(3): 175-186.
- Sethiya, N. K., Shekh, M. R., & Singh, P. K. 2019. Wild banana Ensete superbum Roxb. Cheesman.: Ethnomedicinal, phytochemical and pharmacological overview. Journal of ethnopharmacology, 233: 218-233.
- Sheikh, S. A. 2014. Ethno-medicinal uses and pharmacological activities of lotus *Nelumbo nucifera. Journal of Medicinal Plants Studies*, 2(6): 42-46.
- Shrikant Baslingappa, S., Nayan Singh J, T., Meghatai M, P. & Parag M, H. 2012. Jamun Syzygium cumini (L.): a review of its food and medicinal uses. Food and Nutrition Sciences, 3: 1100-1117, http://dx.doi.org/10.4236/fns.2012.38146
- Shukla SH, Mistry HA, Patel VG, Jogi BV 2010. Pharmacognostical, preliminary phytochemical studies and analgesic activity of *Amomum subulatum* Roxb. *Pharma Science Monitor*, 1(1): 90-102.
- Singh, A. G., & Kumar, A. 2017. Ethnomedicinal aspects of climbing plants of Palpa district, Nepal. *Tropical Plant Research*, 4(2): 307-313.
- Smita, R., Sangeeta, R., Kumar, S. S., Soumya, S., & Deepak, P. 2012. An ethnobotanical survey of medicinal plants in Semiliguda of Koraput District, Odisha, India. *Research journal of recent sciences*, 2(8): 20-30,.
- Sood, P., & Shri, R. 2018. A review on ethnomedicinal, phytochemical and pharmacological aspects of *Myrica esculenta*. *Indian Journal of Pharmaceutical Sciences*, 80(1): 2-13.
- Stewart, J.L. 1869. Punjab Plants, Government Press, Lahore, as cited byKirtikar, K.R. and Basu, B.D. 1984.*Indian Medicinal Plants*, Vol. II, Bishen Singh Mahendra Pal Singh, Dehra Dun, p. 1024.

- Sujarwo, W. & Keim, A. P. 2019. Spondias pinnata (L. f.) Kurz. (Anacardiaceae): Profiles and applications to diabetes. In Bioactive Food as Dietary Interventions for Diabetes (pp. 395-405). Academic Press.
- Tag, H., Kalita, P., Dwivedi, P., Das, A.& Namsa, N.D. 2012. Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast, India. *Journal of Ethnopharmacology*, 141(3): 786–795.
- Talukdar, A., Talukdar, N., Deka, S. & Sahariah, B. J. 2012. Dillenia indica (OUTENGA) as anti-diabetic herb found in Assam: a review. International Journal of pharmaceutical sciences and research, 3(8): 2482.
- Tangjang, S., Namsa, N.D., Aran, C. & Litin, A. 2011. An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India. *Journal of Ethnopharmacology*, 134(1):18–25.
- Taram, M., Borah, D., Mipun, P., Taram, V. & Das, A. P. 2020. Evaluation of ethnobotanical knowledge in Komkar-Adi Biocultural Landscape of Eastern Himalayan Region of India. *Asian Journal of Ethnobiology*, 3(2): 70-87.
- Tomar, A. 2019. *Bambusa bambos Voss.* (Bamboo) as a source of medicine in Uttar Pradesh, India. *Journal of Pharmacognosy and Phytochemistry*, 8(4): 2726-2727.
- Upadhyay, R. K. 2017. Therapeutic and pharmaceutical potential of *Cinnamomum tamala*. *Research Reviews: Pharmacy and Pharmaceutical Sciences*, 6(3): 18-28.
- Vanila, D., Ghanthikumar, S., & Manickam, V. S. 2008. Ethnomedicinal uses of plants in the plains area of the Tirunelveli-District, Tamilnanu, India. *Ethnobotanical leaflets*, 12: 1198-1205.
- Vazhacharickal, P. J., Sajeshkumar, N. K., Mathew, J. J., Kuriakose, A. C., Abraham, B., Mathew, R. J., &Jose, S. 2015. Chemistry and medicinal properties of jackfruit (*Artocarpus heterophyllus*): A review on current status of knowledge. *International Journal of Innovative Research and Review*, 3(2): 83-95.
- Verma SK, Rajeevan V, Bordia A, Jain V 2010. Greater cardamom Amonum subulatum Roxb. – A cardio-adaptogen against physical stress. Journal of Herbal Medicine and Toxicology, 4(2): 55-58.
- Yob, N. J., Jofrry, S. M., Affandi, M. M. R., Teh, L. K., Salleh, M. Z., & Zakaria, Z. A. 2011. Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses. Evidence-Based Complementary and Alternative Medicine, 2011.

Chapter 15

Ethnomedicinal knowledge of Mishing community for management of skin diseases in Dhemaji district, Assam, NE India

Joynath Pegu¹, Robindra Teron² and Ajit Kumar Tamuli³

^{1,2}North Eastern Institute of Folk Medicine (An Autonomous Institute under Ministry of AYUSH, Govt. of India), Pasighat-791 102, East Siang, Arunachal Pradesh, India ³Department of Life science and Bioinformatics Assam University, Diphu Campus Diphu, 782462, Karbi Anglong, Assam Corresponding author: joynathpegu@gmail.com

Abstract:

Medicinal plants play an active role in herbal medicine and cost-effective way to treat disease. The ethnic groups are largely dependent on wild plant resources for their food, medicines and livelihood. The region is rich in wild medicinal plants resources. The indigenous people of this area depend on medicinal plants for their primary health care. This people have natural knowledge about medicinal plants and its uses. But no study has been carried out in Dhemaji district to report the therapeutic plants used to treat skin diseases. So the present study was aimed to document the medicinal plants traditionally used by Mishing ethnic group. Structural questionnaires complemented by free interviews, group discussion, field interview and informal conversation were followed to accomplish the aim and objectives of the research. Informants were asked about etiology, health care system and herbal prescription for management of human skin disease problems. Medicinal plants were collected from natural habitats (home gardens, agricultural fields, wetlands, forests and roadside) with the help of local guidance and informants. The investigation includes names and parts used, ailments cured, preparation and administration. Total 38 species of 35 genera and 32 families of medicinal plants are collected. Plants parts such as leaves, tubers, shoot, young twigs, roots, bark, flower buds, fruits, seeds etc are used for medicine by tribal peoples. The study will be helpful in developing a comprehensive data base on wild medicinal plant resources, strengthening the health security and in conserving the traditional knowledge for prosperity of the remote areas. Exploration and documentation of ethnomedicinal practices among indigenous people can help in preservation of traditional knowledge and identification of new medicinal plant resources. Such local healing practices need to be validated for its promotion and development. Since the medicinal plants are non-toxic and easily affordable so they play a vital role for pharmacological research, drug development and direct used as therapeutic agent.

Key Words: Traditional medicine, Ethnobotany, medicinal plants, skin disease.

Introduction

Traditional medicine

Ethnobotany is the scientific study that deals with indigenous people and plants. Ethnomedicinal plants play an important role in the ethnic group of people. Ethnic people have deep belief in the traditional system of medicine for remedies and rely exclusively on their own herbal cures. There are enormous Ethnomedicinal plants which are useful as antimicrobial, antifungal, antiviral and antioxidant. Traditional medicine (also known as alternative, complimentary, indigenous or folk medicine). The World Health Organization (WHO) defines traditional medicine as "the sum total of the knowledge, skills and practices based on the theories, beliefs and experiences indigenous to different cultures, whether explicable or not, use in maintenance of health as well as in the prevention, diagnosis, improvement or treatment of physical and mental illness. It has estimated that 80% of the world population is dependent on traditional medicine for their primary health's needs.

Ethnomedicine and skin diseases

Herbalists and indigenous healers have used botanical medicines traditionally for the prevention and treatment of different skin disorders. Traditional knowledge that is developed through the combined experience of many generations and still practiced in many tribal and rural societies develops their own medical practices by trial-and-error method. Some medicinal plants are nontoxic easily affordable and they play an important role in pharmacological research and drug development. Scientists and medical professionals have found that the herbs themselves, which possess unique combinations of chemical components, are more effective than the chemical derivatives. Medicinal plants are the best source to obtain a variety of newer herbal drugs. This project will help to know skin problems to screen out the efficient or to find out the new approach in reported plants and to find out for related other plants which may be a step ahead in the drug discovery process.

Material and methods

Study sites

The study was carried out in some of the places in Dhemaji district, Assam. This state is located in the Northeastern region of India, lies between 2410' - 2756'N latitude and 8940'- 9542'E longitudes. There are about 100 tribes and sub tribes reported (Borthakur & Goswami, 1995) from the state. The state is situated in the north east corner of India surrounded by Bhutan and Arunachal Pradesh on north, Arunachal Pradesh, Nagaland and Manipur in the east, Meghalaya and Mizoram in the south of Bangladesh, Tripura and West Bengal in the west.

The study was carried out in Mishing rural communities of Dhemaji district, Assam. The Dhemaji district located within latitude 27°48' N and longitude 94°58' E. The climate is tropical and the vegetation is lowland rainforest with a mean annual rainfall of 2600 mm to 3200mm. The field survey was conducted in the tribal village areas to collect information about ethno medicinal plants used by tribal to heal skin disease. The actual application of plants parts to treat skin disease was also observed the field work. The majority of the traditional medicines were prepared using water as medium. In addition to pure herbal preparation, in some cases the drug was administered with ghee, honey, milk, coconut oil and curd etc.

Methods

Field survey and data collection:

The field work was conducted during the month of June 2018 to March 2019. The field work consisted of interviewing the local elder people of the villages and documenting local knowledge about the medicinal plants and their uses in skin disease. The medicinal plants were collected from the jungles, home gardens, agricultural fields, wetlands, roadside as well as from the villages and local markets with the help of local guidance and informants. During the interview question like the names, uses, how often it is used and whether it is used for the same purpose by other communities in the district are asked. Plants are identified with the help of floras. The herbarium was prepared for available specimens. Processed herbarium specimens are deposited in the department of Life Science and Bioinformatics, Assam University Diphu Campus.

Result and Discussion

The present study recorded ethnomedicinal knowledge of 39 medicinal plants belonging to 35 genera and 32 families used for management of skin disorders of human viz. Ringworm, scabies, abscesses, skin burn, skin dry, septic ulcer, carbuncles, leprosy (Table 15.1). The Zingiberaceae has highest representation with (4) species which followed by Fabaceae (3) and Lamiaceae, Euphorbiaceae (2) while rest of the botanical families has one species each.

 Table 15.1. Enumeration of the Medicinal plants used by Mishing community for curing skin diseases.

Sl No	Species name &	Local Name	Habit	Part Used	Mode of used	Disease
	Family					
1	<i>Azadirachta indica</i> A Juss. [Meliaceae]	Neem	Tree	Leaves, shoot, root	The extract directly applied on skin	Ringworm
2	Achyranthus aspera L. [Amaranthac eae]	Bionihaku ta	Herb	Seed	Seed grind and paste with little salt is applied on carbuncles	Carbuncles

3	Adhatoda zeylanica Medik. [Acanthaceae] Aloe vera (L.) Burm.f. Mill. [Aloaceae]	Bahoktita Saalkuwo ri	shrub Herb	Leaf	The leaves crushed and paste with little sugar is applied on abscesses. The leaves crushed and placed on burn	Abscesses Skin burn
5	Areca catechu L. [Arecaceae]	Tamul	Tree	Nut	region The nuts are dried in the sun and crushed into powder, which is applied on septic ulcer for quick healing	Septic ulcer
6	Allium sativum L. [Liliaceae]	Nohoru	Herb	Bulb	The bulb is crushed and applied on skin	Ringworm , Allergy
7	Allium cepa L. [Liliaceae]	Piyaj	Herb	Bulb	The bulb crushed and directly applied on skin	Leprosy, Ringworm
8	Aquilaria agallocha Roxb. [Thymelaeac eae]	Agaru	Tree	Leaves	The leaves crushed and directly applied on skin	Leprosy
9	Bryophyllum pinnatum (Lam.) Oken. [Crassulaceae]	Duporten ga	Herb	Leaves	The leaves crushed and applied on skin	Skin burn
10	Basella alba L. [Basellaceae]	Puroi		Leaf	Leaves paste is applied on allergy for	Allergy

					quick relief.	
11	Bischofia javanica Blume. [Uphorbiacea e]	Urium	Tree	Bark	he bark is crushed and applied on insect bites	Insect bites
12	Butea monosporma (Lam.) Taub. [Fabaceae]	Polash	Tree	Latex	Extract the latex and directly applied on skin	Ringworm
13	<i>Carica</i> <i>papaya</i> L. [Caricaceae]	Amita	Tree	Latex	Extract fresh latex is applied on skin	Ringworm
14	Cassia alata L. [Caesalpiniac eae]	Khorpat	Shrub	Leaf	Crushed the leaf and applied on skin	Ringworm , scabies
15	Centalla asiatica L. [Apiaceae] ·	Bormani muni	Herb	Leaf	Grind the leaves and paste directly on skin	Abscess and carbuncles for quick healing
16	Cinnamomu m tamala (Buch Hum.) T.Nees & Eberm. [Lauraceae]	Tezpat	Tree	Leaf	Fresh leaf crushed and paste is applied on skin	Allergy
17	Curcuma aromatic Salisb. [Zingiberacea e]	Bon- halodhi	Herb	Rhizom e	Rhizome is crushed and paste is applied on the skin	Ringworm and scabies
18	<i>Curcuma</i> <i>longa</i> L. [Zingiberacea e]	Halodhi	Herb	Rhizom e	Dry rhizome along with a little lime is applied to remove warts	Ringworm
19	Curcuma zedoaria	Yumrng Rom	Herb	Rhizom e	Rhizome crushed	Ringworm and quick

	Roxb. [Zingiberacea e]				and directly paste on skin	healing
20	Ficus religiosa L. [Moraceae]	Ahotgoch	Tree	Bark, latex	Barks are crushed and mixed with little milk and applied on scabies. Latex is applied on cracked heels for quick healing	Scabies and quick healing
21	Flemingia strobilifera (L.) W.T. Aiton. [Fabaceae]	Makhioti	Shrub	Root	Pounded roots are applied on ringworm	Ringworm
22	Lawsonia inermis L. [Lythraceae]	Jetuka	Shrub	Leaf	Leaf paste is applied on abscesses and septic ulcer for quick healing.	Abscesses
23	<i>Moringa</i> <i>oleifera</i> Lam. [Moringaceae]	Sajina	Tree	Bark	Juice of the bark is applied on abscesses.	Abscesses
24	<i>Morus alba</i> L. [Moraceae]	Nuni	Tree	Bark of its trunk and roots, matured fruits, leaves	Leaves, bark crushed and applied on skin	Itch
25	Musa acuminata Colla. [Musaceae]	Jatikol	Herb	Fruit peel	The crushed peel grind with <i>Curcuma</i> <i>longa</i> and	Skin burn

					applied on infected skin	
26	Ocimum canum Sims. [Lamiaceae]	Kola tulosi	Shrub	Leaf	Crushed leaves are mixed with a pinch of salt and applied on the infected region	Ringworm
27	Oxalis corniculata L. [Oxalidaceae]	Tengeshi	Herb	Leaf	Leaf juice is applied to cure scabies and root paste is applied on eczema	Scabies and eczema
28	Paederia scandens (Lour.) Merr. [Rubiaceae]	Bhedai- lota	Shrub	Leaf	Leaf juice is applied on allergy. Leaf juice with garlic is eaten to relieve from allergy.	Allergy
29	Polyalthia longifolia (Sonn.) Thwaites. [Annonaceae]	Debodaru	Tree	Bark	Crushed barks are made into paste and applied on skin	Scabies
30	Piper nigrum L. [Piperaceae]	Jaluk	Herb	Fruit	The crushed directly applied on infected skin	Scabies
31	Pterocarpus santalinus L.f. [Leguminosa e]	Chandan	Tree	Wood	The crushed is directly applied on skim	During skin smooth
32	<i>Ricinus</i> <i>communis</i> L.	Erapat	Shrub	Leaf	Leaves crushed	Carbuncles

	1	1	1	1	1	1
	[Euphorbiace				and directly	
	ae]				applied on	
					skin	
33	Solanum	Kotahiben	Shrub	Fruit	Fruits are	Abscesses
	myriacanthu	gena			crushed	
	<i>m</i> Dunal.				and made	
	[Solanaceae]				into a paste	
					and applied	
					on	
					abscesses	
34	Stephania	Tubukilot	Shrub	Leaf	Leaf paste	Septic
	japonica	а			is applied	ulcer
	(Thunb.)				on septic	
	Miers.				ulcer for	
	[Menisperma				quick	
	ceae]				healing	
35	Typhonium	Chomaka	Herb	Latex	Latex is	Itch
	trilobatum	chu			applied on	
	(L.) Schott.				abscesses	
	[Araceae]				and	
	[Indeedee]				pimples	
36	Vigna mungo	Matimah	Herb	Seed	The	Scabies
50	(L.) Hepper.	Wittillian	11010	Beed	crushed	Seubles
	[Fabaceae]				directly	
	[I ubuccuc]				applied on	
					skin	
37	Vitex	Posotiya	Shrub	Leaf	Crushes the	Allergy
57	negundo L.	rosonyu	Sinuo	Loui	leafs and	and
	[Verbenaceae				directly	abscesses
					paste on	005005505
	1				skin	
38	Zingiber	Moran	Herb	Rhizom	The juice	Allergy,
50	officinale	ada	11010	e	of the	ringworm
	Roscoe.	uuu			rhizome	ing worm
	[Zingiberacea				with little	
	e]				amount of	
	~]				molasses is	
					eaten to get	
					relieve	
					from	
					allergy.	

From the study it has been found that medicinal plants are used by people in many ways in their daily livelihood either as food, medicines, cosmetics etc. Use parts of

medicinal plants include shoot (1), bark (5) fruit (2), leaf (16), root (1), rhizome (4), fruit (2), seed (2) nut (1), bulb (2), peel (1), wood (1) (Fig. 15.1).

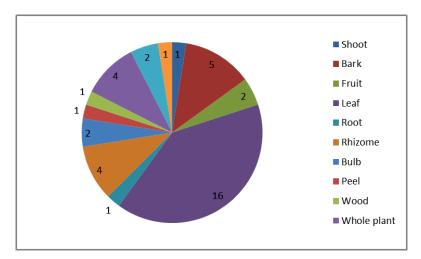


Fig. 15.1. Number of plants parts used in skin disease.

Conclusion

The Mishing community are depend on ethnomedicine for pimary healthcare. Maintenance of sound skin disease in human is an important concern of the society. The present study documented the unique traditional healthcare of the Mishing tribes etiology, symptoms and management with homemade herbal with disease remedies. This can help for ethnomedicinal knowledge among the Mishing tribes is transmitted through word of mouth form one generation to another. But, their ehnomedicinal knowledge based is gradually declining with education and access to modern medicines, socio-economic changes and acculturation. Documentation ethnomedicinal practices with rituals, avoidance can help in preservation of traditional knowledge. Beside this study also documented about culture, belief, habitat, occupation as well as religion of the Mishing Community of the study area.

Non experimental validation of the collection ethnomedicinal plants was one of the objectives of the present study while isolated chemical compounds were recorded by reviewing previous phytochemical and pharmacological literatures. This can help to establish the potential efficacy and toxicities of ethonomedicines for their validation.

Acknowledgement

The author thanks to peoples of the study site for helping in the survey as well as sharing their time and knowledge.

References:

- Saikia, A.P. 2006. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. *Journal of Ethnopharmacology*, 106: 149– 157.
- Gupta, D.K. & Gupta, G. 2018. Endemic Use of Medicinal Plants for the Treatment of Skin Diseases in the Balod district. *IOSR Journal of Pharmacy*, 8(2): 18-24.
- Buragohain, J. & Konwar, B.K. 2007. Ethnomedicinal Plants used in Skin Diseases by some Indo-Mongoloid Communities of Assam. Asian Journal of Experimental Science, 21(2): 281-288.
- Tamuli, P. & Ghosal, A. 2017. Ethnomedicinal plants used by major ethnic groups of Assam (India) for curing skin diseases, *International Journal of Herbal Medicine*, 5(4): 140-144.
- Verma, S. 2016. Medicinal plants used in cure of skin diseases. *Advances in Applied Science Research*, 7(3): 65-67.
- Tschachler, E., Bergstresser, P.R. & Stingl, G. 1996. HIV related skin disease. *Lancet*, 348: 659-663.
- Upadhyay, B., Parveen., Dhaker, A.K. & Kumar, A. 2010. Ethno medicinal and ethnophermaco-statistical studies of Eastern Rajasthan, India. *Journal of Ethno pharmacology*, 129: 64-86.

Chapter 16

At the Cultural Crossroads: A Portrait of a Galo Shaman

Tajen Dabi

Department of History, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare-791112, Arunachal Pradesh, India

E-mail: tdrguhist@gmail.com

Abstract

The Galo shamans belong to the fast disappearing traditional healers of the Eastern Himalayas. In an ideal traditional setting, the shaman is the performer of rites and rituals as alsoof social memory. Some shaman exhibit knowledge of herbal healing, an art not specialised by all the shamans and often practised by people other than shamans. Indigenous healing systems or folk medicine today faces a different scenario: coming of Western Biomedicine; neo-faith healing; re-organised indigenous faith, etc. This article is a short sketch of a performing shaman (*Nyibu*) through whose' experiences a brief exposition on the contemporary condition of the shamans would be made. It also raises the question about the place and future of the shaman in the context of the reformed indigenous religions.

Keywords: Shaman, Eastern Himalaya, Folk Medicine, Indigenous Faith, Arunachal Pradesh.

Introduction

The art of curing ailments and diseases through indigenous methods is a very old tradition. Among the early societies, diseases were linked to 'possession by evil spirits' and spells and drugs were accordingly formulated (Childe, 1957). The term 'shaman' is variously used along with 'native healer,' 'medicine man' or 'medicine woman' depending on the cultural perspective of the writer. A performing Native American shaman and writer prefer the term 'native healer' since it represents the cultural perspective of the tradition the shaman is part of (Lake, 2007). Mircea Eliade, the noted Romanian historian of religion, defined Shamanism as 'an ancient technique of ecstasy, often considered a kind of mysticism or magic but in very broad terms also a religion' (Nishimura, 1987). Writing about Shamanism among the Tungus of eastern Siberia in S.M. Shirokogoroff described a shaman as 'persons of both sexes who have mastered spirits, who at their will can introduce these spirits into themselves and use their power over the spirits in their own interests, particularly helping other people, who suffer from the spirits' (Nishimura, 1987). These definitions were broadly summarized by Kokan Sasakiin Shamanizumu no jinruigaku(The Anthropology of Shamanism) as: 'shamanism is a form of religion which centers on a magico-religious specialist who has a special ability to enter into a trancelike state at will and in the abnormal psychological state can make direct contact with the supernatural being' (Nishimura 1987:59). Thus, a shaman was the link between the material and the spiritual world of the people- a function fulfilled by a Galo shaman also. It is argued by Mercea Eliade that '...because the properties and conditions of the soul are within his domain of knowledge, the shaman is a curer and healer of disease' (Jones, 1968).

These definitions of shaman and shamanism can be inferred to describe the shamans of various communities of Arunachal Pradesh also. The shamans are the bedrock of indigenous healing system. Forster and Anderson defined ethnomedicine as: 'Comprising those beliefs and practices relating to disease which are the products of indigenous cultural development and are not explicitly derived from the conceptual framework of modern medicine' (Anquandah, 1997). The ethno-medical practice or folk medicine of the people of Arunachal Pradesh is rooted in religious beliefs and shaped by the local ecology, physical environment and customs. In a sense, it is agreeable that the concept of illness is basically rooted in supernatural cosmology as argued by a noted anthropologist who studied the Arunachal tribes (Elwin, 1999). The idea of disease/ ailments, accidents, epidemics, and famine is construed as occurring as a result of 'breach' of the balance with natural and supernatural forces ('malevolent spirits') among the shamanistic communities of Arunachal Pradesh. For example, when a person meets with an accident the shaman negotiates (through rituals) with the spirits to safely 'retrieve' the *Yalo* (soul?) of the affected person from the offended spirits.

Objectives

From the 1950s Arunachal Pradesh was opened up for new impactful changes: expansion of government administrative machinery, roadways, introduction of Western Biomedicine (henceforth WBM), education, increasing population contact and powerful cultural influences. The degree of this process was described by Verrier Elwin as "creating the puzzle of the impact of the atomic age on a Stone Age" (Guha, 2000). Naturally, these influences were bound to have important, fundamental impacts. It has been a good seven decades since Elwin's time and this paper aims to discuss the nature of such impacts on the career of a shaman. The two immediate references for making this assessment are changing environment and the renewed interpretation and projection of indigenous religion itself.

Material and Methods

This quick essay is ethno-historical in orientation. A brief profile of a practicing shaman is being presented. The data has been collected through oral interview. The rites and ritual performances of the shaman are not being discussed. *Emic* perspective is inherent since the author is born and bred in the same cultural milieu as the shaman- reason why I have not provided any transcript of the interview with the shaman. For the same reason, survey of existing literature on Galo shamans has not been done. No special field-study was conducted on the reformed indigenous religion as family members of the author are directly involved in its practice and propagation.

Results and Discussion

Roughly equidistant from Tibet in the north, the Assam plains in the south, Siang River in the east and Subansiri River in the west layBipi village of Liromoba in the central West Siang District of Arunachal Pradesh. Born in c.1940, TamaMindoRomin is a *Nyibu* (shaman) and a propagator of the Donyi Polo faith (reformed indigenous religion)who no longer lives at his ancestral village Bipi. As is common for would-be Nyibu's, young Tama was 'kidnapped' by the *Yapom* (forest spirits believed to be of feminine gender) while asleep to be recovered by village folks from the nearby rivulet later on. Attracted to entrepreneurship and thus not interested in becoming a Nyibo, Tama left his ancestral village and started doing petty government contract works- a formative period of spiritual journey to shaman-hood later in life. In 1969, he adopted the Christian faith after coming into contact with Catholic Missionaries at Gandhigram in Vijaynagarin the Patkai Hills. Un-affected by his conversion, the Yapoms¹ again ventured to 'kidnap' Tama; this time the Yapoms

¹ The Yapom is colloquially referred to in plural. The 's' here is a loose Anglicization. One of the earliest *etic* record of Yapom 'kidnapping' can be found in Elwin 1959:266. Such incidents are regularly reported till today.

were persistent. Circa, 1974, Tama was on a regular visit to the Shiva Mandir at Raneghat in Pasighat town. The temple premise hosted a huge banyan tree (locally called *sirek/ hirek*), a locally believed to be the favourite abode of the Yapoms. In the 'custody' of the relentless Yapoms, Tama had ecstatic experience of running across rivers and jumping over the mountains that divide the foothill town from hinterland Along (Aalo) headquarters - a distance the Yapoms helped him cover within a couple of hours in superman-style, literally. As expected, the Yapoms finally had the upper hand and a new poet stepped-in to a mystic world where the chosen few conversed with the spirits- as the plenipotentiary of the mortal beings. A shaman is born.

Tama specialises in what might be called 'prosperity' and 'cure' rituals (*GuminUyi*) as distinct from the types of rituals related to disputes, death, murder, etc. (*Yalu-YachuUyi*). Based on such specialisation, as well as the occult reputation, Galo shamans are viewed in loose hierarchical order at the pinnacle of which Tama considers himself to belong to. He is thus a *Gumin Nyibo* (indicating the type of rituals he performs) as well as a *Nyib-Buut* (suggestive of his position and reputation). As to whether his standing was equal to or above the *Tago-Nyigre* Nyibu, a shaman who can take the form of wild beasts, notably the tiger, like Kachi Yomcha (Riba, 2004) Tama avoided any comparison with the renowned late shaman who lived a generation before him in his home district.

Tama's long and ongoing career is dotted by many feats: curing a dysenteric (*Takw*) and a Yapom-infested patient each who would not get relief from medical treatment, for example. In the latter case, a Sikh engineer employed under the state government had incurred the wrath of the Yapoms while supervising jungle-clearing for a road project eventually found cure for his medically unexplained recurring vertigo after Tama checked the omen and negotiated a deal with the offended Yapoms.

At personal front, our shaman claims that he is a teetotaler since childhood and is quick to issue the disclaimer that he does not eat cattle-meat because of allergy. In 1987, he helped in organizing the Abotani Shaman Association as its first General Secretary. At the time of my interview, Tama headed the ecclesiastical wing of the Indigenous Faith and Cultural Society of Arunachal Pradesh (IFCSAP) asits president. The IFCSAP currently leads the indigenous faith movement in Arunachal Pradesh; the process has been described as 'reformist' in the 'contested domains of religious transformation...' (Chaudhari 2013:259-277).Under the aegis of the IFCSAP and other sister organisations, Tama occasionally attends training workshops in different places where he gets to meet shamans from other regions and cultures from across the diverse country.

When enquired about the future of the shamans and shamanistic rites and rituals, the enthusiasm in the room quickly dissipated and Tama responded with a disheartened tone citing factors for a bleak future of the shamans as well as reasons why religious reform was necessary: coming of new ways of life; non-observance of indigenous ways of life and taboos; change in food habits; negligence of indigenous religion and its methods of healing; and adoption of new religious faiths. Food avoidance (of certain types, not only before and after performing rituals), according to Tama, was one of the strict discipline a shaman was supposed to keep thereby highlighting some universals shamans across cultures share: 'many abstentions may be interpreted as a type of primitive preventive medicine...Not only the individual, but also the whole community may derive psychological benefits from the avoidance of certain foods' (Ferro-Luzzi, 1975).

Conclusion

Tama's stress during the course of our extended interview was on two things: cure of many patients, who did not get relief from modern medical treatment, through the shaman's intervention and; the future of the shamans. The first case reinforces the idea and relevance of medical pluralism. The second aspect throws some light on the decline in the number of shamans and the changing role of shaman within the structure of the reformed indigenous religions. Until his generation, a Galo shaman like Tama was alien to the idea of a place of worship and congregation. Being a shaman and thus a key stakeholder of the indigenous religious life, Tama contributed to the efforts for re-organising the indigenous religions where the mode of worship² was different from the propitiatory rituals of the original shaman-hood. For example, *Ganggi* is a prayer hall where reformed indigenous faith believers meet weekly, offer prayers and seek cure from ailments and diseases also.

It can be visualised that within the confines of the Ganggi, shamans like Tama would be not be able to perform the shamanistic rituals. An irony stems from the genuine apprehensions and works of shaman cum religious reform workers like Tama: one of the results of religious reform is to uniquely put a shaman in a devotional-congregational environment where the shamanistic chants and rituals are no longer to be found. Unlike Tama and his colleagues in the indigenous religious reform movement, there are many shamans and people who do not attend the Ganggi considering the reformed practices to be equally 'alien'. This underlines the complexity and multi-positional nature of the religious reform movement in Arunachal Pradesh of which Tama is a part of.

Acknowledgement

The interview of the shaman was done as part of my recently awarded (2017) Ph.D. work titled "Development of Healthcare System in Arunachal Pradesh, 1826-1987". A related paper named "A Priests' Chant: Healing Traditions amongst

²For details on the types and nature of indigenous faith movements in Arunachal Pradesh see Chaudhury 2013.

the Galo tribe, Arunachal Pradesh, India" appears in the *Saudi Journal of Humanities and Social Science*, 2:11, Nov 2017: 1058-1061. While the data and methods remain same the organisation, focus and analysis of this article is different from the preceding two works. I received travel grants from the Indian Council of Historical Research (ICHR) for field-works during PhD study.

Note on Indigenous Terms

The vernaculars appearing in this article is in Galo language- a branch of Tani language cluster. The Tani languages (belonging to the Tibeto-Burman family), which share common roots and basic vocabulary, are spoken in central Arunachal and parts of upper Assam. There is no study on the archaic and shamanistic vocabulary of the Tani languages.

Interviews

Information about Tama Mindo was gathered through personal interview with the shaman at his residence at A-Sector, Naharlagun, Arunachal Pradesh on January 6, 2017.

References

- Anquandah, J. 1997. African Ethnomedicine: An Anthropological and ethnoarchaeological Case study in Ghana, Africa: Rivistatrimestrale di studie documentazionedell'istitutoitaliano per l'Africa e l'oriente, Retrieved from: http://www.jstor.org/stable/40761171,No.2.1997:289-298.
- Chaudhari, S. K.2013. The Institutionalization of Tribal Religion: Recasting the Donyi-Polo Movement in Arunachal Pradesh. *Asian Ethnology*, 72(2): 259-277.
- Childe, G.1957. What Happened in History, Middlesex, USA: Penguin Books.
- Elwin, Verrier (Ed). 1959. *India's North East Frontier in the Nineteenth Century*. Bombay: Oxford University Press.
- Elwin, V. 1999. *Myths of the North-East Frontier of India*. New Delhi: Munshiram Manoharlal.
- Ferro, L. & Gabriella, E. 1975. Food Avoidances of Indian Tribes. *Anthropos*, 70(3/4), 385–427.
- Guha, R. 2000. Savaging the Civilized: Verrier Elwin, His Tribals, and India. New Delhi: Oxford University Press.
- Jones, R. L. 1968. Shamanism in South Asia: A Preliminary Survey. *History of Religions*,7(4): 330-331.
- Lake, Medicine Grizzlybear. 2007. *Native Healer: Initiation into an Ancient Art.* Wheaton, Illinois: Quest Books.
- Nishimura, Kho. 1987. Shamanism and Medical Cures, *Current Anthropology*. 28 (4): S59-S64.
- Tamo, R. 2004. Kachi Yomcha-A Dreaded Priest of Yomcha Village. In: Mibang, T. & Chaudhuri, S. K. (Eds.), Understanding Tribal Religion. New Delhi: Mittal Publications.

Chapter 17

Antiviral activity of traditional herbal medicine of North East India

Pubali Bhuyan

Dept. of Life sciences, Dibrugarh University Corresponding author E-mail: pubalibhuyan14feb@gmail.com

Abstract

Viral infections play a major role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. A variety of phyto-constituents derived from medicinal herbs have been extensively studied for antiviral activity in different areas of the world. In this review, we summarize the antiviral effects reported for several medicinal plants available in North-East India. Herbal plants, plant preparations and phyto-constituents have proved useful in attenuating infectious conditions and were the only remedies available, till the advent of antibiotics (many being of plant origin themselves). Several studies reveals that herbal sources provide enormous scope to explore and bring out viable alternatives against viral diseases, considering non-availability of suitable drug and increasing resistance to existing drug molecules for many emerging and re-emerging viral diseases.

Keywords: Antiviral, Herbal plants, Drug, Natural product.

Introduction

Viruses are responsible for a number of human diseases which spreads either fecal-oral route via contaminated food or water supplies and person to person contact. Viral transmission also involves mosquitoes, wild birds with mammals including humans, being incidental end-stage hosts (Naides, 2012). Moreover, due to increased global travel and rapid urbanization, epidemic outbreaks caused by emerging and reemerging viruses represent a critical threat to public health, particularly when preventive vaccines and antiviral therapies are unavailable. Examples include the recent emergence of Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola viruses, Avian influenza A (H797) virus, dengue virus, influenza virus, measles virus, severe acute respiratory syndrome (SARS) virus, and West Nile virus outbreaks (Bertal et al., 2011). Complementary and alternative medicine offers a wide variety of herbal plants, which may serve as key to unlock the many mysteries behind human pathologies. According to a World Health Organization (WHO) report, 80 % of the population in developing countries depends on traditional plants for health requirements. Among several infectious diseases, viral infections in particular, caused by a range of new and old infectious viruses, challenge the survival of mankind on this planet (Babar et al., 2013). In a timeline that reaches the present day, an epidemic of cases with unexplained low respiratory infections detected in Wuhan, the largest metropolitan area in China's Hubei province, was first reported to the WHO Country Office in China, on December 31, 2019. This new virus seems to be very contagious and has quickly spread globally. An additional landmark occurred on February 26, 2020, as the first case of the disease, not imported from China, was recorded in the United States. To date, however, many viruses remain without effective immunization and only few antiviral drugs are licensed for clinical practice. The situation is further exacerbated by the potential development of drug-resistant mutants, especially when using viral enzyme-specific inhibitors, which significantly hampers drug efficacy (Chen et al., 2006) Hence, there is an urgent need to discover novel antivirals that are highly efficacious and cost-effective for the management and control of viral infections when vaccines and standard therapies are lacking.

Herbal medicines and purified natural products provide a rich resource for novel antiviral drug development. Identification of the antiviral mechanisms from these natural agents has shed light on where they interact with the viral life cycle, such as viral entry, replication, assembly, and release, as well as on the targeting of virus–host-specific interactions. In this brief report, we have summarized about some potential medicinal plants which have impressive antiviral activity and also readily available in North East India.

Objective of the study

Since ancient times, herbs have been used as natural treatments for various illnesses, including viral infections due to their concentration of potent plant compounds. At the same time, the benefits of some herbs are only supported by limited human research. Objectives of this review are to gather and highlight the information on the antiviral activities from several natural products as well as herbal medicines available in North-east India against some notable viral pathogens.

Materials and Methods

The present study was limited to researches available in Google scholar, Science direct, Traditional knowledge digital library(TKDL), Delphion, Patentscope, Patestate, Patent Information Centre (PIC) ASTEC, Asian patent information, E-Gateways, United States Patent & Trademark Office (USPTO) patent database, European Patent Office (EPO), World Intellectual Property Organization (WIPO), Scirus with primary search words used were "antiviral", "herbs", "herbal medicine", "herbal formulations", "medicinal plants", "traditional medicine", etc. Searches were also done using the single name of the plant with known possible antiviral property. Bibliographies of included studies were also searched for additional references. Non patent prior art, i.e., journal publications, proceedings of conferences, etc. have been incorporated wherever possible to best extent of their availability and access.

Results and discussion

Considering the diversity and vastness of the plant kingdom in North-East India the area of antiviral plants explored so far is a mere trailer, leaving researchers with a huge scope to screen extensively and exhaustively several other plant species hailing from the same or different genus and families studied till date. Our attempt has been to enlist as many plants as possible with reported antiviral activity and their mechanisms elucidated thereof. We have also tried to retrieve information about the active molecules responsible for the said antiviral action after in-depth and exhaustive literature search.

Antiviral effects of several natural products as well as herbal medicines of North-East India against specific viruses:

1. Origanum vulgare L. (Oregano/ Ban tulsi):

Oregano is a popular herbal medicine having plant compound carvacrol which offer antiviral properties. It was found that both oregano oil and isolated carvacrol reduced the activity of Murine norovirus (MNV) within 10-20 minutes of exposure. MNV is highly contagious and the primary cause of stomach flu in humans. It is very similar to human norovirus and used in scientific studies because human norovirus is notoriously difficult to grow in laboratory settings(Gilling et al,2014).Oregano oil and carvacrol have also been shown to exhibit antiviral activity against herpes simplex virus type-1 (HSV-1);rotavirus, a common cause of diarrhea in infants and children; and respiratory syncytial virus(RSV),which causes respiratory infections(<u>Pilau</u> et al.,2011).

2. Ocimum basilicum L. (Basil/Ram Tulsi):

Basil may fight against certain viral infections. Study reveals that extracts of this plant has active compounds like apigenin and ursolic acid, exhibited potent effects against herpes viruses, hepatitis B, and enterovirus (Chiang et al.,2005). It has been shown to increase immunity, which may help fight viral infections by increasing the level of helper T cells and natural killer cells and thus help to protect and defend your body from viral infections (Mondal et al.,2011).

3. Foeniculum vulgare Mill. (Fennel/Guwamorisaag):

Fennel is a licorice-flavored plant that may fight certain viruses. It was found that extract of this plant exhibited strong antiviral effects against herpes viruses and parainfluenza type-3 (PI-3),which causes respiratory infections in cattle (Shamkant et al.,2008).The main component of fennel essential oil, has demonstrated powerful antiviral effects against herpes viruses (Astani et al., 2014).According to animal research, fennel may also boost your immune system and decrease inflammation, which may help to combat viral infections (Lee et al.,2015).

4.Allium sativum L. (Garlic/ Noharu):

Garlic is a popular natural remedy for a wide array of conditions, including viral infections. In a study in 23 adults with warts caused by human papillomavirus (HPV), applying garlic extract to affected areas twice daily eliminated the warts in all of them after 1–2 weeks. Additionally, studies reveals that garlic may have antiviral activity against influenza A and B, HIV, HSV-1, viral pneumonia, and rhinovirus, which causes the common cold(Bayan et al.,2014).Animal and test-tube studies also indicate that garlic enhances immune system response by stimulating protective immune cells, which may safeguard against viral infections (Arreola et al., 2015).

5. Houttuynia cordata Thunb. (Fish Mint/ Masunduri):

In northeastern India, it is commonly used in salads or cooked with other vegetables along with fish as fish curry and tender roots can also be ground into chutneys along with dry fish, chilies, and tamarind. *Houttuynia cordata* was used in traditional Chinese medicine, including by Chinese scientists in an attempt to treat SARS(Lau et al.,2010)and various other disorders, although there is no high-quality clinical research to confirm such uses are safe or effective. Sometimes it is

found that *H. cordata* can cause severe allergic reactions. Chemical compounds that contribute to the aroma of *H. cordata* include β -myrcene and 2-undecanone (Lu et al.,2010;Chu et al.,2007.).

6. Glycyrrhiza glabra L. (Jesthamadhu):

Properties of glycyrrhizin are under preliminary research, such as for hepatitis C or topical treatment of psoriasis, but the low quality of studies as of 2017 prevents conclusions about efficacy and safety(Yu et al.,2017). The United States Food and Drug Administration believes that foods containing liquorice and its derivatives (including glycyrrhizin) are safe if not consumed excessively and should not be used during pregnancy. Other studies suggested that more than 100 mg to 200 mg of glycyrrhizin shouldn't be consumed per day which is equivalent of about 70 to 150 g (2.5 to 5.3 oz) of liquorice confectionery(Cinatl et al.,2007).

7. Zingiber officinale Roscoe (Ginger/Adrak):

Ginger has been shown to have impressive antiviral activity Test-tube research demonstrates that ginger extract has antiviral effects against avian influenza, RSV, and feline calicivirus (FCV), which is comparable to human norovirus (Rasool et al.,2017). Additionally, specific compounds in ginger, such as gingerols and zingerone, have been found to inhibit viral replication and prevent viruses from entering host cells (Chang et al.,2008; Arora et al., 2011).

8.Pyrrosia lingua (Thunb.) Farw.:

There is a future expect of using *Pyrrosia lingua* against HSV1 but more and more studies will be needed to clarify it. Clinically, among the 78 cases of herpetic keratitis due to HSV1 treated by Pyrrosia lingua eye drops, a cure was affected in 38 and an improvement in 37, with 3 being of no benefit (Zheng et al., 1990)

As many viruses remain without preventive vaccines and effective antiviral treatments, eradicating these viral diseases appears difficult. Natural products serve as an excellent source of biodiversity for discovering novel antivirals, revealing new structure–activity relationships, and developing effective therapeutic strategies against viral infections. Many natural products and herbal ingredients are observed to possess robust antiviral activity and their discoveries can further help develop derivatives and therapeutic leads. A substantial number of plant extracts and phytochemicals have been explored for antiviral property. Herbal preparations owing to their holistic approach strengthen the body's immune system, which in turn may help the body fight against invading infectious viruses.

Conclusion:

Herbal antiviral compounds, which are accessible and do not require laborious pharmaceutical synthesis are emerging as interesting alternatives in present trends of growing resistance to antiviral drug therapy. There are lots of promising herbal treatments exist for viral diseases with adequate evidences of their efficacy and safety in advanced clinical trials. But, more studies are needed to determine optimal treatments, doses, and formula for those herbal preparations. Although herbal plant preparations are widely used in several parts of the world traditionally, individually or in combination, data about the interactions of these medicinal plants in the living system is non-existent. Therefore, the traditional medicine practice should be clubbed with scientific research facilitating modern drug discovery from phytochemicals. Scientific data pertaining to detailed pharmacokinetic and pharmacodynamics of medicinal plants and their preparations should be made available to researchers and policy makers so that larger randomized multicenter clinical trials may be designed and conducted. By adopting such approaches, the idea of incorporating and implementing a particular herbal formulation in routine therapy may be transformed into reality. As many studies in this line are only preliminary, further exploration in characterizing the bioactive ingredients, defining the underlying mechanisms, as well as assessing the efficacy and potential application in vivo is encouraged in order to help develop effective antiviral treatments. Furthermore, additional studies should also examine the possibility of combination therapies with other natural agents or with standard therapeutics, as a multi-target therapy may help reduce the risk of generating drug-resistant viruses. We believe that natural products will continue to play an important role and contribute to antiviral drug development.

Acknowledgments:

The authors would like to apologize to any investigators whose studies were not included and offer sincere thanks and gratitude to the researchers whose studies were included here.

References:

Arora, R., Chawla, R., Marwah, R., Arora, P., Sharma,R.K, Kaushik, V., Goel, A.K.,Silambarasan, M., Tripathi,R.P. & Bhardwaj, J.R. 2011.Potential of Complementary and Alternative Medicine in Preventive Management of Novel H1N1 Flu (Swine Flu) Pandemic: Thwarting Potential Disasters in the Bud.Evidence-Based Complementary and Alternative Medicine, 2011. Article ID 586506,16 pages, doi:10.1155/2011/586506.

- Astani, A., Reichling, J. & Schnitzler, P.2011. Screening for antiviral activities of isolatedcompounds from essential oils. Evidence-Based Complementary and Alternative Medicine, 2011. Article ID 253643, doi:10.1093/ecam/nep187.
- Babar, M., Najam-us-Sahar, S. Z, Ashraf, M. & Kazi, A.G. 2013. Antiviral drug therapy- exploiting medicinal plants. *Journal of Antivirals & Antiretrovirals*, 5(2): 28–36.
- Bayan, L, Hossain, P. K. & Ali, G.2014. Garlic: a review of potential therapeutic effects. *Avicenna journal of phytomedicine*, 4(1): 1–14.
- Bertol, J.W, Rigotto, C., de Pádua, R. M., Kreis, W., Barardi, C. R., Braga, F. C., & Simões, C. M. O. 2011. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. *Antiviral research*, 92(1): 73-80.
- Bertol, J.W., Rigotto, C., Padua, R.M., Kreis, W., Barardi, C.R. & Braga, F.C. 2011. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. *Antiviral Research*, 92(1): 73–80.
- Chen, G.F, Huang, W.G., Chen, F.Y. & Shan, J.L. 2006. Protective effects of trichosanthin in Herpes simplex virus-1 encephalitis in mice. *Zhongguo Dang Dai ErKeZa Zhi*,8(3): 239–241.
- Chiang, L.C., Ng, L.T., Cheng, P.W., Chiang, W. & Lin C.C. 2005. Antiviral activities of extracts and selected pure constituents of *Ocimum basilicum*. *Clinical and Experimental Pharmacology and Physiology*, 32(10): 811-816.
- Chang, J.S, Wang, K.C, Yeh, C.F., Shieh, D.E. & Chiang, L.C. 2011.Fresh ginger (*Zingiber officinale*) has antiviral activity against human respiratory syncytial virus in human respiratory tract cell lines. *Journal of Ethnopharmacology*, 145(1):146-151.
- Cheng, H.Y., Huang, H.H., Yang, C.M., Lin,L.T.& Lin,C.C.2008.The *in-vitro* anti herpes simplex virus type-1 and type-2 activity of Long Dan Xie Gan Tan, a prescription of traditional Chinese medicine. *Chemotherapy*, 54(2): 77–83.
- Cheng, H.Y., Lin, L.T., Huang,H.H., Yang. C.M. & Lin, C.C. 2008. Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type-1 and type-2 infections in vitro. *Antiviral Research*, 77(1): 14–19.
- Cheng, H.Y., Yang, C.M., Lin, T.C., Lin L.T., Chiang, L.C. & Lin C.C. 2011. Excoecarianin, Isolated from *Phyllanthus urinaria* L. Inhibits Herpes Simplex Virus Type 2 Infection through Inactivation of Viral Particles. *Evidence-Based Complementary and Alternative Medicine*, 259103, doi: 10.1093/ecam/nep157.
- Chu, M.I., Wen, Y. F. & Cheng, Y. 2007. Gas Chromatographic/Mass Spectrometric Analysis of the Essential Oil of *Houttuynia cordata* Thunb by Using On-Column Methylation with Tetramethyl ammonium Acetate. *Journal of AOAC International*,90 (1): 60–67.

- Chiang, L.C., Ng, L.T., Cheng, P.W., Chiang, W. & Lin, C.C. 2000. Antiviral activities of extracts and selected pure constituents of *Ocimum basilicum*. *Clinical and Experimental Pharmacology and Physiology*, 32(10): 811–816.
- Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H. & Doerr, H.W. 2003. Glycyrrhizin, an active component of liquorice roots, and replication of SARSassociated coronavirus. *Lancet*, 361(9374): 2045–2046.
- Efferth, T., Romero, M.R, Wolf, D., Stamminger, T., Marin, J.J. & Marschall, M. 2008. The antiviral activities of artemisinin and artesunate. *Clinical Infectious Diseases*, 47(6): 804–811.
- Ellermann-Eriksen, S. 1993. Autocrine secretion of interferon-alpha/beta and tumour necrosis factor-alpha synergistically activates mouse macrophages after infection with herpes simplex virus type 2. *Journal of General Virology*, 74(10): 2191–2199.
- Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., & Bielenberg, J. 2008. Antiviral effects of *Glycyrrhiza* species. *Phytotherapy research*, 22(2): 141–148. https://doi.org/10.1002/ptr.2295
- Gescher, K., Kuhn, J., Lorentzen, E., Hafezi, W., Derksen, A. & Deters, A.2011. Proanthocyanidin-enriched extract from *Myrothamnus flabellifolia* Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration. *Journal of Ethnopharmacology*, 134(2): 468-474. doi: 10.1016/j.jep.2010.12.038.
- Gilling, D.H., Kitajima, M., Torrey, J.R. & Bright, K.R. 2011. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirs. *Journal of Applied Microbiology*,116(5): 1149-1163.
- Hassan, S.T., Masarcikova, R. & Berchova, K. 2015.Bioactive natural products with anti-herpes simplex virus properties. *Journal of Pharmacy and Pharmacology*, 67(10): 1325-1336. doi: 10.1111/jphp.12436.
- Herrmann, F., Romero, M. R., Blazquez, A.G., Kaufmann, D., Ashour, M.L. & Kahl,S. 2011. Diversity of pharmacological properties in chinese and european medicinal plants: cytotoxicity, antiviral and antitrypanosomal screening of 82 herbal drugs. *Diversity*,3(4): 547–580.
- Howard C.R. & Fletcherc, N.F. 2012. Emerging virus diseases: can we ever expect the unexpected. *Emerging Microbes & Infections*, 1: 1–11.
- Lee, H.S., Kang, P., Kim, K.Y. & Seol, G.H. 2015. *Foeniculum vulgare* Mill. Protects against Lipopolysaccharide-induced Acute Lung Injury in Mice through ERK-dependent NF-κB Activation. *The Korean Journal of Physiology & Pharmacology*, 19(2):183-189. doi: 10.4196/kjpp.2015.19.2.183.

- Abdallah, R. M., Ghazy, N. M., El-Sebakhy, N. A., Pirillo, A. & Verotta, L. 1993. Astragalosides from Egyptian Astragalus spinosus Vahl. Die Pharmazie, 48(6): 452-454.
- Ikeda, K., Tsujimoto, K., Uozaki, M., Nishide, M., Suzuki, Y., Koyama, A. H. &Yamasaki, H. 2011. Inhibition of multiplication of herpes simplex virus by caffeic acid. *International Journal of Molecular Medicine*, 28(4): 595-598.
- King, C. 2008. Exhibits tubercin activity; immune enhancers such as glycyrrhizin (GR), Glycyrrhetic acid, and Chinese herbal extracts. Google Patents.
- Lam, P, Y.S. 2006. Compositions for the treatment of acquired immunodeficiency disease. Google Patents.
- Lau, K.M, Lee, K.M, Koon, C.M, Cheung, C.S., Lau,C. P., Ho, H. M., Lee, M., Au S. W., Cheng, C.H., Lau, C. B., Tsui, S.K., Wan, D.C., Waye, M.M., Wong, K.B., Wong, C.K., Lam, C.W., Leung, P.C.& Fung, K. P. 2018. Immunomodulatory and anti-SARS activities of *Houttuynia cordata. Journal of Ethnopharmacology*, 118(1): 79–85.
- Li,Y., Ooi, L.S., Wang, H., But, P.P. & Ooi, V.E. 2004. Antiviral activities of medicinal herbs traditionally used in southern mainland China. *Phytotherapy Research*, 18(9):718–722.
- Li, T. & Peng, T. 2013. Traditional Chinese herbal medicine as a source of molecules with antiviral activity. *Antiviral Research*, 97(1):1–9.
- Lu, H., Wu, X., Liang, Y. & Zhang, J. 2010.Variation in Chemical Composition and Antibacterial Activities of Essential Oils from Two Species of *Houttuynia*Thunb.*Chemical& Pharmaceutical Bulletin*, 54 (7): 936–940.
- Mondal, S., Varma, S., Bamola, V.D, Naik, S.N., Mirdha, B.R., Padhi, M.M., Mehta, N. & Mahapatra, S.C. 2011.Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (*Ocimum sanctum* Linn.) leaf extract on healthy volunteers. *Journal of Ethnopharmacology*, 136(3): 452-456.
- Mouhajir, F., Hudson, J. B., Rejdali, M. & Towers, G.H.N. 2001.Multiple antiviral activities of endemic medicinal plants used by berber peoples of morocco. *Pharmaceutical Biology*, 39(5): 364–374.
- Mukherjee, H., Ojha, D., Bag, P., Chandel, H. S., Bhattacharyya, S., Chatterjee, T. K., Mukherjee, P.K., Chakraborti, S. & Chattopadhyay, D. 2013. Anti-herpes virus activities of Achyranthes aspera: an Indian ethnomedicine, and its triterpene acid. *Microbiological research*, 168(4): 238-244.
- Nagai, T., Suzuki, Y., Tomimori, T. & Yamada, H. 1995. Antiviral activity of plant flavonoid, 5, 7, 4'-trihydroxy-8-methoxyflavone, from the roots of *Scutellaria baicalensis* against influenza A (H3N2) and B viruses. *Biological and pharmaceutical bulletin*, 18(2): 295-299.

- Naides, S. J. 2012. Arboviruses Causing Fever and Rash Syndromes. In: Lee Goldman, L. & Schafer, A.I. (eds.), *Goldman's Cecil Medicine (Twenty Fourth Edition)*,2: pp.2156-2161. W.B. Saunders.
- Nakanishi, T., Inada, A., Murata, H., Iinuma, M., Tanaka, T., Yamamoto, H. & Murata, J. 1993. Antiviral and Antitumor Activities of Some Western North American Plants with Surface Exudates (1): Inhibitory Effects on HIV-1 Reverse Transcriptase. *The Japanese journal of Pharmacognosy*, 47(3): 295-300.
- Nawaz, A. H. M. M., Hossain, M., Karim, M., Khan, M., Jahan, R. & Rahmatullah, M. 2009. An ethnobotanical survey of Rajshahi district in Rajshahi division, Bangladesh. *American Eurasian Journal of Sustainable Agriculture*, 3(2): 143-150.
- Novitsky, Y.A., Madani, H., Gharibdoust, F., Farhadi, M., Farzamfar, B. & Mohraz, M. 2009. Use of a combination of ethanolic *Rosa* sp., *Urtica dioica* and *Tanacetum vulgare* extracts, further compromising selenium and urea and having been exposed to a pulsed electromagnetic field, for the preparation of a medicament for immune stimulation and/or treatment of hiv infections. Google Patents.
- Numazaki, K., Nagata, N., Sato, T. & Chiba, S. 1994. Effect of glycyrrhizin, cyclosporin A, and tumor necrosis factor α on infection of U 937 and MRC5 cells by humancytomegalovirus. *Journal of leukocyte biology*, *55*(1): 24-28.
- Obi, R. K., Iroagba, I. I. & Ojiako, O. A. 2006. Virucidal potential of some edible Nigerian vegetables. *African Journal of Biotechnology*, *5*(19): 1785–1788.
- Omar, H.R., Komarova, I., El-Ghonemi, M., Fathy, A., Rashad, R., Abdelmalak, H.D., Yerramadha, M.R., Ali, Y., Helal, E. & Camporesi, E.M., 2012. Licorice abuse: time to send a warning message. *Therapeutic advances in endocrinology* and metabolism, 3(4): 125-138.
- Paludan, S.R. 2001. Requirements for the induction of interleukin-6 by herpes simplex virus-infected leukocytes. *Journal of virology*, 75(17): 8008-8015.
- Peng, T., Yang, Y., Riesemann, H. & Kandolf, R. 1995. The inhibitory effect of Astragalusmembranaceus on coxsackie B-3 virus RNA replication. *Chinese* Academy of Medical Sciences, 10(3): 146–150.
- Petrera, E. & Coto, C. E. 2009. Therapeutic effect of meliacine, an antiviral derived from Melia azedarach L., in mice genital herpetic infection. *Phytotherapy Research*, 23(12): 1771-1777.
- Pilau, M.R., Alves, S.H., Weiblen, R., Arenhart, S., Cueto, A.P. & Lovato, L.T. 2011. Antiviral activity of the *Lippia graveolens* (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. *Brazilian Journal of Microbiology*, 42: 1616-1624.

- Rasool, A., Khan, M.U., Ali, M.A., Anjum, A.A, Ahmed, I., Aslam, A., Mustafa, G., Masood, S., Ali, M.A. & Nawaz, M. 2017.Anti-avian influenza virus H9N2 activity of aqueous extracts of *Zingiber officinallis* (Ginger) and *Allium sativum* (Garlic) in chick embryos. *Pakistan Journal of Pharmaceutical Sciences*, 30(4): 1341-1344.
- Arreola, R., Quintero-Fabián, S., López-Roa, R.I., Flores-Gutiérrez, E.O., Reyes-Grajeda, J.P., Carrera-Quintanar, L. & Ortuño-Sahagún, D., 2015. Immunomodulation and anti-inflammatory effects of garlic compounds. *Journal of immunology research*, 2015, Article ID 401630, 13 pages, 2015. https://doi.org/10.1155/2015/401630
- Singh, S., Shenoy, S., Nehete, P.N., Yang, P., Nehete, B. & Fontenot, D. 2013.Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. *Fitoterapia*, 84:32–39.
- Soltan, M.M. & Zaki, A.K. 2009. Antiviral screening of forty-two Egyptian medicinal plants. *Journal of ethnopharmacology*, 126(1): 102-107.
- Yu, J.J., Zhang, C.S., Coyle, M.E., Du, Y., Zhang, A.L., Guo, X., Xue, C.C. & Lu, C. 2017. Compound glycyrrhizin plus conventional therapy for psoriasis vulgaris: a systematic review and meta-analysis of randomized controlled trials. *Current Medical Research and Opinion*, 33(2): 279-287.
- Zheng, M., 1990. Experimental study of 472 herbs with antiviral action against the herpes simplex virus. *Chinese journal of modern developments in traditional medicine*, 10(1): 39-41.
- Zheng, M. 190. Experimental study of 472 herbs with antiviral action against the herpes simplex virus. *Chinese Journal of Modern Developments in Traditional Medicine*, 10(1): 39-41.

Chapter 18

Review on the drug Makkaya Kshara

Mahesh M Parappagoudra¹, Imlikumba², Lal Ravi Sahu³, Malang A⁴ ^{1,3,4}Department of Panchakarma, Parul University, Parul Institute of Ayurved, Vadodara, Gujarat, India. ²North Eastern Institute of Folk Medicine, Pasighat.

Corresponding author email: maheshmp14@gmail.com

Abstract

In Ayurvedic system of medicine there are various natural product which are possessed and used as medicine. It has been classified into different categories of dosage form in Ayurvedic pharmaceutical. *Kshara Kalpana* is one of them. It has been considered to be the best among *Anushastra. Kshara* are the substances derived from the ashes of medicinal plants. It is a product, which contains many alkaline substances, prepared by evaporating method, which may be used as single or compound or in a mixture form. *Makkaya* (corn silk) is an herbal remedy made from stigmas, the yellowish thread-like strands found inside the husk. *Kshara* has been used for the treatment of various diseases like *Mutrashmari, Bhagandara Vidradhi* etc. This article reviewed the details effects of *Makkaya Paneeya Kshara* in different disorders. Thus, *Kshara Karma* can be taken as the substitute for some surgical procedures, because they can be used safely on the patients who are scared of surgery.

Key words: Kshara Kalpana, Makkaya Paneeya Kshara, Kshara karma.

Introduction

Herbs, metals, minerals and animal products are among the health resources which has always been on topmost priority for human beings since the ancient times. Avurveda has shown various paths to use these resources in medical treatment. In Rasa Shastra the pharmaceutical branch of Ayurveda has described the use of these resources in a very descriptive way by formulating various medicines to treat human diseases (Shastri, 1989). Kshara (alkaline substances) is one among them. Kshara is a medicament obtained from ash of one or more plants, animal and mineral products (Murthy, 2010). The method of preparation of Kshara includes the extraction of 'alkalies' from ash of dried plants. It is said that the disease which are difficult to treat can be cured by Kshara therapy (alkaline therapy) (Murthy, 2010). Kshara therapy not only minimizes the complications but also reduced the recurrences of diseases. Ksharacan reduce the chances of post-surgical infections due to its alkaline (Sharma, 2010). Kshara can be used both internally and externally. The characteristics features of *Kshara* i.e. alkalinity, not only responsible for the conversion of one metal/mineral into medicine through the process of Shodana (Sharma, 2008) (purification), Sattvapatana (Mishra, 2011) (metal extracting), Marana(incineration) and also contradict the ill effects of poisonous drugs as antidote (Jha, 2011).

Acharya Susruta has explained Kshara in scope of Shayla Tantra (Surgical branch) due to its action like Chedana (excision), Bhedana (incision), Lekhana (scrapping) etc (Murthy, 2008). Acharya Charaka has mentioned two types of Kshara preparations i.e.

- 1) Bahya Parimarjaniya (external use e.g. Kshara Jala alkaline water).
- 2) *Antah- Parimarjaniya* (which is prepared from burned drugs by *Antahdhuma method*) (Sharma, 2011).

Classification of Kshara:

On the basis of their mode of application:

- 1) Pratisaraniya Kshara (external use).
- 2) Paneeya Kshara (internal use).

On the basis of Origin:

- 1) Vanaspatijanya: Obtained from the plant sources e.g. Apamarga Kshara, YavaKshara.
- 2) *Pranijaya:* Obtained from the animal sources e.g. *Shankha, Kapardika, Pravala* etc.
- 3) Khanijajanya: Obtained from the mineral origin e.g. Tankan (Borax), SarjiKshara, Surya Kshara etc.

On the basis of Season of preparation:

- 1) Uttama(best): Prepared in Greeshma (summer season).
- 2) Madhyama (medium): Prepared in Sharad (autumn season).
- 3) Adhama (bad): Prepared in Varsha (rainy season).

Properties of Kshara:

Table 18.1. Different Ayurvedic literature described the properties of *Kshara* (Sharma, 2007):

Sl. No	Charaka Samhita (Sutra Sthana 27/366)	Susruta Samhita (Sutra Sthana 11/16)	Astanga Hridaya (Sutra Sthana 24)	Rasa Tarangini (14/ 62-63)
1	<i>Tikshna</i> (sharp penetrating action)	Nati- Tikshna (not excessively sharp)	Nati- Tikshna (not excessively sharp)	<i>Tikshna</i> (sharp penetrating action)
2	Ushna (hot)	<i>Natimridu</i> (not excessively soft)	Natimridu (not excessively soft)	Atyanta Ushna (very hot tempearture)
3	Laghu (light)	<i>Sighrakari</i> (having rapid action)	Sita (cold)	
4	Ruksha (dry)	Slakshna (smooth texture)	Natiruksha (less dry)	<i>Krimighna</i> (wormicidal)
5	Kledi (oozing)	Picchila (sticky)	Picchila	Pachaka (digestive)
6	Dahana (cauterization of bleeders)	Abhisyandi (obstructive)	Sukhanirvapya (quenching)	Dahaka (corrosive)
7	Darana (bursting)	Sita	<i>Sighragani</i> (having rapid digestive fire)	<i>Shodhana</i> (purification)
8	<i>Lekhana</i> (scratching)	<i>Shikhari</i> (do not move when placed)	Slakshna (slimy)	<i>Mutrala</i> (Diuretic)
9	Dipana (digestive)	-	Avisyandi (immobile)	Ropana (Healing)
10	<i>Chedana</i> (cutting or excision)	-	-	-

Corn silk (Zea mays) is an herbal remedy made from stigmas, the yellowish thread-like strands found inside the husks of corn. These stigmas are usually the waste materials from corn cultivation. The drug which possessed diuretic, anti-hyperlipidaemic as well as anti- inflammatory properties. Corn silk is mainly used to treat urinary tract infections and kidney stones in adults. Corn silk also serve as a remedy for heart trouble, jaundice, malaria and obesity. Corn silk is rich in Vitamin K, making it useful in controlling of bleeding during child birth (Karmakar, 2013).

Dose of Kshara:

Sl. No	Types	Quantity
1	UttamaMatra	1 pala (48 ml)
2	MadhyamaMatra	3 karsha (36 ml)
3	HeenaMatra	¹ /2 <i>pala</i> (24 ml)

Table 18.2. Doses of Kshara.

Indications of PaneeyaKshara(Sharma, 2007):

It is indicated in *GaraVisha* (artificial poison), *Arochaka* (tastelessness), *Krimi, Gulma* (tumors), *Anaha* (constipation), *Visha, Udararoga* (GIT disorders), *Arsha, Agnimandya* (loss of appetite), *Ashmari* (renal calculi), *Ajirna* (indigestion), *Arsha, Bhagandara, Ashmari, Gulma* and *Udararoga*.

Makkaya which has been prepared in the form of *Paneeya Kshara* was prepared and hence to evaluate its management in different disorder will be reviewed in this article.

Method of Preparation:

Method: Open method

Drug Required: 150kg of dried Makkaya Roma (Silk hairs of Zea mays).

Preparation of the Drug at Pharmacy:

150kg of dried *Makkayaroma* was spread in an open field. Small quantity of dried hairs was initially burned using fire and subsequently the remaining quantity was added slowly into the fire to ensure complete burning. Drug gets burned quickly and converts into white ash. The maximum temperature during burning was approximately 75-100c. Totally it took a whole day for entire burning. After that the resultant ash was kept undisturbed for *Swangashita* (Self cooling).

Preparation of Kshara Jala:

Ksharajala was prepared by using 6 parts of water for dissolution of alkaline material from ash into the water. The content was rubbed along with water and allowed to settle overnight. The *Ksharajala* was taken after filtration by using three folded white cloth.

Preparation of Makkaya Paneeyakshara:

MakkayaPaneeyakshara was obtained by *Nirjali Karana* [evaporating the water content from the filtrate] in open vessel.

Phytochemical analysis of compound drug:

Phytochemical Analysis of *Kshara*: *Makkaya Paneeyakshara* was analysed at Vasu Research Centre 2018, Vadodara-31960.

Results

Table. 18.3. Showing the Organoleptic characters of Makkaya PaneeyaKshara.

Sl. No	Properties	Characteristics
1	Colour	Greyish white
2	Appearance	Course powder
3	Touch	Smooth
4	Taste	Alkaline
5	Odour	characteristic odour

Phytochemical parameters:

Makkaya Paneeyakshara was evaluated for various physio-chemical analyses like loss on drying, total ash, Acid insoluble ash, Water soluble extract, Alcohol soluble extract, pH. The results were shown in table No. 18.3.

Table 18.4. Showing the Phytochemical parameters of Makkaya Paneeya Kshara.
In-house ID: AD/17/113

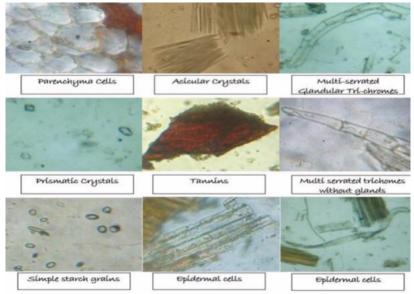
Sl.No	Parameters	Result
1	pH (1% solution)	10.88
2	Loss on drying	2.34%
3	Total ash	84.43%
4	Acid insoluble ash	80.11%
5	Water soluble extractive	94.12%
6	Alcohol soluble extractive	30.55%

Preservation:

Prepared *Kshara* should be stored in airtight glass container in order to prevent from the moisture content.

Shelf life:

It has infinite shelf life but it has to be stored in airtight containers for preventing it from exposure to the atmospheric conditions.


Pharmacognostical study:

The Pharmacognostical study of the Ingredients of trial drug – Makkaya Paneeyakshara was carried out in the Pharmacognosy laboratory, Parul Institute of Ayurved, Parul University, Vadodara. *Paneeya Kshara* of the trial drug was used for macroscopic, microscopic studies were carried out. Standards mentioned in API (Hasanudin, 2012), Quality Standards of Indian Medicinal Plants (Sharma, 2013), Database on Medicinal Plants used in Ayurveda (Jayaraman et al., 2018) are taken as reference for authentication.

Pharmacognosy of Makkaya Paneeyakshara:

Organoleptic characteristics Greyish white in colour, alkaline taste with Characteristic odour. **Microscopic features of whole Plant**:

Acicular crystals, Prismatic crystals, Parenchyma cells, Epidermal cells, Simple fibres, Multi serrated Trichomes with and without glands, Simple starch grains, Tannins.

Discussion

Corn (*Zea mays*) and corn silk (Stigma maydis) have not been mentioned anywhere in Ayurvedic classics. But in later period, there is an evidence of the word *Makkaya* (Hasanudin, 2012) (Indian corn) but no detailed description can be found. *Makkaya* has been used for various medical purpose for therapeutic used like diuretics, anti-inflammatory, anti-hyperlipidaemia effects etc. (Sharma, 2013). In South India, this corn silk has been used by folklore practitioners with drastic effects in gall stones as well as bladder stone.

This prepared *Makkaya Kshara* does not have any explanation regarding its properties and its probable mode of action in our classics but can be considered along with predictable properties of any Kshara. The Kshara having the properties of "Ksharanat" (corrosive effect) might have probably acted mechanically on the calculi on the calculi to disintegrate its molecules thereby resulting into lithotripsic action (Jayaraman, 2018). Acharya Susruta said that Asamshoditasheelata (uncorrected system) and Mithyahara Vihara (incompatible food and activities) which causes of increase of Kaphadosha by Srotovaigunya (derangement of channels) leads to Ashmari(Calculi). It is mainly due to the obstruction of Kapha-Vatadosha (Jayaraman, 2018). So, Makkaya was (corn silk) was formulated into Kshara (Caustic alkali) dosage form. Kshara is considered as the pradhanatam (Superior) and Sreshta (best) in Shastra (Surgical procedures) and Anushastra (Para- Surgical procedure) due to its Chedhana (cuts), Bhedana (splits), Lekhana (scraps), Mutrala (Diuretics) and Tridoshaghna (pacifies morbid doshas) properties. The Makkaya Ksharapossess the properties as of Makkaya hairs but with more potency because of preparatory methods. Makkaya Kshara breaks the Kapha-vatadosha obstruction which can be achieved by Ksharana property and Doshapratyanika Chikitsa (antagonistic to the humour) due to its Tikta rasa (Bitter taste), Laghu Rukshaguna (Light-dry property), Ushna Veerya (Hot potency) and Katu Vipaka (pungent post digestive effect). The Pachana (owing of digestive capability) and Daranagunas (Breaking) of the drugs helps in breaking the Sanghata (obstruction) of Ashmari (Renal calculi) and helps in dissolution and disintegration of stone, i.e., urolithiatic property. The purificatory and diuretic properties help to expel out the stones from urinary tract and reduce the burning micturition, i.e., diuretic property. The Ropana (Healing) property of drugs helps in reducing the haematuria by healing property.

According to Ayurveda, all the three *Doshas* viz. *Vata, Pitta* and *Kapha* play a major role in formation of gallstone. Excessive increase of Pitta (caused by hot, spicy food, alcohol etc) creates the basis for stone formation, Kapha increased by fatty, heavy sticky mixture. The Vata dries this mixture and moulds it into shape of a stone. Cholelithiasis has been compared with *Pittashayashmari* in *Ayurvedic* system. The *Makkaya Kshara* by its *Ksharana* property exerting the *Pitta* and pacifying the *Kapha* due to its *Tikta Rasa, Laghu Rukshaguna, Ushnaveerya* and *Katuvipaka* property. The motility of gall bladder is improved due to the *Vata Anulomana* property of *Kshara* and due its *Prabhava* thus the stone gets dissolving and correcting the metabolic causes to prevent the further formation of *Pitta Ashmari. Tikta Rasa* by its *Pittasamana* property helps to reduces the chemical irritation of the inflamed gall bladder to reduce the *Shoola* (pain). *Agni Mandya* is caused due to *Adhmana* along with *Annadvesha. Makkaya Paneeya Kshara* acts by causing *Vata Anulomana* and correction in *Dravyatah Vriddhi* and improvement in the *Guna and Karma* of *Pachaka Pitta*¹⁹.

Based of action based on modern science:

Corn silk has been used for the treatment of cystitis, oedema, kidney stones, diuretics, prostrate disorder and urinary infections as well as bedwetting and obesity. It soothes and relaxes the lining of the bladder and urinary tubules, hence reducing irritation and increasing urine secretion. Other beneficial treatments of Corn silk include anti- fatigue activity, anti- depressant activity and kaliuretic. In addition, it also possessed excellent anti- oxidant capacity and demonstrated protected effects in radiation and nephrotoxicity. Corn silk is rich in phenolic compounds particularly flavonoids (Reips&Funke,2008) which shows significantly lowering effects on the level of TC, TG, LDL and increasing the level of HDL, thereby it helps in liquefaction of stones formed due to cholesterol.

Conclusion

Kshara is one of the important dosage forms mentioned in *Ayurveda*. The alkaline nature of *Kshara*canbe helpful to neutralized the hypertonicity as well as acidity of urine itself. So, *Makkaya Paneeya Kshara*, by its *Ksharanat* property helps in reducing the stone size in different disorder like *PittasayaAshmari* as well as *Ashmari*etc.

Reference:

- Hasanudin, K., Hashim, P., Mustafa, S. 2012. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review. *Molecules*, 17(8): 9697-9715. doi: 10.3390/molecules17089697. PMID: 22890173; PMCID: PMC6268265.
- Jayaraman, G.S., Siddalingaiah, S.H., Kullolli, V. &Toshikhane, H. 2018.Clinical Evaluation of *PaneeyaKshara* (Oral Administration of Alkaline Medicine) in the Management of PittashayaAshmari (Cholelithiasis). *Journal of Research in Traditional Medicine*, 4(1): 9-15.
- Jha, C.B. 2011.Ayurvediya Rasa Shastra, VishaupvishaPrakaran, pp.463. Varanasi: Chaukhamba Surbhati Prakshan.
- Karmakar, S. 2013. Anti inflammatory activity of Zea mays (corn silk). Pharmatutor-ART- 1953.
- Mishra, S. 2011. In: Vagbhatacharya, Rasa RatnaSamucchaya, Hindi Commentary. 1st Ed. 2/19, pp. 33. Varanasi: Chaukhamba Orientalia.
- Murthy, K. R. S. 2010. In: Susruta, Susruta Samhita, English Commentary. Sutra Sthana 11/3, pp.63. Varanasi: Chaukhamba Orientalia.

- Murthy, K.R.S. 2010. In: Vagbhata, AstangaHrdaya, English Translation, 7th Ed. Sutra Sthana 30/8-12, pp. 344-345 Varanasi: ChowkhambaKrishnadas Academy.
- Reips, U.D. & Funke, F. 2008. Interval-level measurement with visual analogue scales in Internet-based research: VAS Generator. *Behavior research methods*, 40(3): 699-704.
- Sharma, H.S. 2008. In: Nagarjuna, Rasendramangala, Hindi Commentary. 2/20-22, pp.34-35. Varanasi: ChaukhambaOrientalia.
- Sharma, P.V. 2007.In: Cakrapanidatta. Cakradatta, English Translation, 1st Ed.5/4-20, pp.73-75. Varanasi: ChaukhambaOrientalia.
- Sharma, P.V. 2010. In: Susruta, SusrutaSamhita, English Commentary, Sutra Sthana 11/1, pp. 113. Varanasi: ChawkhambaBharati Academy.
- Sharma, P.V. 2011. In: Agnivesha, CharakaSamhita, English Commentary. Sutra Sthana 1/73, pp.9. Varanasi: ChaukhambaOrientalia.
- Sharma, P.V. 2013. In: NiganduAdarsh, Hindi Commentary, pp.215. Varanasi: ChaukhambaOrientalia.
- Shastri, K. 1989. In: Sharma S, Rasa Tarangini, Hindi Commentary, 11th Ed. 11/34, pp.583. Delhi: MotilalBanarasidas.

Chapter 19

Understanding of Diabetes mellitus diet – An integrative approach

Sikha Lekharu

Department of Samhita and Siddhant North Eastern Institute of Ayurveda and Homoeopathy, Shillong, Meghalaya Corresponding author E-mail: shikhalekharu@gmail.com

Abstract

The entire human race is facing the engulfing problem of Diabtes Mellitus (DM) with new formulations and treatment modules developing. Along with therapeutics, diet plays a very pivotal role in managing DM. The modern dietetics throw a lot of inputs in designing the diet pattern for DM. In this present review study, an input in drawing awareness in the available diet pattern along with how Ayurveda can help in remodelling the dietary pattern for DM in an integrated approach is discussed.

Keywords: Diet, Diabetes Mellitus, Integrated approach.

Introduction

Food and health have always been connected. Throughout history our ancestors survived on a variety of diet. What pre-historic humans ate in any particular geographic area depended in large part on the climate in which they lived, their hunting and gathering skills, their processing technology and available foods. Today many diseases are known to be linked to lifestyle behaviours such as smoking, lack of adequate physical activity and poor nutritional habits. The association of Diabetes mellitus with Diet as the etiology for Diabetes mellitus has been studied (Evert et al., 2014). The ancient Indian system of medicine Ayurveda while describing about the etiopathogenesis of Diabetes Mellitus which can be understood under the concept of *Prameha* has elaborately described the role of Diet in causing the disease (Campbell, 2017). Apart from being the causative factor diet has been considered as a part of treatment module in Ayurveda. In the modern science too, there is a trajectory towards the diet responses for maintaining Diabetes Mellitus for example, Low calorie diet and other popular diet like carbohydrate and ketogenic diet, vegan diet and Mediterranean diet etc. But what role do they play in Indian phenotype constitution seeks answers. It has been observed that low carbohydrate diet even though it is effective in reducing body weight and in patients with Type 2 it helps in maintaining glycemic control, but, the risk of cardiovascular diseases cannot be ignored (Ley et al., 2014). In this review paper we will discuss the role of Diets in managing Diabetes mellitus through an integrative approach. Integrative and functional medical nutrition therapy is a term used to identify an application of medical nutrition therapy that incorporates both integrative and functional medicine principles and conventional (mainstream/Western) nutrition practices.

Materials and Methods

Scrutiny of literature

Systematic literature searches with the keywords "Diabetes Diet and Ayurveda relevant to the field of Medical Science were carried out from different bibliographical databases via electronic search (using Pubmed, SciFinder, Scopus, Scirus, Science Direct, Google Scholar and Web of Science) and a library search for articles published in peer-reviewed journals and also locally available books. The classical textbooks of Ayurveda like Charak Samhita, Chakradatta, Bhavaprakash etc.

Result & Discussion

Following the consort guidelines, around 30 articles were reviewed and out of which only 10 (Jamy et al., 2004; Sharma & Chandola, 2011; Evert et al., 2014; Ley et al., 2014; Campbell, 2017; Neuenschwander et al., 2019; Chester et al., 2019;

Bolla et al., 2019; Noland & Raj, 2019) were considered for the study based on the relevance to the study title. For the Ayurveda part, classical textbooks were studied thoroughly and the pathya (Diet) have been highlighted in the charts.

Diets for Diabetes Mellitus as per Modern nutrition:

Dietary guidelines for the management of diabetes have evolved from a focus on a low-fat diet to the recognition that more important considerations are macronutrient quality (that is, the type versus the quantity of macronutrient), avoidance of processed foods (particularly processed starches and sugars), and overall dietary patterns. These guidelines exist (in many settings there are none or they are adapted from those in developed countries and therefore may not be applicable to the local situation), they vary substantially in whether they are evidence based or opinion pieces, and updated in line with scientific progress or outdated. Their accessibilityboth physical availability (e.g., through a website or clinic) and comprehensibilityfor patients and healthcare professionals varies. They vary also in scope, content, detail, and emphasis on the importance of individualised dietary advice, areas of controversy, and further research needs. The ADA also recognizes the integral role of nutrition therapy in overall diabetes management and has historically recommended that each person with diabetes be actively engaged in self-management, education, and treatment planning with his or her health care provider, which includes the collaborative development of an individualized eating plan. A thorough look into the available resources on the dietary plan are as follow-

DIET	BENEFITS	Drawback-		
The	Curative: The DASH (Dietary Approaches to Stop	55%		
DASH	Hypertension) eating plan is an acceptable eating pattern	carbohydrate		
Diet	for people who have diabetes.	is included in		
	Preventive: The DASH eating plan or DASH-like eating	the diet.		
	plans have also led to improvements in insulin sensitivity,			
	further demonstrating that this type of eating plan may be			
	helpful for individuals with prediabetes or who are at risk			
	for type 2 diabetes			
The	As a result, the term "Mediterranean-style diet" is			
Mediterran	currently used in the literature in order to describe not a			
ean Diet	specific diet, but rather a collection of dietary habits			
	traditionally followed by the populations of countries			
	bordering the Mediterranean Sea.			
	Preventive:			
	In addition to its beneficial effect on body weight, the			
	unique combination of foods and nutrients found in the			
	MD has been proposed to be beneficial for T2DM			
	prevention and treatment. In particular, the high			
	consumption of fruits, vegetables, legumes, nuts, whole-			
	grain cereals and olive oil encouraged in the MD, leads to			

		,
	a high ratio of monounsaturated to saturated fatty acids, a	
	low intake of trans fatty acids and a high intake of dietary	
	fiber and antioxidants	
Mark Bittman's VB6 Diet	The VB6 Diet focuses on being a vegan about 75% of the time. Research shows a well-planned vegan diet can be good for health and weight, so it's likely that being vegan most of the time has the same benefits.	Although the recipes aren't necessarily low fat, they include healthy fat sources, and salt can be easily controlled during cooking. If you have diabetes, you can continue to count carbs to control
		blood sugar.
The Volumetri cs Diet The Biggest Loser Diet	The primary focus is filling up on foods that are naturally low in calories and high in fiber or water—think fruits, veggies, and soups. "Since carbohydrates and proteins both provide four calories per gram, and fat provides nine calories per gram, you can eat more [carbs and protein] without the excess calories. The Biggest Loser eating plan promotes weight loss by restricting calories (1,200–1,500 calories per day) and encouraging a diet comprising nutrient-dense, whole foods.	It can curb your calorie intake excessively —
		and it can be difficult to maintain.
American Diabetes Associatio n Carbohydr ate Counting	Carb counting at its most basic level involves counting the number of grams of carbohydrate in a meal and matching that to your dose of insulin.	
Ornish Diet/The Spectrum	calories are unrestricted unless you're trying to lose weight. Small frequent meals spread throughout the day will help you to avoid hunger and keep your energy levels constant. Portion control will assist you in reaching and maintaining a healthy body weight and controlling blood sugar levels. Non-fat dairy foods (no more than 2 servings/day) and egg whites are included.	

Weight	Weight Watchers does not forbid specific foods or tell	
Watchers	people what to eat.	
	Weight Watchers offers two diet plans: -	
	a) The points plan: In the points plan, foods are	
	assigned a certain number of points based on the	
	food's calorie, total fat, and dietary fiber content.	
	b) The core plan: The core plan is based on the	
	consumption of wholesome foods from all the	
	food groups, including fruits and vegetables,	
	grains and starches, lean meats and poultry, and	
	eggs and dairy products.	

Diet as per Ayurvedic concept

Along with this modern diet plan, Ayurveda emphasises on dietary behaviour along with dietary does and don't for diseases targeting the preventive aspect as well as the therapeutic aspect. Understanding the etio-pathogenesis of DM from Ayurveda perspective, we can develop a diet module based on the following parameters:

Fig.19.1. Diet module.

Traditionally, the following chart-1 shows the variety of food combination in Diabetes mellitus from Ayurveda aspect-

Chart-1

Diabetes mellitus	Pathya		Gurvadiguna/nutritional
Diet according to	1 attiya		value
different scholars-			value
CharakChikitsa-	1) La	aghu food	1)Laghu
sthana		eat of viskir and	2) Laghu/
sulalla	,	atud	3) Guru/
	1	anti (<i>Baliospermum</i>	4)Laghu/fruits are
		ontanum)	antihyperglycaemic.
		gudi (<i>Balanites</i>	5)Guru/ decrease insulin
	, ,		resistance in pre-diabetics
		egyptiaca)	*
	5) At	tasi (flax seed)	6) laghu/ Flavonoid
			antioxidants protect from
	6) Sa	arsapa(mustard)	Type-2
			7) Laghu/Low GI
			8)Laghu/ High fibre
	7) 01	nati mina	content
	.,	hati rice	9) Less Glycaemic index
		rina dhanya(Millets)	than Rice.
		attu(Powder of yava)	10) Guru/jamboline and
	10) Ja	mbu seeds	jambosine that slow down
			the rate of sugar released
			into the blood and also
			increase the insulin levels
		1 1 / 11	in the body.
Chakradatta	1) Sy	/hamaka (millets)	1.Katu, Ushna /Magnesium
			content helps to balance
			the blood sugar
		1 (17 1	2)Laghu/Rich source of
	<i>,</i>	odruva (Kodo	dietary fibre, anti-oxidants
	m	illet)	and iron.
			3)Guru / Whole wheat and
	3) Go	oudhuma (wheat)	whole grains are lower on
			the glycemic index.
			4) laghu/ low glycemic
		hanaka (Bengal	index and high fibre.
		am) when del (Disserved al)	Laghu/Good source of
	5) Ai	rhar dal (Pigeon dal)	complex carbohydrates,
			low Glycemic index.
			Guru/Helps insulin
		1.	resistance and balances
	6) Ai	mla	blood glucose.
			Laghu/Fructose has a
			lower glycemic index of
	7) He	oney	19.

			Laghu/Haridra halts the
			progression of Pre-diabetes
	8)	Haldi(Turmeric)	to diabetes.
	,		Laghu/
	9)	Lodhra (Sympolocus	Laghu/ It helps in
		tree)	prevention of Diabetes
	10)	Parval(Pointed gourd)	mellitus.
	11)	Nimba	Laghu/It helps in reducing and balancing Blood
	12)	Sotha	glucose.
		(Saussurealappa)	Laghu
	13)	Maricha	Laghu/
	14)	Pippali	Laghu/ hypoglycaemia
Yogaratnakar	1)	Bhuiamalakhi	1. Laghu,
	2)	Vanakoda	kaphapittasamaka/
	3)	Shali(Red rice)	Hypoglycaemic
	4)	Mudga(Green gram)	2)Laghu
	5)	Kulatha(Horse gram)	3)Laghu/nutraceutical
	6)	Yava(Barley)	4) Laghu/ improved
	7)	Bitter vegetables	glucose tolerance and
	8)	Jangalamamsa	increased insulin
	9)	Saindaiva salt	immunoreactive level
			5) Laghu/ reduce post-
			prandial hyperglycemia
			6)Guru/Less Glycaemic
			index than Rice
			7)Laghu/Hypoglycaemia
			8) Laghu
			9) Dipana/ Low sodium
			level

Conclusion

The review paper on integration of Dietary Pattern is the need of hour. The global incidence of Diabetes mellitus is pushing the young generation to vulnerable health group. Management of Diabetes Mellitus through oral glycaemic and insulin is showing results but prevention of a disease showed be the prime focus for the new generation. Modern nutrition has many dietary patterns, and Ayurveda has also described pathya (Wholesome food) for every disease. So, merging the concepts of modern diet and Ayurveda, a complete diet pattern may be the solution of preventing and managing the burden of Diabetes mellitus.

References

- Alison, B., Jackie, L., Marjorie, Cypress., Stephanie, A., Marion, J., Elizabeth, J., Joshua, J., Robin, Nwankwo., Cassandra, L., Patti, Urbanski., William, S. &Yancy, Jr. 2013. Nutrition Therapy Recommendations for the Management of Adults With Diabetes. *Diabetes Care*, 36(11): 3821-3842.
- Bolla, A.M., Caretto, A., Laurenzi, A., Scavini, M. & Piemonti, L. 2019. Low Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. *Nutrients*, 11(5): 962. https://doi.org/10.3390/nu11050962
- Campbell, A. P. 2017. DASH eating plan: an eating pattern for diabetes management. *Diabetes Spectrum*, 30(2): 76-81.
- Chester, B., Babu, J.R., Greene, M.W. and Geetha, T., 2019. The effects of popular diets on type 2 diabetes management. *Diabetes/metabolism research and reviews*, 35(8): p.e3188.
- Evert, A.B., Boucher, J.L., Cypress, M., Dunbar, S.A., Franz, M.J., Mayer-Davis, E.J., Neumiller, J.J., Nwankwo, R., Verdi, C.L., Urbanski, P. &Yancy, W.S. 2014. Nutrition therapy recommendations for the management of adults with diabetes. *Diabetes care*, 37(Supplement 1): S120-S143.
- Jamy, D., Steve, C., Di, Liu., Cris, A., William E, Kraus., Laura, P. &Svetkey. 2004. The Effect of the PREMIER Interventions on Insulin Sensitivity. *Diabetes Care*, 27(2): 340-347.
- Ley, S.H., Hamdy, O., Mohan, V. & Hu, F.B. 2014. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. *The Lancet*, 383(9933):1999-2007.
- Neuenschwander, M., Ballon, A., Weber, K.S., Norat, T., Aune, D., Schwingshackl, L. & Schlesinger, S. 2019. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. *BMJ*, 366: 12368.http://dx.doi.org/10.1136/bmj.12368
- Noland, D. & Raj, S. 2019. Academy of Nutrition and Dietetics: Revised 2019 standards of practice and standards of professional performance for registered dietitian nutritionists (competent, proficient, and expert) in nutrition in integrative and functional medicine. *Journal of the Academy of Nutrition and Dietetics*, 119(6): 1019-1036.
- Sharma, H. & Chandola, H.M. 2011. Prameha in Ayurveda: correlation with obesity, metabolic syndrome, and diabetes mellitus, Part 1-etiology, classification, and pathogenesis. *Journal of alternative and complementary medicine*, 17(6): 491– 496.

The Book

The book is a collection of 19 articles on folk medicine, ethnobotany, ethnozoology, ayurveda and other aspects of botanical research in North Eastern India authored by different experts in their respective fields. The book is a noble attempt to compile the research articles on folk medicine, medicinal plant diversity and ethnobotany to identify gaps of research works in the field of traditional medicine and ethnobotany in North Eastern India.

The Editors

Dr. Amal Bawri is Botanist at North Eastern Institute of Folk Medicine, Pasighat (An Autonomous Institute under Ministry of AYUSH, Govt. of India). He obtained his Master degree and Ph.D. from Dibrugarh University, Assam and North Eastern Regional Institute of Science & Technology, Arunachal Pradesh respectively. He is a recipient of prestigious DST National Post-Doctoral Fellowship and carried out his Post-Doctoral research work in Department of Botany, Gauhati University. He also received prestigious Rufford Small Grant from Rufford Foundation. United Kingdom for his research work. He has published 30 research articles in peer reviewed national and international journals. He has also published 1 Book entitled "Flora of BTAD" (Bodoland Territorial Area Districts, Assam) in 4 volumes and edited 1 book.

Dr. Kenjum Bagra is Zoologist at North Eastern Institute of Folk Medicine, Pasighat (An Autonomous Institute under Ministry of AYUSH, Govt. of India). He did his Ph.D.in Zoology from Rajiv Gandhi University. Rono Hills, Itanagar, Arunachal Pradesh. Dr. Bagra is a recipient of "Research Fellow in Science for Meritorious Scholars" fromUniversity Grants Commission. New Dethi. His first book entitled "Biology and Habitat Ecology of King fish"was published by Lambert Academic Publishing, Germany. His latest book "Industrial use of bioresources of Arunachal Pradesh" was published by Arunachal Pradesh Biodiversity Board, Itanagar. Dr. Bagra has published 15 Research articles in peer reviewed national and international journals.

Dr. Imlikumba is Medical Officer at North Eastern Institute of Folk Medicine, Pasighat (An Autonomous Institute under Ministry of AYUSH, Govt, of India). He obtained his B.A.M.S & M.D. (Panchakarma) from Govt. Ayurvedic College & Hospital, Guwahati University, Assam and S.D.M. College of Ayurveda & Hospital, Rajiv Gandhi University of Health Sciences, Karnataka respectively. He has published 15 research articles in peer reviewed national and international journals. He has also published 1 Book Sciatica management using Ayurveda Principles by Enema Therapy (Basti): Panchakarma Detoxification treatment using Basti.

Dr. Robindra Teron is Director at North Eastern Institute of Folk Medicine, Pasighat (An Autonomous Institute under Ministry of AYUSH, Govt. of India). He obtained his Master degree and Ph.D. from Banaras Hindu University, UP and Gauhati University, Assam respectively. He has published 80 research articles in peer reviewed national and international journals. He has also guided 13 Ph.D. scholars, Dr.Teron is a member of several professional national bodies.

North Eastern Institute of Folk Medicine Pasighat-791102, Arunachal Pradesh (India) Phone:0368-2225243/2225650 Fax: 0368-2222181 Email: neifmresearch@gmail.com

